|
@@ -124,89 +124,4 @@ void SelfAwareness::clean(int64_t now)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-#if 0
|
|
|
-std::vector<InetAddress> SelfAwareness::getSymmetricNatPredictions()
|
|
|
-{
|
|
|
- /* This is based on ideas and strategies found here:
|
|
|
- * https://tools.ietf.org/html/draft-takeda-symmetric-nat-traversal-00
|
|
|
- *
|
|
|
- * For each IP address reported by a trusted (upstream) peer, we find
|
|
|
- * the external port most recently reported by ANY peer for that IP.
|
|
|
- *
|
|
|
- * We only do any of this for global IPv4 addresses since private IPs
|
|
|
- * and IPv6 are not going to have symmetric NAT.
|
|
|
- *
|
|
|
- * SECURITY NOTE:
|
|
|
- *
|
|
|
- * We never use IPs reported by non-trusted peers, since this could lead
|
|
|
- * to a minor vulnerability whereby a peer could poison our cache with
|
|
|
- * bad external surface reports via OK(HELLO) and then possibly coax us
|
|
|
- * into suggesting their IP to other peers via PUSH_DIRECT_PATHS. This
|
|
|
- * in turn could allow them to MITM flows.
|
|
|
- *
|
|
|
- * Since flows are encrypted and authenticated they could not actually
|
|
|
- * read or modify traffic, but they could gather meta-data for forensics
|
|
|
- * purposes or use this as a DOS attack vector. */
|
|
|
-
|
|
|
- std::map< uint32_t,unsigned int > maxPortByIp;
|
|
|
- InetAddress theOneTrueSurface;
|
|
|
- {
|
|
|
- Mutex::Lock _l(_phy_m);
|
|
|
-
|
|
|
- // First check to see if this is a symmetric NAT and enumerate external IPs learned from trusted peers
|
|
|
- bool symmetric = false;
|
|
|
- {
|
|
|
- Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
|
|
|
- PhySurfaceKey *k = (PhySurfaceKey *)0;
|
|
|
- PhySurfaceEntry *e = (PhySurfaceEntry *)0;
|
|
|
- while (i.next(k,e)) {
|
|
|
- if ((e->trusted)&&(e->mySurface.ss_family == AF_INET)&&(e->mySurface.ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
|
|
|
- if (!theOneTrueSurface)
|
|
|
- theOneTrueSurface = e->mySurface;
|
|
|
- else if (theOneTrueSurface != e->mySurface)
|
|
|
- symmetric = true;
|
|
|
- maxPortByIp[reinterpret_cast<const struct sockaddr_in *>(&(e->mySurface))->sin_addr.s_addr] = e->mySurface.port();
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- if (!symmetric)
|
|
|
- return std::vector<InetAddress>();
|
|
|
-
|
|
|
- { // Then find the highest issued port per IP
|
|
|
- Hashtable< PhySurfaceKey,PhySurfaceEntry >::Iterator i(_phy);
|
|
|
- PhySurfaceKey *k = (PhySurfaceKey *)0;
|
|
|
- PhySurfaceEntry *e = (PhySurfaceEntry *)0;
|
|
|
- while (i.next(k,e)) {
|
|
|
- if ((e->mySurface.ss_family == AF_INET)&&(e->mySurface.ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
|
|
|
- const unsigned int port = e->mySurface.port();
|
|
|
- std::map< uint32_t,unsigned int >::iterator mp(maxPortByIp.find(reinterpret_cast<const struct sockaddr_in *>(&(e->mySurface))->sin_addr.s_addr));
|
|
|
- if ((mp != maxPortByIp.end())&&(mp->second < port))
|
|
|
- mp->second = port;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- std::vector<InetAddress> r;
|
|
|
-
|
|
|
- // Try next port up from max for each
|
|
|
- for(std::map< uint32_t,unsigned int >::iterator i(maxPortByIp.begin());i!=maxPortByIp.end();++i) {
|
|
|
- unsigned int p = i->second + 1;
|
|
|
- if (p > 65535) p -= 64511;
|
|
|
- const InetAddress pred(&(i->first),4,p);
|
|
|
- if (std::find(r.begin(),r.end(),pred) == r.end())
|
|
|
- r.push_back(pred);
|
|
|
- }
|
|
|
-
|
|
|
- // Try a random port for each -- there are only 65535 so eventually it should work
|
|
|
- for(std::map< uint32_t,unsigned int >::iterator i(maxPortByIp.begin());i!=maxPortByIp.end();++i) {
|
|
|
- const InetAddress pred(&(i->first),4,1024 + ((unsigned int)RR->node->prng() % 64511));
|
|
|
- if (std::find(r.begin(),r.end(),pred) == r.end())
|
|
|
- r.push_back(pred);
|
|
|
- }
|
|
|
-
|
|
|
- return r;
|
|
|
-}
|
|
|
-#endif
|
|
|
-
|
|
|
} // namespace ZeroTier
|