|
@@ -0,0 +1,322 @@
|
|
|
+/*
|
|
|
+ * ZeroTier One - Network Virtualization Everywhere
|
|
|
+ * Copyright (C) 2011-2015 ZeroTier, Inc.
|
|
|
+ *
|
|
|
+ * This program is free software: you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
|
+ * the Free Software Foundation, either version 3 of the License, or
|
|
|
+ * (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License
|
|
|
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
+ *
|
|
|
+ * --
|
|
|
+ *
|
|
|
+ * ZeroTier may be used and distributed under the terms of the GPLv3, which
|
|
|
+ * are available at: http://www.gnu.org/licenses/gpl-3.0.html
|
|
|
+ *
|
|
|
+ * If you would like to embed ZeroTier into a commercial application or
|
|
|
+ * redistribute it in a modified binary form, please contact ZeroTier Networks
|
|
|
+ * LLC. Start here: http://www.zerotier.com/
|
|
|
+ */
|
|
|
+
|
|
|
+#include <stdio.h>
|
|
|
+#include <stdlib.h>
|
|
|
+#include <string.h>
|
|
|
+#include <time.h>
|
|
|
+#include <stdint.h>
|
|
|
+#include <unistd.h>
|
|
|
+#include <signal.h>
|
|
|
+
|
|
|
+#include <map>
|
|
|
+#include <set>
|
|
|
+#include <string>
|
|
|
+#include <algorithm>
|
|
|
+#include <vector>
|
|
|
+
|
|
|
+#include "../osdep/Phy.hpp"
|
|
|
+
|
|
|
+#define ZT_TCP_PROXY_UDP_POOL_SIZE 1024
|
|
|
+#define ZT_TCP_PROXY_UDP_POOL_START_PORT 10000
|
|
|
+#define ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS 300
|
|
|
+
|
|
|
+using namespace ZeroTier;
|
|
|
+
|
|
|
+/*
|
|
|
+ * This implements a simple packet encapsulation that is designed to look like
|
|
|
+ * a TLS connection. It's not a TLS connection, but it sends TLS format record
|
|
|
+ * headers. It could be extended in the future to implement a fake TLS
|
|
|
+ * handshake.
|
|
|
+ *
|
|
|
+ * At the moment, each packet is just made to look like TLS application data:
|
|
|
+ * <[1] TLS content type> - currently 0x17 for "application data"
|
|
|
+ * <[1] TLS major version> - currently 0x03 for TLS 1.2
|
|
|
+ * <[1] TLS minor version> - currently 0x03 for TLS 1.2
|
|
|
+ * <[2] payload length> - 16-bit length of payload in bytes
|
|
|
+ * <[...] payload> - Message payload
|
|
|
+ *
|
|
|
+ * The primary purpose of TCP sockets is to work over ports like HTTPS(443),
|
|
|
+ * allowing users behind particularly fascist firewalls to at least reach
|
|
|
+ * ZeroTier's supernodes. UDP is the preferred method of communication as
|
|
|
+ * encapsulating L2 and L3 protocols over TCP is inherently inefficient
|
|
|
+ * due to double-ACKs. So TCP is only used as a fallback.
|
|
|
+ *
|
|
|
+ * New clients send a HELLO message consisting of a 4-byte message (too small
|
|
|
+ * for a ZT packet) containing:
|
|
|
+ * <[1] ZeroTier major version>
|
|
|
+ * <[1] minor version>
|
|
|
+ * <[2] revision>
|
|
|
+ *
|
|
|
+ * Clients that have send a HELLO and that have a new enough version prepend
|
|
|
+ * each payload with the remote IP the message is destined for. This is in
|
|
|
+ * the same format as the IP portion of ZeroTier HELLO packets.
|
|
|
+ */
|
|
|
+
|
|
|
+struct TcpProxyService;
|
|
|
+struct TcpProxyService
|
|
|
+{
|
|
|
+ Phy<TcpProxyService *> *phy;
|
|
|
+ PhySocket *udpPool[ZT_TCP_PROXY_UDP_POOL_SIZE];
|
|
|
+
|
|
|
+ struct Client
|
|
|
+ {
|
|
|
+ char tcpReadBuf[131072];
|
|
|
+ char tcpWriteBuf[131072];
|
|
|
+ unsigned long tcpWritePtr;
|
|
|
+ unsigned long tcpReadPtr;
|
|
|
+ PhySocket *tcp;
|
|
|
+ PhySocket *assignedUdp;
|
|
|
+ time_t lastActivity;
|
|
|
+ bool newVersion;
|
|
|
+ };
|
|
|
+
|
|
|
+ std::map< PhySocket *,Client > clients;
|
|
|
+
|
|
|
+ struct ReverseMappingKey
|
|
|
+ {
|
|
|
+ uint64_t sourceZTAddress;
|
|
|
+ PhySocket *sendingUdpSocket;
|
|
|
+ uint32_t destIp;
|
|
|
+ unsigned int destPort;
|
|
|
+
|
|
|
+ ReverseMappingKey() {}
|
|
|
+ ReverseMappingKey(uint64_t zt,PhySocket *s,uint32_t ip,unsigned int port) : sourceZTAddress(zt),sendingUdpSocket(s),destIp(ip),destPort(port) {}
|
|
|
+ inline bool operator<(const ReverseMappingKey &k) const throw() { return (memcmp((const void *)this,(const void *)&k,sizeof(ReverseMappingKey)) < 0); }
|
|
|
+ inline bool operator==(const ReverseMappingKey &k) const throw() { return (memcmp((const void *)this,(const void *)&k,sizeof(ReverseMappingKey)) == 0); }
|
|
|
+ };
|
|
|
+
|
|
|
+ std::map< ReverseMappingKey,Client * > reverseMappings;
|
|
|
+
|
|
|
+ void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)
|
|
|
+ {
|
|
|
+ if ((from->sa_family == AF_INET)&&(len > 16)&&(len < 2048)) {
|
|
|
+ const uint64_t destZt = (
|
|
|
+ (((uint64_t)(((const unsigned char *)data)[8])) << 32) |
|
|
|
+ (((uint64_t)(((const unsigned char *)data)[9])) << 24) |
|
|
|
+ (((uint64_t)(((const unsigned char *)data)[10])) << 16) |
|
|
|
+ (((uint64_t)(((const unsigned char *)data)[11])) << 8) |
|
|
|
+ ((uint64_t)(((const unsigned char *)data)[12])) );
|
|
|
+ const uint32_t fromIp = ((const struct sockaddr_in *)from)->sin_addr.s_addr;
|
|
|
+ const unsigned int fromPort = ntohs(((const struct sockaddr_in *)from)->sin_port);
|
|
|
+
|
|
|
+ std::map< ReverseMappingKey,Client * >::iterator rm(reverseMappings.find(ReverseMappingKey(destZt,sock,fromIp,fromPort)));
|
|
|
+ if (rm != reverseMappings.end()) {
|
|
|
+ Client &c = *(rm->second);
|
|
|
+
|
|
|
+ unsigned long mlen = len;
|
|
|
+ if (c.newVersion)
|
|
|
+ mlen += 7; // new clients get IP info
|
|
|
+
|
|
|
+ if ((c.tcpWritePtr + 5 + mlen) <= sizeof(c.tcpWriteBuf)) {
|
|
|
+ if (!c.tcpWritePtr)
|
|
|
+ phy->tcpSetNotifyWritable(c.tcp,true);
|
|
|
+
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = 0x17; // look like TLS data
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2
|
|
|
+
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = (char)((mlen >> 8) & 0xff);
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = (char)(mlen & 0xff);
|
|
|
+
|
|
|
+ if (c.newVersion) {
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = (char)4; // IPv4
|
|
|
+ *((uint32_t *)(c.tcpWriteBuf + c.tcpWritePtr)) = fromIp;
|
|
|
+ c.tcpWritePtr += 4;
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = (char)((fromPort >> 8) & 0xff);
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = (char)(fromPort & 0xff);
|
|
|
+ }
|
|
|
+
|
|
|
+ for(unsigned long i=0;i<len;++i)
|
|
|
+ c.tcpWriteBuf[c.tcpWritePtr++] = ((const char *)data)[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)
|
|
|
+ {
|
|
|
+ // unused, we don't initiate
|
|
|
+ }
|
|
|
+
|
|
|
+ void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
|
|
|
+ {
|
|
|
+ Client &c = clients[sockN];
|
|
|
+ c.tcpWritePtr = 0;
|
|
|
+ c.tcpReadPtr = 0;
|
|
|
+ c.tcp = sockN;
|
|
|
+ c.assignedUdp = udpPool[rand() % ZT_TCP_PROXY_UDP_POOL_SIZE];
|
|
|
+ c.lastActivity = time((time_t *)0);
|
|
|
+ c.newVersion = false;
|
|
|
+ *uptrN = (void *)&c;
|
|
|
+ }
|
|
|
+
|
|
|
+ void phyOnTcpClose(PhySocket *sock,void **uptr)
|
|
|
+ {
|
|
|
+ for(std::map< ReverseMappingKey,Client * >::iterator rm(reverseMappings.begin());rm!=reverseMappings.end();) {
|
|
|
+ if (rm->second == (Client *)*uptr)
|
|
|
+ reverseMappings.erase(rm++);
|
|
|
+ else ++rm;
|
|
|
+ }
|
|
|
+ clients.erase(sock);
|
|
|
+ }
|
|
|
+
|
|
|
+ void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len)
|
|
|
+ {
|
|
|
+ Client &c = *((Client *)*uptr);
|
|
|
+ c.lastActivity = time((time_t *)0);
|
|
|
+
|
|
|
+ for(unsigned long i=0;i<len;++i) {
|
|
|
+ if (c.tcpReadPtr >= sizeof(c.tcpReadBuf)) {
|
|
|
+ phy->close(sock);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ c.tcpReadBuf[c.tcpReadPtr++] = ((const char *)data)[i];
|
|
|
+
|
|
|
+ if (c.tcpReadPtr >= 5) {
|
|
|
+ unsigned long mlen = ( ((((unsigned long)c.tcpReadBuf[3]) & 0xff) << 8) | (((unsigned long)c.tcpReadBuf[4]) & 0xff) );
|
|
|
+ if (c.tcpReadPtr >= (mlen + 5)) {
|
|
|
+ if (mlen == 4) {
|
|
|
+ // Right now just sending this means the client is 'new enough' for the IP header
|
|
|
+ c.newVersion = true;
|
|
|
+ } else if (mlen >= 7) {
|
|
|
+ char *payload = c.tcpReadBuf + 5;
|
|
|
+ unsigned long payloadLen = mlen;
|
|
|
+
|
|
|
+ struct sockaddr_in dest;
|
|
|
+ memset(&dest,0,sizeof(dest));
|
|
|
+ if (c.newVersion) {
|
|
|
+ if (*payload == (char)4) {
|
|
|
+ // New clients tell us where their packets go.
|
|
|
+ ++payload;
|
|
|
+ dest.sin_family = AF_INET;
|
|
|
+ dest.sin_addr.s_addr = *((uint32_t *)payload);
|
|
|
+ payload += 4;
|
|
|
+ dest.sin_port = *((uint16_t *)payload); // will be in network byte order already
|
|
|
+ payload += 2;
|
|
|
+ payloadLen -= 7;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ // For old clients we will just proxy everything to a local ZT instance. The
|
|
|
+ // fact that this will come from 127.0.0.1 will in turn prevent that instance
|
|
|
+ // from doing unite() with us. It'll just forward. There will not be many of
|
|
|
+ // these.
|
|
|
+ dest.sin_family = AF_INET;
|
|
|
+ dest.sin_addr.s_addr = htonl(0x7f000001); // 127.0.0.1
|
|
|
+ dest.sin_port = htons(9993);
|
|
|
+ }
|
|
|
+
|
|
|
+ // Note: we do not relay to privileged ports... just an abuse prevention rule.
|
|
|
+ if ((ntohs(dest.sin_port) > 1024)&&(payloadLen >= 16)) {
|
|
|
+ if ((payloadLen >= 28)&&(payload[13] != (char)0xff)) {
|
|
|
+ // Learn reverse mappings -- we will route replies to these packets
|
|
|
+ // back to their sending TCP socket. They're on a first come first
|
|
|
+ // served basis.
|
|
|
+ const uint64_t sourceZt = (
|
|
|
+ (((uint64_t)(((const unsigned char *)payload)[13])) << 32) |
|
|
|
+ (((uint64_t)(((const unsigned char *)payload)[14])) << 24) |
|
|
|
+ (((uint64_t)(((const unsigned char *)payload)[15])) << 16) |
|
|
|
+ (((uint64_t)(((const unsigned char *)payload)[16])) << 8) |
|
|
|
+ ((uint64_t)(((const unsigned char *)payload)[17])) );
|
|
|
+ ReverseMappingKey k(sourceZt,c.assignedUdp,dest.sin_addr.s_addr,ntohl(dest.sin_port));
|
|
|
+ if (reverseMappings.count(k) == 0)
|
|
|
+ reverseMappings[k] = &c;
|
|
|
+ }
|
|
|
+
|
|
|
+ phy->udpSend(c.assignedUdp,(const struct sockaddr *)&dest,payload,payloadLen);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ memmove(c.tcpReadBuf,c.tcpReadBuf + (mlen + 5),c.tcpReadPtr -= (mlen + 5));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ void phyOnTcpWritable(PhySocket *sock,void **uptr)
|
|
|
+ {
|
|
|
+ Client &c = *((Client *)*uptr);
|
|
|
+ if (c.tcpWritePtr) {
|
|
|
+ long n = phy->tcpSend(sock,c.tcpWriteBuf,c.tcpWritePtr);
|
|
|
+ if (n > 0) {
|
|
|
+ memmove(c.tcpWriteBuf,c.tcpWriteBuf + n,c.tcpWritePtr -= (unsigned long)n);
|
|
|
+ if (!c.tcpWritePtr)
|
|
|
+ phy->tcpSetNotifyWritable(sock,false);
|
|
|
+ }
|
|
|
+ } else phy->tcpSetNotifyWritable(sock,false);
|
|
|
+ }
|
|
|
+
|
|
|
+ void doHousekeeping()
|
|
|
+ {
|
|
|
+ std::vector<PhySocket *> toClose;
|
|
|
+ time_t now = time((time_t *)0);
|
|
|
+ for(std::map< PhySocket *,Client >::iterator c(clients.begin());c!=clients.end();++c) {
|
|
|
+ if ((now - c->second.lastActivity) >= ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS)
|
|
|
+ toClose.push_back(c->first);
|
|
|
+ }
|
|
|
+ for(std::vector<PhySocket *>::iterator s(toClose.begin());s!=toClose.end();++s)
|
|
|
+ phy->close(*s); // will call phyOnTcpClose() which does cleanup
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+int main(int argc,char **argv)
|
|
|
+{
|
|
|
+ signal(SIGPIPE,SIG_IGN);
|
|
|
+ signal(SIGHUP,SIG_IGN);
|
|
|
+ srand(time((time_t *)0));
|
|
|
+
|
|
|
+ TcpProxyService svc;
|
|
|
+ Phy<TcpProxyService *> phy(&svc,true);
|
|
|
+ svc.phy = &phy;
|
|
|
+
|
|
|
+ {
|
|
|
+ int poolSize = 0;
|
|
|
+ for(unsigned int p=ZT_TCP_PROXY_UDP_POOL_START_PORT;((poolSize<ZT_TCP_PROXY_UDP_POOL_SIZE)&&(p<=65535));++p) {
|
|
|
+ struct sockaddr_in laddr;
|
|
|
+ memset(&laddr,0,sizeof(laddr));
|
|
|
+ laddr.sin_family = AF_INET;
|
|
|
+ laddr.sin_port = htons((uint16_t)p);
|
|
|
+ PhySocket *s = phy.udpBind((const struct sockaddr *)&laddr);
|
|
|
+ if (s)
|
|
|
+ svc.udpPool[poolSize++] = s;
|
|
|
+ }
|
|
|
+ if (poolSize < ZT_TCP_PROXY_UDP_POOL_SIZE) {
|
|
|
+ fprintf(stderr,"%s: fatal error: cannot bind %d UDP ports\n",argv[0],ZT_TCP_PROXY_UDP_POOL_SIZE);
|
|
|
+ return 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ time_t lastDidHousekeeping = time((time_t *)0);
|
|
|
+ for(;;) {
|
|
|
+ phy.poll(120000);
|
|
|
+ time_t now = time((time_t *)0);
|
|
|
+ if ((now - lastDidHousekeeping) > 120) {
|
|
|
+ lastDidHousekeeping = now;
|
|
|
+ svc.doHousekeeping();
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|