Browse Source

Build fixes.

Adam Ierymenko 5 years ago
parent
commit
d537428421

+ 3 - 3
CMakeLists.txt

@@ -57,8 +57,8 @@ else(WIN32)
 			-Wall
 			-Wno-deprecated
 			-Wno-unused-function
-			-mmacosx-version-min=10.9
-			$<$<CONFIG:Debug>:-g>
+			-mmacosx-version-min=10.12
+			$<$<CONFIG:DEBUG>:-g>
 			$<$<CONFIG:DEBUG>:-O0>
 			$<$<CONFIG:RELEASE>:-Ofast>
 			$<$<CONFIG:RELEASE>:-ffast-math>
@@ -79,7 +79,7 @@ else(WIN32)
 			-Wno-deprecated
 			-Wno-unused-function
 			-Wno-format
-			$<$<CONFIG:Debug>:-g>
+			$<$<CONFIG:DEBUG>:-g>
 			$<$<CONFIG:DEBUG>:-O0>
 			$<$<CONFIG:RELEASE>:-O3>
 			$<$<CONFIG:RELEASE>:-ffast-math>

+ 4 - 7
attic/MIMC52.cpp

@@ -14,9 +14,6 @@
 #include "MIMC52.hpp"
 #include "SHA512.hpp"
 #include "Utils.hpp"
-#include "Speck128.hpp"
-
-#include <cstdio>
 
 // This gets defined on any architecture whose FPU is not capable of doing the mulmod52() FPU trick.
 //#define ZT_MIMC52_NO_FPU
@@ -114,7 +111,7 @@ uint64_t mimc52Delay(const void *const salt,const unsigned int saltSize,const un
 	uint64_t x = Utils::swapBytes(hash[1]) % p;
 #endif
 
-	Speck128<8> roundConstantGenerator(hash + 2);
+	//Speck128<8> roundConstantGenerator(hash + 2);
 	const uint64_t e = ((p * 2) - 1) / 3;
 	const uint64_t m52 = 0xfffffffffffffULL;
 	const uint64_t rmin1 = rounds - 1;
@@ -122,7 +119,7 @@ uint64_t mimc52Delay(const void *const salt,const unsigned int saltSize,const un
 #pragma unroll 16
 	for(unsigned long r=0;r<rounds;++r) {
 		uint64_t sx = sxx,sy = rmin1 - r;
-		roundConstantGenerator.encryptXY(sx,sy);
+		//roundConstantGenerator.encryptXY(sx,sy);
 		x = (x - sy) & m52;
 		x = modpow52(x,e,p);
 	}
@@ -143,7 +140,7 @@ bool mimc52Verify(const void *const salt,const unsigned int saltSize,unsigned lo
 	uint64_t x = Utils::swapBytes(hash[1]) % p;
 #endif
 
-	Speck128<8> roundConstantGenerator(hash + 2);
+	//Speck128<8> roundConstantGenerator(hash + 2);
 	const uint64_t m52 = 0xfffffffffffffULL;
 	uint64_t y = proof & m52;
 	const uint64_t sxx = hash[4];
@@ -154,7 +151,7 @@ bool mimc52Verify(const void *const salt,const unsigned int saltSize,unsigned lo
 #pragma unroll 16
 	for(unsigned long r=0;r<rounds;++r) {
 		uint64_t sx = sxx,sy = r;
-		roundConstantGenerator.encryptXY(sx,sy);
+		//roundConstantGenerator.encryptXY(sx,sy);
 #ifdef ZT_MIMC52_NO_FPU
 #ifdef x64_cubemod
 		x64_cubemod(y,p);

+ 2 - 0
node/Containers.hpp

@@ -137,6 +137,8 @@ public:
 template<typename V>
 class Vector : public std::vector< V,Utils::Mallocator<V> >
 {
+public:
+	ZT_INLINE Vector() {}
 };
 
 template<typename V>

+ 27 - 24
node/Defragmenter.hpp

@@ -46,11 +46,11 @@ namespace ZeroTier {
  * @tparam P Type for pointer to a path object (default: SharedPtr<Path>)
  */
 template<
-  unsigned int MF = ZT_MAX_PACKET_FRAGMENTS,
-  unsigned int MFP = ZT_MAX_INCOMING_FRAGMENTS_PER_PATH,
-  unsigned int GCS = (ZT_MAX_PACKET_FRAGMENTS * 2),
-  unsigned int GCT = (ZT_MAX_PACKET_FRAGMENTS * 4),
-  typename P = SharedPtr<Path> >
+	unsigned int MF = ZT_MAX_PACKET_FRAGMENTS,
+	unsigned int MFP = ZT_MAX_INCOMING_FRAGMENTS_PER_PATH,
+	unsigned int GCS = (ZT_MAX_PACKET_FRAGMENTS * 2),
+	unsigned int GCT = (ZT_MAX_PACKET_FRAGMENTS * 4),
+	typename P = SharedPtr <Path> >
 class Defragmenter
 {
 public:
@@ -96,7 +96,8 @@ public:
 		ERR_OUT_OF_MEMORY
 	};
 
-	ZT_INLINE Defragmenter() {} // NOLINT(hicpp-use-equals-default,modernize-use-equals-default)
+	ZT_INLINE Defragmenter()
+	{} // NOLINT(hicpp-use-equals-default,modernize-use-equals-default)
 
 	/**
 	 * Process a fragment of a multi-part message
@@ -141,8 +142,8 @@ public:
 	 */
 	ZT_INLINE ResultCode assemble(
 		const uint64_t messageId,
-		FCV< Buf::Slice,MF > &message,
-		SharedPtr<Buf> &fragment,
+		FCV <Buf::Slice, MF> &message,
+		SharedPtr <Buf> &fragment,
 		const unsigned int fragmentDataIndex,
 		const unsigned int fragmentDataSize,
 		const unsigned int fragmentNo,
@@ -151,7 +152,7 @@ public:
 		const P &via)
 	{
 		// Sanity checks for malformed fragments or invalid input parameters.
-		if ((fragmentNo >= totalFragmentsExpected)||(totalFragmentsExpected > MF)||(totalFragmentsExpected == 0))
+		if ((fragmentNo >= totalFragmentsExpected) || (totalFragmentsExpected > MF) || (totalFragmentsExpected == 0))
 			return ERR_INVALID_FRAGMENT;
 
 		// We hold the read lock on _messages unless we need to add a new entry or do GC.
@@ -166,15 +167,15 @@ public:
 				// under the target size. This tries to minimize the amount of time the write
 				// lock is held since many threads can hold the read lock but all threads must
 				// wait if someone holds the write lock.
-				std::vector<std::pair<int64_t,uint64_t> > messagesByLastUsedTime;
+				std::vector<std::pair<int64_t, uint64_t> > messagesByLastUsedTime;
 				messagesByLastUsedTime.reserve(m_messages.size());
 
-				for(typename Map< uint64_t,p_E >::const_iterator i(m_messages.begin());i != m_messages.end();++i)
-					messagesByLastUsedTime.push_back(std::pair<int64_t,uint64_t>(i->second.lastUsed,i->first));
-				std::sort(messagesByLastUsedTime.begin(),messagesByLastUsedTime.end());
+				for (typename Map<uint64_t, p_E>::const_iterator i(m_messages.begin());i != m_messages.end();++i)
+					messagesByLastUsedTime.push_back(std::pair<int64_t, uint64_t>(i->second.lastUsed, i->first));
+				std::sort(messagesByLastUsedTime.begin(), messagesByLastUsedTime.end());
 
 				ml.writing(); // acquire write lock on _messages
-				for (unsigned long x = 0,y = (messagesByLastUsedTime.size() - GCS); x <= y; ++x)
+				for (unsigned long x = 0, y = (messagesByLastUsedTime.size() - GCS);x <= y;++x)
 					m_messages.erase(messagesByLastUsedTime[x].second);
 			} catch (...) {
 				return ERR_OUT_OF_MEMORY;
@@ -187,7 +188,7 @@ public:
 			ml.writing(); // acquire write lock on _messages if not already
 			try {
 				e = &(m_messages[messageId]);
-			} catch ( ... ) {
+			} catch (...) {
 				return ERR_OUT_OF_MEMORY;
 			}
 			e->id = messageId;
@@ -214,7 +215,7 @@ public:
 
 		// If there is a path associated with this fragment make sure we've registered
 		// ourselves as in flight, check the limit, and abort if exceeded.
-		if ((via)&&(!e->via)) {
+		if ((via) && (!e->via)) {
 			e->via = via;
 			bool tooManyPerPath = false;
 			via->m_inboundFragmentedMessages_l.lock();
@@ -224,7 +225,7 @@ public:
 				} else {
 					tooManyPerPath = true;
 				}
-			} catch ( ... ) {
+			} catch (...) {
 				// This would indicate something like bad_alloc thrown by the set. Treat
 				// it as limit exceeded.
 				tooManyPerPath = true;
@@ -252,7 +253,7 @@ public:
 		++e->fragmentsReceived;
 
 		// If we now have all fragments then assemble them.
-		if ((e->fragmentsReceived >= e->totalFragmentsExpected)&&(e->totalFragmentsExpected > 0)) {
+		if ((e->fragmentsReceived >= e->totalFragmentsExpected) && (e->totalFragmentsExpected > 0)) {
 			// This message is done so de-register it with its path if one is associated.
 			if (e->via) {
 				e->via->m_inboundFragmentedMessages_l.lock();
@@ -294,20 +295,22 @@ private:
 	// p_E is an entry in the message queue.
 	struct p_E
 	{
-		ZT_INLINE p_E() noexcept :
+		ZT_INLINE p_E() noexcept:
 			id(0),
 			lastUsed(0),
 			totalFragmentsExpected(0),
-			fragmentsReceived(0) {}
+			fragmentsReceived(0)
+		{}
 
-		ZT_INLINE p_E(const p_E &e) noexcept :
+		ZT_INLINE p_E(const p_E &e) noexcept:
 			id(e.id),
 			lastUsed(e.lastUsed),
 			totalFragmentsExpected(e.totalFragmentsExpected),
 			fragmentsReceived(e.fragmentsReceived),
 			via(e.via),
 			message(e.message),
-			lock() {}
+			lock()
+		{}
 
 		ZT_INLINE ~p_E()
 		{
@@ -336,11 +339,11 @@ private:
 		unsigned int totalFragmentsExpected;
 		unsigned int fragmentsReceived;
 		P via;
-		FCV< Buf::Slice,MF > message;
+		FCV <Buf::Slice, MF> message;
 		Mutex lock;
 	};
 
-	Map< uint64_t,Defragmenter<MF,MFP,GCS,GCT,P>::p_E > m_messages;
+	Map <uint64_t, Defragmenter<MF, MFP, GCS, GCT, P>::p_E> m_messages;
 	RWMutex m_messages_l;
 };
 

+ 147 - 148
node/Identity.cpp

@@ -16,7 +16,6 @@
 #include "SHA512.hpp"
 #include "Salsa20.hpp"
 #include "Utils.hpp"
-#include "AES.hpp"
 
 #include <algorithm>
 
@@ -26,102 +25,102 @@ namespace {
 
 // This is the memory-intensive hash function used to compute v0 identities from v0 public keys.
 #define ZT_V0_IDENTITY_GEN_MEMORY 2097152
-void identityV0ProofOfWorkFrankenhash(const void *const publicKey,unsigned int publicKeyBytes,void *const digest,void *const genmem) noexcept
+
+void identityV0ProofOfWorkFrankenhash(const void *const publicKey, unsigned int publicKeyBytes, void *const digest, void *const genmem) noexcept
 {
 	// Digest publicKey[] to obtain initial digest
-	SHA512(digest,publicKey,publicKeyBytes);
+	SHA512(digest, publicKey, publicKeyBytes);
 
 	// Initialize genmem[] using Salsa20 in a CBC-like configuration since
 	// ordinary Salsa20 is randomly seek-able. This is good for a cipher
 	// but is not what we want for sequential memory-hardness.
 	Utils::zero<ZT_V0_IDENTITY_GEN_MEMORY>(genmem);
-	Salsa20 s20(digest,(char *)digest + 32);
-	s20.crypt20((char *)genmem,(char *)genmem,64);
-	for(unsigned long i=64;i<ZT_V0_IDENTITY_GEN_MEMORY;i+=64) {
+	Salsa20 s20(digest, (char *) digest + 32);
+	s20.crypt20((char *) genmem, (char *) genmem, 64);
+	for (unsigned long i = 64;i < ZT_V0_IDENTITY_GEN_MEMORY;i += 64) {
 		unsigned long k = i - 64;
-		*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
-		*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
-		*((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
-		*((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
-		*((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
-		*((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
-		*((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
-		*((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
-		s20.crypt20((char *)genmem + i,(char *)genmem + i,64);
+		*((uint64_t *) ((char *) genmem + i)) = *((uint64_t *) ((char *) genmem + k));
+		*((uint64_t *) ((char *) genmem + i + 8)) = *((uint64_t *) ((char *) genmem + k + 8));
+		*((uint64_t *) ((char *) genmem + i + 16)) = *((uint64_t *) ((char *) genmem + k + 16));
+		*((uint64_t *) ((char *) genmem + i + 24)) = *((uint64_t *) ((char *) genmem + k + 24));
+		*((uint64_t *) ((char *) genmem + i + 32)) = *((uint64_t *) ((char *) genmem + k + 32));
+		*((uint64_t *) ((char *) genmem + i + 40)) = *((uint64_t *) ((char *) genmem + k + 40));
+		*((uint64_t *) ((char *) genmem + i + 48)) = *((uint64_t *) ((char *) genmem + k + 48));
+		*((uint64_t *) ((char *) genmem + i + 56)) = *((uint64_t *) ((char *) genmem + k + 56));
+		s20.crypt20((char *) genmem + i, (char *) genmem + i, 64);
 	}
 
 	// Render final digest using genmem as a lookup table
-	for(unsigned long i=0;i<(ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
-		unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
-		unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
-		uint64_t tmp = ((uint64_t *)genmem)[idx2];
-		((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
-		((uint64_t *)digest)[idx1] = tmp;
-		s20.crypt20(digest,digest,64);
+	for (unsigned long i = 0;i < (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
+		unsigned long idx1 = (unsigned long) (Utils::ntoh(((uint64_t *) genmem)[i++]) % (64 / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
+		unsigned long idx2 = (unsigned long) (Utils::ntoh(((uint64_t *) genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
+		uint64_t tmp = ((uint64_t *) genmem)[idx2];
+		((uint64_t *) genmem)[idx2] = ((uint64_t *) digest)[idx1];
+		((uint64_t *) digest)[idx1] = tmp;
+		s20.crypt20(digest, digest, 64);
 	}
 }
+
 struct identityV0ProofOfWorkCriteria
 {
-	ZT_INLINE identityV0ProofOfWorkCriteria(unsigned char *sb,char *gm) noexcept : digest(sb),genmem(gm) {}
+	ZT_INLINE identityV0ProofOfWorkCriteria(unsigned char *sb, char *gm) noexcept: digest(sb), genmem(gm)
+	{}
+
 	ZT_INLINE bool operator()(const uint8_t pub[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE]) const noexcept
 	{
-		identityV0ProofOfWorkFrankenhash(pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,digest,genmem);
+		identityV0ProofOfWorkFrankenhash(pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem);
 		return (digest[0] < 17);
 	}
+
 	unsigned char *digest;
 	char *genmem;
 };
 
+#define ZT_IDENTITY_V1_POW_MEMORY_SIZE 131072
+
 // This is a simpler memory-intensive hash function for V1 identity generation.
 // It's not quite as heavy as the V0 frankenhash, is a little more orderly in
 // its design, but remains relatively resistant to GPU acceleration due to memory
 // requirements for efficient computation.
-#define ZT_IDENTITY_V1_POW_MEMORY_SIZE 262144
-#define ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64 32768
-bool identityV1ProofOfWorkCriteria(const void *in,const unsigned int len)
+bool identityV1ProofOfWorkCriteria(const void *in, const unsigned int len)
 {
-	uint64_t b[ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64];
-
-	SHA512(b,in,len);
-	AES c(b);
-	for(unsigned int i=8;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=8) {
-		SHA512(b + i,b + (i - 8),64);
-		if (unlikely((b[i] % 31ULL) == (b[i - 1] >> 59U)))
-			c.encrypt(b + i,b + i);
-	}
+	uint64_t b[ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8];
+
+	SHA384(b, in, len);
+	Utils::zero<ZT_IDENTITY_V1_POW_MEMORY_SIZE - 48>(b + 6);
+	Salsa20(b,b + 4).crypt12(b,b,ZT_IDENTITY_V1_POW_MEMORY_SIZE);
 
 #if __BYTE_ORDER == __BIG_ENDIAN
-	for(unsigned int i=0;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=4) {
+	for (unsigned int i=0;i<(ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8);) {
+		const unsigned int i1 = i + 1;
+		const unsigned int i2 = i + 2;
+		const unsigned int i3 = i + 3;
 		b[i] = Utils::swapBytes(b[i]);
-		b[i + 1] = Utils::swapBytes(b[i + 1]);
-		b[i + 2] = Utils::swapBytes(b[i + 2]);
-		b[i + 3] = Utils::swapBytes(b[i + 3]);
+		i += 4;
+		b[i1] = Utils::swapBytes(b[i1]);
+		b[i2] = Utils::swapBytes(b[i2]);
+		b[i3] = Utils::swapBytes(b[i3]);
 	}
 #endif
-	std::sort(b,b + ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64);
+
+	std::sort(b,b + (ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8));
+
 #if __BYTE_ORDER == __BIG_ENDIAN
-	for(unsigned int i=0;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=4) {
+	for (unsigned int i=0;i<(ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8);) {
+		const unsigned int i1 = i + 1;
+		const unsigned int i2 = i + 2;
+		const unsigned int i3 = i + 3;
 		b[i] = Utils::swapBytes(b[i]);
-		b[i + 1] = Utils::swapBytes(b[i + 1]);
-		b[i + 2] = Utils::swapBytes(b[i + 2]);
-		b[i + 3] = Utils::swapBytes(b[i + 3]);
+		i += 4;
+		b[i1] = Utils::swapBytes(b[i1]);
+		b[i2] = Utils::swapBytes(b[i2]);
+		b[i3] = Utils::swapBytes(b[i3]);
 	}
 #endif
 
-	// Hash resulting sorted array to get final result for PoW criteria test.
-	// We also include the original input after so that cryptographically this
-	// is exactly like SHA384(in). This should make any FIPS types happy as
-	// this means the identity hash is SHA384 and not some weird construction.
-	SHA384(b,b,ZT_IDENTITY_V1_POW_MEMORY_SIZE,in,len);
+	SHA384(b, b, ZT_IDENTITY_V1_POW_MEMORY_SIZE, in, len);
 
-	// PoW passes if sum of first two 64-bit integers (treated as little-endian) mod 180 is 0.
-	// This value was picked to yield about 1-2s total on typical desktop and server cores in 2020.
-#if __BYTE_ORDER == __BIG_ENDIAN
-	const uint64_t finalHash = Utils::swapBytes(b[0]) + Utils::swapBytes(b[1]);
-#else
-	const uint64_t finalHash = b[0] + b[1];
-#endif
-	return (finalHash % 180U) == 0;
+	return (b[0] % 1093U) == 0;
 }
 
 } // anonymous namespace
@@ -133,7 +132,7 @@ bool Identity::generate(const Type t)
 	m_type = t;
 	m_hasPrivate = true;
 
-	switch(t) {
+	switch (t) {
 
 		case C25519: {
 			// Generate C25519/Ed25519 key pair whose hash satisfies a "hashcash" criterion and generate the
@@ -142,7 +141,7 @@ bool Identity::generate(const Type t)
 			char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
 			Address address;
 			do {
-				C25519::generateSatisfying(identityV0ProofOfWorkCriteria(digest,genmem),m_pub,m_priv);
+				C25519::generateSatisfying(identityV0ProofOfWorkCriteria(digest, genmem), m_pub, m_priv);
 				address.setTo(digest + 59);
 			} while (address.isReserved());
 			delete[] genmem;
@@ -151,18 +150,18 @@ bool Identity::generate(const Type t)
 		} break;
 
 		case P384: {
-			for(;;) {
+			for (;;) {
 				// Loop until we pass the PoW criteria. The nonce is only 8 bits, so generate
 				// some new key material every time it wraps. The ECC384 generator is slightly
 				// faster so use that one.
 				m_pub[0] = 0; // zero nonce
-				C25519::generateCombined(m_pub + 1,m_priv + 1);
-				ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
-				for(;;) {
-					if (identityV1ProofOfWorkCriteria(m_pub,sizeof(m_pub)))
+				C25519::generateCombined(m_pub + 1, m_priv + 1);
+				ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
+				for (;;) {
+					if (identityV1ProofOfWorkCriteria(m_pub, sizeof(m_pub)))
 						break;
 					if (++m_pub[0] == 0)
-						ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
+						ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
 				}
 
 				// If we passed PoW then check that the address is valid, otherwise loop
@@ -183,25 +182,25 @@ bool Identity::generate(const Type t)
 bool Identity::locallyValidate() const noexcept
 {
 	try {
-		if ((m_fp)&&((!m_fp.address().isReserved()))) {
+		if ((m_fp) && ((!m_fp.address().isReserved()))) {
 			switch (m_type) {
 				case C25519: {
 					uint8_t digest[64];
-					char *const genmem = (char *)malloc(ZT_V0_IDENTITY_GEN_MEMORY);
+					char *const genmem = (char *) malloc(ZT_V0_IDENTITY_GEN_MEMORY);
 					if (!genmem)
 						return false;
-					identityV0ProofOfWorkFrankenhash(m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,digest,genmem);
+					identityV0ProofOfWorkFrankenhash(m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem);
 					free(genmem);
 					return ((m_fp.address() == Address(digest + 59)) && (digest[0] < 17));
 				}
 				case P384: {
 					if (m_fp.address() != Address(m_fp.hash()))
 						return false;
-					return identityV1ProofOfWorkCriteria(m_pub,sizeof(m_pub));
+					return identityV1ProofOfWorkCriteria(m_pub, sizeof(m_pub));
 				}
 			}
 		}
-	} catch ( ... ) {}
+	} catch (...) {}
 	return false;
 }
 
@@ -210,10 +209,10 @@ void Identity::hashWithPrivate(uint8_t h[ZT_FINGERPRINT_HASH_SIZE]) const
 	if (m_hasPrivate) {
 		switch (m_type) {
 			case C25519:
-				SHA384(h,m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,m_priv,ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
+				SHA384(h, m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
 				break;
 			case P384:
-				SHA384(h,m_pub,sizeof(m_pub),m_priv,sizeof(m_priv));
+				SHA384(h, m_pub, sizeof(m_pub), m_priv, sizeof(m_priv));
 				break;
 		}
 		return;
@@ -221,21 +220,21 @@ void Identity::hashWithPrivate(uint8_t h[ZT_FINGERPRINT_HASH_SIZE]) const
 	Utils::zero<48>(h);
 }
 
-unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
+unsigned int Identity::sign(const void *data, unsigned int len, void *sig, unsigned int siglen) const
 {
 	if (m_hasPrivate) {
-		switch(m_type) {
+		switch (m_type) {
 			case C25519:
 				if (siglen >= ZT_C25519_SIGNATURE_LEN) {
-					C25519::sign(m_priv,m_pub,data,len,sig);
+					C25519::sign(m_priv, m_pub, data, len, sig);
 					return ZT_C25519_SIGNATURE_LEN;
 				}
 			case P384:
 				if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
 					// SECURITY: signatures also include the public keys to further enforce their coupling.
 					uint8_t h[48];
-					SHA384(h,data,len,m_pub,sizeof(m_pub));
-					ECC384ECDSASign(m_priv + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,h,(uint8_t *)sig);
+					SHA384(h, data, len, m_pub, sizeof(m_pub));
+					ECC384ECDSASign(m_priv + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, h, (uint8_t *) sig);
 					return ZT_ECC384_SIGNATURE_SIZE;
 				}
 		}
@@ -243,23 +242,23 @@ unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned
 	return 0;
 }
 
-bool Identity::verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
+bool Identity::verify(const void *data, unsigned int len, const void *sig, unsigned int siglen) const
 {
-	switch(m_type) {
+	switch (m_type) {
 		case C25519:
-			return C25519::verify(m_pub,data,len,sig,siglen);
+			return C25519::verify(m_pub, data, len, sig, siglen);
 		case P384:
 			if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
 				uint8_t h[48];
-				SHA384(h,data,len,m_pub,sizeof(m_pub));
-				return ECC384ECDSAVerify(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,h,(const uint8_t *)sig);
+				SHA384(h, data, len, m_pub, sizeof(m_pub));
+				return ECC384ECDSAVerify(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, h, (const uint8_t *) sig);
 			}
 			break;
 	}
 	return false;
 }
 
-bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) const
+bool Identity::agree(const Identity &id, uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) const
 {
 	uint8_t rawkey[128];
 	uint8_t h[64];
@@ -268,9 +267,9 @@ bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) cons
 			if ((id.m_type == C25519) || (id.m_type == P384)) {
 				// If we are a C25519 key we can agree with another C25519 key or with only the
 				// C25519 portion of a type 1 P-384 key.
-				C25519::agree(m_priv,id.m_pub,rawkey);
-				SHA512(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE);
-				Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
+				C25519::agree(m_priv, id.m_pub, rawkey);
+				SHA512(h, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE);
+				Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key, h);
 				return true;
 			}
 		} else if (m_type == P384) {
@@ -280,16 +279,16 @@ bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) cons
 				// P384 to be kosher, the C25519 secret can be considered a "salt"
 				// or something. For those who don't trust P384 this means the privacy of
 				// your traffic is also protected by C25519.
-				C25519::agree(m_priv,id.m_pub,rawkey);
-				ECC384ECDH(id.m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE,rawkey + ZT_C25519_ECDH_SHARED_SECRET_SIZE);
-				SHA384(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE);
-				Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
+				C25519::agree(m_priv, id.m_pub, rawkey);
+				ECC384ECDH(id.m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, rawkey + ZT_C25519_ECDH_SHARED_SECRET_SIZE);
+				SHA384(h, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE);
+				Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key, h);
 				return true;
 			} else if (id.m_type == C25519) {
 				// If the other identity is a C25519 identity we can agree using only that type.
-				C25519::agree(m_priv,id.m_pub,rawkey);
-				SHA512(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE);
-				Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
+				C25519::agree(m_priv, id.m_pub, rawkey);
+				SHA512(h, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE);
+				Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key, h);
 				return true;
 			}
 		}
@@ -297,40 +296,40 @@ bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) cons
 	return false;
 }
 
-char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
+char *Identity::toString(bool includePrivate, char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
 {
 	char *p = buf;
 	m_fp.address().toString(p);
 	p += 10;
 	*(p++) = ':';
 
-	switch(m_type) {
+	switch (m_type) {
 		case C25519: {
 			*(p++) = '0';
 			*(p++) = ':';
-			Utils::hex(m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,p);
+			Utils::hex(m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, p);
 			p += ZT_C25519_COMBINED_PUBLIC_KEY_SIZE * 2;
-			if ((m_hasPrivate)&&(includePrivate)) {
+			if ((m_hasPrivate) && (includePrivate)) {
 				*(p++) = ':';
-				Utils::hex(m_priv,ZT_C25519_COMBINED_PRIVATE_KEY_SIZE,p);
+				Utils::hex(m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, p);
 				p += ZT_C25519_COMBINED_PRIVATE_KEY_SIZE * 2;
 			}
-			*p = (char)0;
+			*p = (char) 0;
 			return buf;
 		}
 		case P384: {
 			*(p++) = '1';
 			*(p++) = ':';
-			int el = Utils::b32e(m_pub,sizeof(m_pub),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
+			int el = Utils::b32e(m_pub, sizeof(m_pub), p, (int) (ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t) (p - buf)));
 			if (el <= 0) return nullptr;
 			p += el;
-			if ((m_hasPrivate)&&(includePrivate)) {
+			if ((m_hasPrivate) && (includePrivate)) {
 				*(p++) = ':';
-				el = Utils::b32e(m_priv,sizeof(m_priv),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
+				el = Utils::b32e(m_priv, sizeof(m_priv), p, (int) (ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t) (p - buf)));
 				if (el <= 0) return nullptr;
 				p += el;
 			}
-			*p = (char)0;
+			*p = (char) 0;
 			return buf;
 		}
 	}
@@ -342,13 +341,13 @@ bool Identity::fromString(const char *str)
 {
 	char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
 	memoryZero(this);
-	if ((!str)||(!Utils::scopy(tmp,sizeof(tmp),str)))
+	if ((!str) || (!Utils::scopy(tmp, sizeof(tmp), str)))
 		return false;
 
 	int fno = 0;
 	char *saveptr = nullptr;
-	for(char *f=Utils::stok(tmp,":",&saveptr);((f)&&(fno < 4));f=Utils::stok(nullptr,":",&saveptr)) {
-		switch(fno++) {
+	for (char *f = Utils::stok(tmp, ":", &saveptr);((f) && (fno < 4));f = Utils::stok(nullptr, ":", &saveptr)) {
+		switch (fno++) {
 
 			case 0:
 				m_fp.m_cfp.address = Utils::hexStrToU64(f) & ZT_ADDRESS_MASK;
@@ -359,9 +358,9 @@ bool Identity::fromString(const char *str)
 				break;
 
 			case 1:
-				if ((f[0] == '0')&&(!f[1])) {
+				if ((f[0] == '0') && (!f[1])) {
 					m_type = C25519;
-				} else if ((f[0] == '1')&&(!f[1])) {
+				} else if ((f[0] == '1') && (!f[1])) {
 					m_type = P384;
 				} else {
 					memoryZero(this);
@@ -370,17 +369,17 @@ bool Identity::fromString(const char *str)
 				break;
 
 			case 2:
-				switch(m_type) {
+				switch (m_type) {
 
 					case C25519:
-						if (Utils::unhex(f,strlen(f),m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) != ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) {
+						if (Utils::unhex(f, strlen(f), m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) != ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) {
 							memoryZero(this);
 							return false;
 						}
 						break;
 
 					case P384:
-						if (Utils::b32d(f,m_pub,sizeof(m_pub)) != sizeof(m_pub)) {
+						if (Utils::b32d(f, m_pub, sizeof(m_pub)) != sizeof(m_pub)) {
 							memoryZero(this);
 							return false;
 						}
@@ -391,10 +390,10 @@ bool Identity::fromString(const char *str)
 
 			case 3:
 				if (strlen(f) > 1) {
-					switch(m_type) {
+					switch (m_type) {
 
 						case C25519:
-							if (Utils::unhex(f,strlen(f),m_priv,ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) != ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) {
+							if (Utils::unhex(f, strlen(f), m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) != ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) {
 								memoryZero(this);
 								return false;
 							} else {
@@ -403,7 +402,7 @@ bool Identity::fromString(const char *str)
 							break;
 
 						case P384:
-							if (Utils::b32d(f,m_priv,sizeof(m_priv)) != sizeof(m_priv)) {
+							if (Utils::b32d(f, m_priv, sizeof(m_priv)) != sizeof(m_priv)) {
 								memoryZero(this);
 								return false;
 							} else {
@@ -424,7 +423,7 @@ bool Identity::fromString(const char *str)
 	}
 
 	m_computeHash();
-	if ((m_type == P384)&&(m_fp.address() != Address(m_fp.hash()))) {
+	if ((m_type == P384) && (m_fp.address() != Address(m_fp.hash()))) {
 		memoryZero(this);
 		return false;
 	}
@@ -432,17 +431,17 @@ bool Identity::fromString(const char *str)
 	return true;
 }
 
-int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const noexcept
+int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX], const bool includePrivate) const noexcept
 {
 	m_fp.address().copyTo(data);
-	switch(m_type) {
+	switch (m_type) {
 
 		case C25519:
-			data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
-			Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1,m_pub);
-			if ((includePrivate)&&(m_hasPrivate)) {
+			data[ZT_ADDRESS_LENGTH] = (uint8_t) C25519;
+			Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1, m_pub);
+			if ((includePrivate) && (m_hasPrivate)) {
 				data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
-				Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1,m_priv);
+				Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1, m_priv);
 				return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
 			} else {
 				data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = 0;
@@ -450,11 +449,11 @@ int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool incl
 			}
 
 		case P384:
-			data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
-			Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1,m_pub);
-			if ((includePrivate)&&(m_hasPrivate)) {
+			data[ZT_ADDRESS_LENGTH] = (uint8_t) P384;
+			Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1, m_pub);
+			if ((includePrivate) && (m_hasPrivate)) {
 				data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
-				Utils::copy<ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,m_priv);
+				Utils::copy<ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1, m_priv);
 				return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
 			} else {
 				data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
@@ -465,7 +464,7 @@ int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool incl
 	return -1;
 }
 
-int Identity::unmarshal(const uint8_t *data,const int len) noexcept
+int Identity::unmarshal(const uint8_t *data, const int len) noexcept
 {
 	memoryZero(this);
 
@@ -474,13 +473,13 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
 	m_fp.m_cfp.address = Address(data).toInt();
 
 	unsigned int privlen;
-	switch((m_type = (Type)data[ZT_ADDRESS_LENGTH])) {
+	switch ((m_type = (Type) data[ZT_ADDRESS_LENGTH])) {
 
 		case C25519:
 			if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1))
 				return -1;
 
-			Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(m_pub,data + ZT_ADDRESS_LENGTH + 1);
+			Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(m_pub, data + ZT_ADDRESS_LENGTH + 1);
 			m_computeHash();
 
 			privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE];
@@ -488,7 +487,7 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
 				if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE))
 					return -1;
 				m_hasPrivate = true;
-				Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(m_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1);
+				Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(m_priv, data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1);
 				return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
 			} else if (privlen == 0) {
 				m_hasPrivate = false;
@@ -500,7 +499,7 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
 			if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1))
 				return -1;
 
-			Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(m_pub,data + ZT_ADDRESS_LENGTH + 1);
+			Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(m_pub, data + ZT_ADDRESS_LENGTH + 1);
 			m_computeHash(); // this sets the address for P384
 			if (m_fp.address() != Address(m_fp.hash())) // this sanity check is possible with V1 identities
 				return -1;
@@ -525,15 +524,15 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
 
 void Identity::m_computeHash()
 {
-	switch(m_type) {
+	switch (m_type) {
 		default:
 			m_fp.zero();
 			break;
 		case C25519:
-			SHA384(m_fp.m_cfp.hash,m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE);
+			SHA384(m_fp.m_cfp.hash, m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE);
 			break;
 		case P384:
-			SHA384(m_fp.m_cfp.hash,m_pub,sizeof(m_pub));
+			SHA384(m_fp.m_cfp.hash, m_pub, sizeof(m_pub));
 			m_fp.m_cfp.address = Address(m_fp.m_cfp.hash).toInt();
 			break;
 	}
@@ -545,13 +544,13 @@ extern "C" {
 
 ZT_Identity *ZT_Identity_new(enum ZT_Identity_Type type)
 {
-	if ((type != ZT_IDENTITY_TYPE_C25519)&&(type != ZT_IDENTITY_TYPE_P384))
+	if ((type != ZT_IDENTITY_TYPE_C25519) && (type != ZT_IDENTITY_TYPE_P384))
 		return nullptr;
 	try {
 		ZeroTier::Identity *const id = new ZeroTier::Identity(); // NOLINT(hicpp-use-auto,modernize-use-auto)
-		id->generate((ZeroTier::Identity::Type)type);
+		id->generate((ZeroTier::Identity::Type) type);
 		return reinterpret_cast<ZT_Identity *>(id);
-	} catch ( ... ) {
+	} catch (...) {
 		return nullptr;
 	}
 }
@@ -567,7 +566,7 @@ ZT_Identity *ZT_Identity_fromString(const char *idStr)
 			return nullptr;
 		}
 		return reinterpret_cast<ZT_Identity *>(id);
-	} catch ( ... ) {
+	} catch (...) {
 		return nullptr;
 	}
 }
@@ -579,34 +578,34 @@ int ZT_Identity_validate(const ZT_Identity *id)
 	return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
 }
 
-unsigned int ZT_Identity_sign(const ZT_Identity *id,const void *data,unsigned int len,void *signature,unsigned int signatureBufferLength)
+unsigned int ZT_Identity_sign(const ZT_Identity *id, const void *data, unsigned int len, void *signature, unsigned int signatureBufferLength)
 {
 	if (!id)
 		return 0;
 	if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
 		return 0;
-	return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data,len,signature,signatureBufferLength);
+	return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data, len, signature, signatureBufferLength);
 }
 
-int ZT_Identity_verify(const ZT_Identity *id,const void *data,unsigned int len,const void *signature,unsigned int sigLen)
+int ZT_Identity_verify(const ZT_Identity *id, const void *data, unsigned int len, const void *signature, unsigned int sigLen)
 {
-	if ((!id)||(!signature)||(!sigLen))
+	if ((!id) || (!signature) || (!sigLen))
 		return 0;
-	return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data,len,signature,sigLen) ? 1 : 0;
+	return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data, len, signature, sigLen) ? 1 : 0;
 }
 
 enum ZT_Identity_Type ZT_Identity_type(const ZT_Identity *id)
 {
 	if (!id)
-		return (ZT_Identity_Type)0;
-	return (enum ZT_Identity_Type)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
+		return (ZT_Identity_Type) 0;
+	return (enum ZT_Identity_Type) reinterpret_cast<const ZeroTier::Identity *>(id)->type();
 }
 
-char *ZT_Identity_toString(const ZT_Identity *id,char *buf,int capacity,int includePrivate)
+char *ZT_Identity_toString(const ZT_Identity *id, char *buf, int capacity, int includePrivate)
 {
-	if ((!id)||(!buf)||(capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
+	if ((!id) || (!buf) || (capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
 		return nullptr;
-	reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0,buf);
+	reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0, buf);
 	return buf;
 }
 

+ 110 - 96
node/InetAddress.cpp

@@ -20,20 +20,23 @@
 
 namespace ZeroTier {
 
-const InetAddress InetAddress::LO4((const void *)("\x7f\x00\x00\x01"),4,0);
-const InetAddress InetAddress::LO6((const void *)("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"),16,0);
+const InetAddress InetAddress::LO4((const void *) ("\x7f\x00\x00\x01"), 4, 0);
+const InetAddress InetAddress::LO6((const void *) ("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"), 16, 0);
 const InetAddress InetAddress::NIL;
 
 InetAddress::IpScope InetAddress::ipScope() const noexcept
 {
-	switch(as.ss.ss_family) {
+	switch (as.ss.ss_family) {
 
 		case AF_INET: {
 			const uint32_t ip = Utils::ntoh((uint32_t)as.sa_in.sin_addr.s_addr);
-			switch(ip >> 24U) {
-				case 0x00: return IP_SCOPE_NONE;                                   // 0.0.0.0/8 (reserved, never used)
-				case 0x06: return IP_SCOPE_PSEUDOPRIVATE;                          // 6.0.0.0/8 (US Army)
-				case 0x0a: return IP_SCOPE_PRIVATE;                                // 10.0.0.0/8
+			switch (ip >> 24U) {
+				case 0x00:
+					return IP_SCOPE_NONE;                                            // 0.0.0.0/8 (reserved, never used)
+				case 0x06:
+					return IP_SCOPE_PSEUDOPRIVATE;                                   // 6.0.0.0/8 (US Army)
+				case 0x0a:
+					return IP_SCOPE_PRIVATE;                                         // 10.0.0.0/8
 				case 0x0b: //return IP_SCOPE_PSEUDOPRIVATE;                        // 11.0.0.0/8 (US DoD)
 				case 0x15: //return IP_SCOPE_PSEUDOPRIVATE;                        // 21.0.0.0/8 (US DDN-RVN)
 				case 0x16: //return IP_SCOPE_PSEUDOPRIVATE;                        // 22.0.0.0/8 (US DISA)
@@ -44,11 +47,13 @@ InetAddress::IpScope InetAddress::ipScope() const noexcept
 				case 0x1e: //return IP_SCOPE_PSEUDOPRIVATE;                        // 30.0.0.0/8 (US DISA)
 				case 0x33: //return IP_SCOPE_PSEUDOPRIVATE;                        // 51.0.0.0/8 (UK Department of Social Security)
 				case 0x37: //return IP_SCOPE_PSEUDOPRIVATE;                        // 55.0.0.0/8 (US DoD)
-				case 0x38: return IP_SCOPE_PSEUDOPRIVATE;                          // 56.0.0.0/8 (US Postal Service)
+				case 0x38:
+					return IP_SCOPE_PSEUDOPRIVATE;                                   // 56.0.0.0/8 (US Postal Service)
 				case 0x64:
 					if ((ip & 0xffc00000) == 0x64400000) return IP_SCOPE_PRIVATE;    // 100.64.0.0/10
 					break;
-				case 0x7f: return IP_SCOPE_LOOPBACK;                               // 127.0.0.0/8
+				case 0x7f:
+					return IP_SCOPE_LOOPBACK;                                        // 127.0.0.0/8
 				case 0xa9:
 					if ((ip & 0xffff0000) == 0xa9fe0000) return IP_SCOPE_LINK_LOCAL; // 169.254.0.0/16
 					break;
@@ -58,11 +63,14 @@ InetAddress::IpScope InetAddress::ipScope() const noexcept
 				case 0xc0:
 					if ((ip & 0xffff0000) == 0xc0a80000) return IP_SCOPE_PRIVATE;    // 192.168.0.0/16
 					break;
-				case 0xff: return IP_SCOPE_NONE;                                   // 255.0.0.0/8 (broadcast, or unused/unusable)
+				case 0xff:
+					return IP_SCOPE_NONE;                                            // 255.0.0.0/8 (broadcast, or unused/unusable)
 			}
-			switch(ip >> 28U) {
-				case 0xe: return IP_SCOPE_MULTICAST;                               // 224.0.0.0/4
-				case 0xf: return IP_SCOPE_PSEUDOPRIVATE;                           // 240.0.0.0/4 ("reserved," usually unusable)
+			switch (ip >> 28U) {
+				case 0xe:
+					return IP_SCOPE_MULTICAST;                                       // 224.0.0.0/4
+				case 0xf:
+					return IP_SCOPE_PSEUDOPRIVATE;                                   // 240.0.0.0/4 ("reserved," usually unusable)
 			}
 			return IP_SCOPE_GLOBAL;
 		}
@@ -71,17 +79,17 @@ InetAddress::IpScope InetAddress::ipScope() const noexcept
 			const uint8_t *const ip = as.sa_in6.sin6_addr.s6_addr;
 			if ((ip[0] & 0xf0U) == 0xf0) {
 				if (ip[0] == 0xff) return IP_SCOPE_MULTICAST;                      // ff00::/8
-				if ((ip[0] == 0xfe)&&((ip[1] & 0xc0U) == 0x80)) {
+				if ((ip[0] == 0xfe) && ((ip[1] & 0xc0U) == 0x80)) {
 					unsigned int k = 2;
-					while ((!ip[k])&&(k < 15)) ++k;
-					if ((k == 15)&&(ip[15] == 0x01))
+					while ((!ip[k]) && (k < 15)) ++k;
+					if ((k == 15) && (ip[15] == 0x01))
 						return IP_SCOPE_LOOPBACK;                                      // fe80::1/128
 					else return IP_SCOPE_LINK_LOCAL;                                 // fe80::/10
 				}
 				if ((ip[0] & 0xfeU) == 0xfc) return IP_SCOPE_PRIVATE;              // fc00::/7
 			}
 			unsigned int k = 0;
-			while ((!ip[k])&&(k < 15)) ++k;
+			while ((!ip[k]) && (k < 15)) ++k;
 			if (k == 15) { // all 0's except last byte
 				if (ip[15] == 0x01) return IP_SCOPE_LOOPBACK;                      // ::1/128
 				if (ip[15] == 0x00) return IP_SCOPE_NONE;                          // ::/128
@@ -93,28 +101,28 @@ InetAddress::IpScope InetAddress::ipScope() const noexcept
 	return IP_SCOPE_NONE;
 }
 
-void InetAddress::set(const void *ipBytes,unsigned int ipLen,unsigned int port) noexcept
+void InetAddress::set(const void *ipBytes, unsigned int ipLen, unsigned int port) noexcept
 {
 	memoryZero(this);
 	if (ipLen == 4) {
 		as.sa_in.sin_family = AF_INET;
-		as.sa_in.sin_port = Utils::hton((uint16_t)port);
+		as.sa_in.sin_port = Utils::hton((uint16_t) port);
 		as.sa_in.sin_addr.s_addr = Utils::loadAsIsEndian<uint32_t>(ipBytes);
 	} else if (ipLen == 16) {
 		as.sa_in6.sin6_family = AF_INET6;
-		as.sa_in6.sin6_port = Utils::hton((uint16_t)port);
-		Utils::copy<16>(as.sa_in6.sin6_addr.s6_addr,ipBytes);
+		as.sa_in6.sin6_port = Utils::hton((uint16_t) port);
+		Utils::copy<16>(as.sa_in6.sin6_addr.s6_addr, ipBytes);
 	}
 }
 
 bool InetAddress::isDefaultRoute() const noexcept
 {
-	switch(as.ss.ss_family) {
+	switch (as.ss.ss_family) {
 		case AF_INET:
-			return ((as.sa_in.sin_port == 0)&&(as.sa_in.sin_addr.s_addr == 0));
+			return ((as.sa_in.sin_port == 0) && (as.sa_in.sin_addr.s_addr == 0));
 		case AF_INET6:
 			if (as.sa_in6.sin6_port == 0) {
-				for (unsigned int i=0;i<16;++i) {
+				for (unsigned int i = 0;i < 16;++i) {
 					if (as.sa_in6.sin6_addr.s6_addr[i])
 						return false;
 				}
@@ -132,17 +140,21 @@ char *InetAddress::toString(char buf[ZT_INETADDRESS_STRING_SIZE_MAX]) const noex
 	if (*p) {
 		while (*p) ++p;
 		*(p++) = '/';
-		Utils::decimal(port(),p);
+		Utils::decimal(port(), p);
 	}
 	return buf;
 }
 
 char *InetAddress::toIpString(char buf[ZT_INETADDRESS_STRING_SIZE_MAX]) const noexcept
 {
-	buf[0] = (char)0;
-	switch(as.ss.ss_family) {
-		case AF_INET:  inet_ntop(AF_INET,&as.sa_in.sin_addr.s_addr,buf,INET_ADDRSTRLEN); break;
-		case AF_INET6: inet_ntop(AF_INET6,as.sa_in6.sin6_addr.s6_addr,buf,INET6_ADDRSTRLEN); break;
+	buf[0] = (char) 0;
+	switch (as.ss.ss_family) {
+		case AF_INET:
+			inet_ntop(AF_INET, &as.sa_in.sin_addr.s_addr, buf, INET_ADDRSTRLEN);
+			break;
+		case AF_INET6:
+			inet_ntop(AF_INET6, as.sa_in6.sin6_addr.s6_addr, buf, INET6_ADDRSTRLEN);
+			break;
 	}
 	return buf;
 }
@@ -155,27 +167,27 @@ bool InetAddress::fromString(const char *ipSlashPort) noexcept
 
 	if (!*ipSlashPort)
 		return true;
-	if (!Utils::scopy(buf,sizeof(buf),ipSlashPort))
+	if (!Utils::scopy(buf, sizeof(buf), ipSlashPort))
 		return false;
 
 	char *portAt = buf;
-	while ((*portAt)&&(*portAt != '/'))
+	while ((*portAt) && (*portAt != '/'))
 		++portAt;
 	unsigned int port = 0;
 	if (*portAt) {
-		*(portAt++) = (char)0;
+		*(portAt++) = (char) 0;
 		port = Utils::strToUInt(portAt) & 0xffffU;
 	}
 
-	if (strchr(buf,':')) {
+	if (strchr(buf, ':')) {
 		as.sa_in6.sin6_family = AF_INET6;
-		as.sa_in6.sin6_port = Utils::hton((uint16_t)port);
-		inet_pton(AF_INET6,buf,as.sa_in6.sin6_addr.s6_addr);
+		as.sa_in6.sin6_port = Utils::hton((uint16_t) port);
+		inet_pton(AF_INET6, buf, as.sa_in6.sin6_addr.s6_addr);
 		return true;
-	} else if (strchr(buf,'.')) {
+	} else if (strchr(buf, '.')) {
 		as.sa_in.sin_family = AF_INET;
-		as.sa_in.sin_port = Utils::hton((uint16_t)port);
-		inet_pton(AF_INET,buf,&as.sa_in.sin_addr.s_addr);
+		as.sa_in.sin_port = Utils::hton((uint16_t) port);
+		inet_pton(AF_INET, buf, &as.sa_in.sin_addr.s_addr);
 		return true;
 	}
 
@@ -185,22 +197,23 @@ bool InetAddress::fromString(const char *ipSlashPort) noexcept
 InetAddress InetAddress::netmask() const noexcept
 {
 	InetAddress r(*this);
-	switch(r.as.ss.ss_family) {
+	switch (r.as.ss.ss_family) {
 		case AF_INET:
-			r.as.sa_in.sin_addr.s_addr = Utils::hton((uint32_t)(0xffffffffU << (32 - netmaskBits())));
+			r.as.sa_in.sin_addr.s_addr = Utils::hton((uint32_t) (0xffffffffU << (32 - netmaskBits())));
 			break;
 		case AF_INET6: {
 			uint64_t nm[2];
 			const unsigned int bits = netmaskBits();
-			if(bits) {
-				nm[0] = Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
-				nm[1] = Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
+			if (bits) {
+				nm[0] = Utils::hton((uint64_t) ((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
+				nm[1] = Utils::hton((uint64_t) ((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
 			} else {
 				nm[0] = 0;
 				nm[1] = 0;
 			}
-			Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr,nm);
-		}	break;
+			Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr, nm);
+		}
+			break;
 	}
 	return r;
 }
@@ -209,7 +222,7 @@ InetAddress InetAddress::broadcast() const noexcept
 {
 	if (as.ss.ss_family == AF_INET) {
 		InetAddress r(*this);
-		reinterpret_cast<sockaddr_in *>(&r)->sin_addr.s_addr |= Utils::hton((uint32_t)(0xffffffffU >> netmaskBits()));
+		reinterpret_cast<sockaddr_in *>(&r)->sin_addr.s_addr |= Utils::hton((uint32_t) (0xffffffffU >> netmaskBits()));
 		return r;
 	}
 	return InetAddress();
@@ -218,18 +231,19 @@ InetAddress InetAddress::broadcast() const noexcept
 InetAddress InetAddress::network() const noexcept
 {
 	InetAddress r(*this);
-	switch(r.as.ss.ss_family) {
+	switch (r.as.ss.ss_family) {
 		case AF_INET:
-			r.as.sa_in.sin_addr.s_addr &= Utils::hton((uint32_t)(0xffffffffU << (32 - netmaskBits())));
+			r.as.sa_in.sin_addr.s_addr &= Utils::hton((uint32_t) (0xffffffffU << (32 - netmaskBits())));
 			break;
 		case AF_INET6: {
 			uint64_t nm[2];
 			const unsigned int bits = netmaskBits();
-			Utils::copy<16>(nm,reinterpret_cast<sockaddr_in6 *>(&r)->sin6_addr.s6_addr);
-			nm[0] &= Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
-			nm[1] &= Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
-			Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr,nm);
-		}	break;
+			Utils::copy<16>(nm, reinterpret_cast<sockaddr_in6 *>(&r)->sin6_addr.s6_addr);
+			nm[0] &= Utils::hton((uint64_t) ((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
+			nm[1] &= Utils::hton((uint64_t) ((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
+			Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr, nm);
+		}
+			break;
 	}
 	return r;
 }
@@ -237,7 +251,7 @@ InetAddress InetAddress::network() const noexcept
 bool InetAddress::isEqualPrefix(const InetAddress &addr) const noexcept
 {
 	if (addr.as.ss.ss_family == as.ss.ss_family) {
-		switch(as.ss.ss_family) {
+		switch (as.ss.ss_family) {
 			case AF_INET6: {
 				const InetAddress mask(netmask());
 				InetAddress addr_mask(addr.netmask());
@@ -245,7 +259,7 @@ bool InetAddress::isEqualPrefix(const InetAddress &addr) const noexcept
 				const uint8_t *const m = mask.as.sa_in6.sin6_addr.s6_addr;
 				const uint8_t *const a = addr.as.sa_in6.sin6_addr.s6_addr;
 				const uint8_t *const b = as.sa_in6.sin6_addr.s6_addr;
-				for(unsigned int i=0;i<16;++i) {
+				for (unsigned int i = 0;i < 16;++i) {
 					if ((a[i] & m[i]) != (b[i] & n[i]))
 						return false;
 				}
@@ -259,14 +273,14 @@ bool InetAddress::isEqualPrefix(const InetAddress &addr) const noexcept
 bool InetAddress::containsAddress(const InetAddress &addr) const noexcept
 {
 	if (addr.as.ss.ss_family == as.ss.ss_family) {
-		switch(as.ss.ss_family) {
+		switch (as.ss.ss_family) {
 			case AF_INET: {
 				const unsigned int bits = netmaskBits();
 				if (bits == 0)
 					return true;
 				return (
-					(Utils::ntoh((uint32_t)addr.as.sa_in.sin_addr.s_addr) >> (32 - bits)) ==
-					(Utils::ntoh((uint32_t)as.sa_in.sin_addr.s_addr) >> (32 - bits))
+					(Utils::ntoh((uint32_t) addr.as.sa_in.sin_addr.s_addr) >> (32 - bits)) ==
+					(Utils::ntoh((uint32_t) as.sa_in.sin_addr.s_addr) >> (32 - bits))
 				);
 			}
 			case AF_INET6: {
@@ -274,7 +288,7 @@ bool InetAddress::containsAddress(const InetAddress &addr) const noexcept
 				const uint8_t *const m = mask.as.sa_in6.sin6_addr.s6_addr;
 				const uint8_t *const a = addr.as.sa_in6.sin6_addr.s6_addr;
 				const uint8_t *const b = as.sa_in6.sin6_addr.s6_addr;
-				for(unsigned int i=0;i<16;++i) {
+				for (unsigned int i = 0;i < 16;++i) {
 					if ((a[i] & m[i]) != b[i])
 						return false;
 				}
@@ -287,14 +301,14 @@ bool InetAddress::containsAddress(const InetAddress &addr) const noexcept
 
 bool InetAddress::isNetwork() const noexcept
 {
-	switch(as.ss.ss_family) {
+	switch (as.ss.ss_family) {
 		case AF_INET: {
 			unsigned int bits = netmaskBits();
 			if (bits <= 0)
 				return false;
 			if (bits >= 32)
 				return false;
-			const uint32_t ip = Utils::ntoh((uint32_t)as.sa_in.sin_addr.s_addr);
+			const uint32_t ip = Utils::ntoh((uint32_t) as.sa_in.sin_addr.s_addr);
 			return ((ip & (0xffffffffU >> bits)) == 0);
 		}
 		case AF_INET6: {
@@ -320,23 +334,23 @@ bool InetAddress::isNetwork() const noexcept
 int InetAddress::marshal(uint8_t data[ZT_INETADDRESS_MARSHAL_SIZE_MAX]) const noexcept
 {
 	unsigned int port;
-	switch(as.ss.ss_family) {
+	switch (as.ss.ss_family) {
 		case AF_INET:
-			port = Utils::ntoh((uint16_t)reinterpret_cast<const sockaddr_in *>(this)->sin_port);
+			port = Utils::ntoh((uint16_t) reinterpret_cast<const sockaddr_in *>(this)->sin_port);
 			data[0] = 4;
 			data[1] = reinterpret_cast<const uint8_t *>(&as.sa_in.sin_addr.s_addr)[0];
 			data[2] = reinterpret_cast<const uint8_t *>(&as.sa_in.sin_addr.s_addr)[1];
 			data[3] = reinterpret_cast<const uint8_t *>(&as.sa_in.sin_addr.s_addr)[2];
 			data[4] = reinterpret_cast<const uint8_t *>(&as.sa_in.sin_addr.s_addr)[3];
-			data[5] = (uint8_t)(port >> 8U);
-			data[6] = (uint8_t)port;
+			data[5] = (uint8_t) (port >> 8U);
+			data[6] = (uint8_t) port;
 			return 7;
 		case AF_INET6:
-			port = Utils::ntoh((uint16_t)as.sa_in6.sin6_port);
+			port = Utils::ntoh((uint16_t) as.sa_in6.sin6_port);
 			data[0] = 6;
-			Utils::copy<16>(data + 1,as.sa_in6.sin6_addr.s6_addr);
-			data[17] = (uint8_t)(port >> 8U);
-			data[18] = (uint8_t)port;
+			Utils::copy<16>(data + 1, as.sa_in6.sin6_addr.s6_addr);
+			data[17] = (uint8_t) (port >> 8U);
+			data[18] = (uint8_t) port;
 			return 19;
 		default:
 			data[0] = 0;
@@ -344,12 +358,12 @@ int InetAddress::marshal(uint8_t data[ZT_INETADDRESS_MARSHAL_SIZE_MAX]) const no
 	}
 }
 
-int InetAddress::unmarshal(const uint8_t *restrict data,const int len) noexcept
+int InetAddress::unmarshal(const uint8_t *restrict data, const int len) noexcept
 {
 	memoryZero(this);
 	if (unlikely(len <= 0))
 		return -1;
-	switch(data[0]) {
+	switch (data[0]) {
 		case 0:
 			return 1;
 		case 4:
@@ -364,7 +378,7 @@ int InetAddress::unmarshal(const uint8_t *restrict data,const int len) noexcept
 				return -1;
 			as.sa_in6.sin6_family = AF_INET6;
 			as.sa_in6.sin6_port = Utils::loadAsIsEndian<uint16_t>(data + 17);
-			Utils::copy<16>(as.sa_in6.sin6_addr.s6_addr,data + 1);
+			Utils::copy<16>(as.sa_in6.sin6_addr.s6_addr, data + 1);
 			return 19;
 		default:
 			return -1;
@@ -395,46 +409,46 @@ InetAddress InetAddress::makeIpv6LinkLocal(const MAC &mac) noexcept
 	return r;
 }
 
-InetAddress InetAddress::makeIpv6rfc4193(uint64_t nwid,uint64_t zeroTierAddress) noexcept
+InetAddress InetAddress::makeIpv6rfc4193(uint64_t nwid, uint64_t zeroTierAddress) noexcept
 {
 	InetAddress r;
 	r.as.sa_in6.sin6_family = AF_INET6;
 	r.as.sa_in6.sin6_port = ZT_CONST_TO_BE_UINT16(88); // /88 includes 0xfd + network ID, discriminating by device ID below that
 	r.as.sa_in6.sin6_addr.s6_addr[0] = 0xfd;
-	r.as.sa_in6.sin6_addr.s6_addr[1] = (uint8_t)(nwid >> 56U);
-	r.as.sa_in6.sin6_addr.s6_addr[2] = (uint8_t)(nwid >> 48U);
-	r.as.sa_in6.sin6_addr.s6_addr[3] = (uint8_t)(nwid >> 40U);
-	r.as.sa_in6.sin6_addr.s6_addr[4] = (uint8_t)(nwid >> 32U);
-	r.as.sa_in6.sin6_addr.s6_addr[5] = (uint8_t)(nwid >> 24U);
-	r.as.sa_in6.sin6_addr.s6_addr[6] = (uint8_t)(nwid >> 16U);
-	r.as.sa_in6.sin6_addr.s6_addr[7] = (uint8_t)(nwid >> 8U);
-	r.as.sa_in6.sin6_addr.s6_addr[8] = (uint8_t)nwid;
+	r.as.sa_in6.sin6_addr.s6_addr[1] = (uint8_t) (nwid >> 56U);
+	r.as.sa_in6.sin6_addr.s6_addr[2] = (uint8_t) (nwid >> 48U);
+	r.as.sa_in6.sin6_addr.s6_addr[3] = (uint8_t) (nwid >> 40U);
+	r.as.sa_in6.sin6_addr.s6_addr[4] = (uint8_t) (nwid >> 32U);
+	r.as.sa_in6.sin6_addr.s6_addr[5] = (uint8_t) (nwid >> 24U);
+	r.as.sa_in6.sin6_addr.s6_addr[6] = (uint8_t) (nwid >> 16U);
+	r.as.sa_in6.sin6_addr.s6_addr[7] = (uint8_t) (nwid >> 8U);
+	r.as.sa_in6.sin6_addr.s6_addr[8] = (uint8_t) nwid;
 	r.as.sa_in6.sin6_addr.s6_addr[9] = 0x99;
 	r.as.sa_in6.sin6_addr.s6_addr[10] = 0x93;
-	r.as.sa_in6.sin6_addr.s6_addr[11] = (uint8_t)(zeroTierAddress >> 32U);
-	r.as.sa_in6.sin6_addr.s6_addr[12] = (uint8_t)(zeroTierAddress >> 24U);
-	r.as.sa_in6.sin6_addr.s6_addr[13] = (uint8_t)(zeroTierAddress >> 16U);
-	r.as.sa_in6.sin6_addr.s6_addr[14] = (uint8_t)(zeroTierAddress >> 8U);
-	r.as.sa_in6.sin6_addr.s6_addr[15] = (uint8_t)zeroTierAddress;
+	r.as.sa_in6.sin6_addr.s6_addr[11] = (uint8_t) (zeroTierAddress >> 32U);
+	r.as.sa_in6.sin6_addr.s6_addr[12] = (uint8_t) (zeroTierAddress >> 24U);
+	r.as.sa_in6.sin6_addr.s6_addr[13] = (uint8_t) (zeroTierAddress >> 16U);
+	r.as.sa_in6.sin6_addr.s6_addr[14] = (uint8_t) (zeroTierAddress >> 8U);
+	r.as.sa_in6.sin6_addr.s6_addr[15] = (uint8_t) zeroTierAddress;
 	return r;
 }
 
-InetAddress InetAddress::makeIpv66plane(uint64_t nwid,uint64_t zeroTierAddress) noexcept
+InetAddress InetAddress::makeIpv66plane(uint64_t nwid, uint64_t zeroTierAddress) noexcept
 {
 	nwid ^= (nwid >> 32U);
 	InetAddress r;
 	r.as.sa_in6.sin6_family = AF_INET6;
 	r.as.sa_in6.sin6_port = ZT_CONST_TO_BE_UINT16(40);
 	r.as.sa_in6.sin6_addr.s6_addr[0] = 0xfc;
-	r.as.sa_in6.sin6_addr.s6_addr[1] = (uint8_t)(nwid >> 24U);
-	r.as.sa_in6.sin6_addr.s6_addr[2] = (uint8_t)(nwid >> 16U);
-	r.as.sa_in6.sin6_addr.s6_addr[3] = (uint8_t)(nwid >> 8U);
-	r.as.sa_in6.sin6_addr.s6_addr[4] = (uint8_t)nwid;
-	r.as.sa_in6.sin6_addr.s6_addr[5] = (uint8_t)(zeroTierAddress >> 32U);
-	r.as.sa_in6.sin6_addr.s6_addr[6] = (uint8_t)(zeroTierAddress >> 24U);
-	r.as.sa_in6.sin6_addr.s6_addr[7] = (uint8_t)(zeroTierAddress >> 16U);
-	r.as.sa_in6.sin6_addr.s6_addr[8] = (uint8_t)(zeroTierAddress >> 8U);
-	r.as.sa_in6.sin6_addr.s6_addr[9] = (uint8_t)zeroTierAddress;
+	r.as.sa_in6.sin6_addr.s6_addr[1] = (uint8_t) (nwid >> 24U);
+	r.as.sa_in6.sin6_addr.s6_addr[2] = (uint8_t) (nwid >> 16U);
+	r.as.sa_in6.sin6_addr.s6_addr[3] = (uint8_t) (nwid >> 8U);
+	r.as.sa_in6.sin6_addr.s6_addr[4] = (uint8_t) nwid;
+	r.as.sa_in6.sin6_addr.s6_addr[5] = (uint8_t) (zeroTierAddress >> 32U);
+	r.as.sa_in6.sin6_addr.s6_addr[6] = (uint8_t) (zeroTierAddress >> 24U);
+	r.as.sa_in6.sin6_addr.s6_addr[7] = (uint8_t) (zeroTierAddress >> 16U);
+	r.as.sa_in6.sin6_addr.s6_addr[8] = (uint8_t) (zeroTierAddress >> 8U);
+	r.as.sa_in6.sin6_addr.s6_addr[9] = (uint8_t) zeroTierAddress;
 	r.as.sa_in6.sin6_addr.s6_addr[15] = 0x01;
 	return r;
 }

+ 189 - 82
node/InetAddress.hpp

@@ -71,28 +71,54 @@ public:
 	};
 
 	// Hasher for unordered sets and maps in C++11
-	struct Hasher { ZT_INLINE std::size_t operator()(const InetAddress &a) const noexcept { return (std::size_t)a.hashCode(); } };
+	struct Hasher
+	{
+		ZT_INLINE std::size_t operator()(const InetAddress &a) const noexcept
+		{ return (std::size_t) a.hashCode(); }
+	};
+
+	ZT_INLINE InetAddress() noexcept
+	{ memoryZero(this); }
+
+	explicit ZT_INLINE InetAddress(const sockaddr_storage &ss) noexcept
+	{ *this = ss; }
+
+	explicit ZT_INLINE InetAddress(const sockaddr_storage *const ss) noexcept
+	{ *this = ss; }
+
+	explicit ZT_INLINE InetAddress(const sockaddr &sa) noexcept
+	{ *this = sa; }
+
+	explicit ZT_INLINE InetAddress(const sockaddr *const sa) noexcept
+	{ *this = sa; }
+
+	explicit ZT_INLINE InetAddress(const sockaddr_in &sa) noexcept
+	{ *this = sa; }
 
-	ZT_INLINE InetAddress() noexcept { memoryZero(this); }
+	explicit ZT_INLINE InetAddress(const sockaddr_in *const sa) noexcept
+	{ *this = sa; }
 
-	explicit ZT_INLINE InetAddress(const sockaddr_storage &ss) noexcept { *this = ss; }
-	explicit ZT_INLINE InetAddress(const sockaddr_storage *const ss) noexcept { *this = ss; }
-	explicit ZT_INLINE InetAddress(const sockaddr &sa) noexcept { *this = sa; }
-	explicit ZT_INLINE InetAddress(const sockaddr *const sa) noexcept { *this = sa; }
-	explicit ZT_INLINE InetAddress(const sockaddr_in &sa) noexcept { *this = sa; }
-	explicit ZT_INLINE InetAddress(const sockaddr_in *const sa) noexcept { *this = sa; }
-	explicit ZT_INLINE InetAddress(const sockaddr_in6 &sa) noexcept { *this = sa; }
-	explicit ZT_INLINE InetAddress(const sockaddr_in6 *const sa) noexcept { *this = sa; }
+	explicit ZT_INLINE InetAddress(const sockaddr_in6 &sa) noexcept
+	{ *this = sa; }
 
-	ZT_INLINE InetAddress(const void *const ipBytes,const unsigned int ipLen,const unsigned int port) noexcept { this->set(ipBytes,ipLen,port); }
-	ZT_INLINE InetAddress(const uint32_t ipv4,const unsigned int port) noexcept { this->set(&ipv4,4,port); }
-	explicit ZT_INLINE InetAddress(const char *const ipSlashPort) noexcept { this->fromString(ipSlashPort); }
+	explicit ZT_INLINE InetAddress(const sockaddr_in6 *const sa) noexcept
+	{ *this = sa; }
+
+	ZT_INLINE InetAddress(const void *const ipBytes, const unsigned int ipLen, const unsigned int port) noexcept
+	{ this->set(ipBytes, ipLen, port); }
+
+	ZT_INLINE InetAddress(const uint32_t ipv4, const unsigned int port) noexcept
+	{ this->set(&ipv4, 4, port); }
+
+	explicit ZT_INLINE InetAddress(const char *const ipSlashPort) noexcept
+	{ this->fromString(ipSlashPort); }
 
 	ZT_INLINE InetAddress &operator=(const sockaddr_storage &ss) noexcept
 	{
 		as.ss = ss;
 		return *this;
 	}
+
 	ZT_INLINE InetAddress &operator=(const sockaddr_storage *ss) noexcept
 	{
 		if (ss)
@@ -100,11 +126,13 @@ public:
 		else memoryZero(this);
 		return *this;
 	}
+
 	ZT_INLINE InetAddress &operator=(const sockaddr_in &sa) noexcept
 	{
 		as.sa_in = sa;
 		return *this;
 	}
+
 	ZT_INLINE InetAddress &operator=(const sockaddr_in *sa) noexcept
 	{
 		if (sa)
@@ -112,11 +140,13 @@ public:
 		else memoryZero(this);
 		return *this;
 	}
+
 	ZT_INLINE InetAddress &operator=(const sockaddr_in6 &sa) noexcept
 	{
 		as.sa_in6 = sa;
 		return *this;
 	}
+
 	ZT_INLINE InetAddress &operator=(const sockaddr_in6 *sa) noexcept
 	{
 		if (sa)
@@ -124,6 +154,7 @@ public:
 		else memoryZero(this);
 		return *this;
 	}
+
 	ZT_INLINE InetAddress &operator=(const sockaddr &sa) noexcept
 	{
 		if (sa.sa_family == AF_INET)
@@ -133,6 +164,7 @@ public:
 		else memoryZero(this);
 		return *this;
 	}
+
 	ZT_INLINE InetAddress &operator=(const sockaddr *sa) noexcept
 	{
 		if (sa) {
@@ -147,12 +179,14 @@ public:
 		return *this;
 	}
 
-	ZT_INLINE void clear() noexcept { memoryZero(this); }
+	ZT_INLINE void clear() noexcept
+	{ memoryZero(this); }
 
 	/**
 	 * @return Address family (ss_family in sockaddr_storage)
 	 */
-	ZT_INLINE uint8_t family() const noexcept { return as.ss.ss_family; }
+	ZT_INLINE uint8_t family() const noexcept
+	{ return as.ss.ss_family; }
 
 	/**
 	 * @return IP scope classification (e.g. loopback, link-local, private, global)
@@ -166,7 +200,7 @@ public:
 	 * @param ipLen Length of IP address: 4 or 16
 	 * @param port Port number or 0 for none
 	 */
-	void set(const void *ipBytes,unsigned int ipLen,unsigned int port) noexcept;
+	void set(const void *ipBytes, unsigned int ipLen, unsigned int port) noexcept;
 
 	/**
 	 * Set the port component
@@ -175,9 +209,13 @@ public:
 	 */
 	ZT_INLINE void setPort(unsigned int port) noexcept
 	{
-		switch(as.ss.ss_family) {
-			case AF_INET:  as.sa_in.sin_port = Utils::hton((uint16_t)port); break;
-			case AF_INET6: as.sa_in6.sin6_port = Utils::hton((uint16_t)port); break;
+		switch (as.ss.ss_family) {
+			case AF_INET:
+				as.sa_in.sin_port = Utils::hton((uint16_t) port);
+				break;
+			case AF_INET6:
+				as.sa_in6.sin6_port = Utils::hton((uint16_t) port);
+				break;
 		}
 	}
 
@@ -190,13 +228,25 @@ public:
 	 * @return ASCII IP/port format representation
 	 */
 	char *toString(char buf[ZT_INETADDRESS_STRING_SIZE_MAX]) const noexcept;
-	ZT_INLINE String toString() const { char buf[ZT_INETADDRESS_STRING_SIZE_MAX]; toString(buf); return String(buf); }
+
+	ZT_INLINE String toString() const
+	{
+		char buf[ZT_INETADDRESS_STRING_SIZE_MAX];
+		toString(buf);
+		return String(buf);
+	}
 
 	/**
 	 * @return IP portion only, in ASCII string format
 	 */
 	char *toIpString(char buf[ZT_INETADDRESS_STRING_SIZE_MAX]) const noexcept;
-	ZT_INLINE String toIpString() const { char buf[ZT_INETADDRESS_STRING_SIZE_MAX]; toIpString(buf); return String(buf); }
+
+	ZT_INLINE String toIpString() const
+	{
+		char buf[ZT_INETADDRESS_STRING_SIZE_MAX];
+		toIpString(buf);
+		return String(buf);
+	}
 
 	/**
 	 * @param ipSlashPort IP/port (port is optional, will be 0 if not included)
@@ -209,10 +259,13 @@ public:
 	 */
 	ZT_INLINE unsigned int port() const noexcept
 	{
-		switch(as.ss.ss_family) {
-			case AF_INET:  return Utils::ntoh((uint16_t)as.sa_in.sin_port);
-			case AF_INET6: return Utils::ntoh((uint16_t)as.sa_in6.sin6_port);
-			default:       return 0;
+		switch (as.ss.ss_family) {
+			case AF_INET:
+				return Utils::ntoh((uint16_t) as.sa_in.sin_port);
+			case AF_INET6:
+				return Utils::ntoh((uint16_t) as.sa_in6.sin6_port);
+			default:
+				return 0;
 		}
 	}
 
@@ -225,7 +278,8 @@ public:
 	 *
 	 * @return Netmask bits
 	 */
-	ZT_INLINE unsigned int netmaskBits() const noexcept { return port(); }
+	ZT_INLINE unsigned int netmaskBits() const noexcept
+	{ return port(); }
 
 	/**
 	 * @return True if netmask bits is valid for the address type
@@ -233,9 +287,11 @@ public:
 	ZT_INLINE bool netmaskBitsValid() const noexcept
 	{
 		const unsigned int n = port();
-		switch(as.ss.ss_family) {
-			case AF_INET:  return (n <= 32);
-			case AF_INET6: return (n <= 128);
+		switch (as.ss.ss_family) {
+			case AF_INET:
+				return (n <= 32);
+			case AF_INET6:
+				return (n <= 128);
 		}
 		return false;
 	}
@@ -248,7 +304,8 @@ public:
 	 *
 	 * @return Gateway metric
 	 */
-	ZT_INLINE unsigned int metric() const noexcept { return port(); }
+	ZT_INLINE unsigned int metric() const noexcept
+	{ return port(); }
 
 	/**
 	 * Construct a full netmask as an InetAddress
@@ -293,22 +350,27 @@ public:
 	/**
 	 * @return True if this is an IPv4 address
 	 */
-	ZT_INLINE bool isV4() const noexcept { return (as.ss.ss_family == AF_INET); }
+	ZT_INLINE bool isV4() const noexcept
+	{ return (as.ss.ss_family == AF_INET); }
 
 	/**
 	 * @return True if this is an IPv6 address
 	 */
-	ZT_INLINE bool isV6() const noexcept { return (as.ss.ss_family == AF_INET6); }
+	ZT_INLINE bool isV6() const noexcept
+	{ return (as.ss.ss_family == AF_INET6); }
 
 	/**
 	 * @return pointer to raw address bytes or NULL if not available
 	 */
 	ZT_INLINE const void *rawIpData() const noexcept
 	{
-		switch(as.ss.ss_family) {
-			case AF_INET: return reinterpret_cast<const void *>(&(as.sa_in.sin_addr.s_addr));
-			case AF_INET6: return reinterpret_cast<const void *>(as.sa_in6.sin6_addr.s6_addr);
-			default: return nullptr;
+		switch (as.ss.ss_family) {
+			case AF_INET:
+				return reinterpret_cast<const void *>(&(as.sa_in.sin_addr.s_addr));
+			case AF_INET6:
+				return reinterpret_cast<const void *>(as.sa_in6.sin6_addr.s6_addr);
+			default:
+				return nullptr;
 		}
 	}
 
@@ -318,14 +380,14 @@ public:
 	ZT_INLINE InetAddress ipOnly() const noexcept
 	{
 		InetAddress r;
-		switch(as.ss.ss_family) {
+		switch (as.ss.ss_family) {
 			case AF_INET:
 				r.as.sa_in.sin_family = AF_INET;
 				r.as.sa_in.sin_addr.s_addr = as.sa_in.sin_addr.s_addr;
 				break;
 			case AF_INET6:
 				r.as.sa_in6.sin6_family = AF_INET6;
-				Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr,as.sa_in6.sin6_addr.s6_addr);
+				Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr, as.sa_in6.sin6_addr.s6_addr);
 				break;
 		}
 		return r;
@@ -344,8 +406,8 @@ public:
 			if (f == AF_INET)
 				return as.sa_in.sin_addr.s_addr == a.as.sa_in.sin_addr.s_addr;
 			if (f == AF_INET6)
-				return memcmp(as.sa_in6.sin6_addr.s6_addr,a.as.sa_in6.sin6_addr.s6_addr,16) == 0;
-			return memcmp(this,&a,sizeof(InetAddress)) == 0;
+				return memcmp(as.sa_in6.sin6_addr.s6_addr, a.as.sa_in6.sin6_addr.s6_addr, 16) == 0;
+			return memcmp(this, &a, sizeof(InetAddress)) == 0;
 		}
 		return false;
 	}
@@ -365,8 +427,8 @@ public:
 			if (f == AF_INET)
 				return as.sa_in.sin_addr.s_addr == a.as.sa_in.sin_addr.s_addr;
 			if (f == AF_INET6)
-				return memcmp(as.sa_in6.sin6_addr.s6_addr,a.as.sa_in6.sin6_addr.s6_addr,8) == 0;
-			return (memcmp(this,&a,sizeof(InetAddress)) == 0);
+				return memcmp(as.sa_in6.sin6_addr.s6_addr, a.as.sa_in6.sin6_addr.s6_addr, 8) == 0;
+			return (memcmp(this, &a, sizeof(InetAddress)) == 0);
 		}
 		return false;
 	}
@@ -374,15 +436,15 @@ public:
 	ZT_INLINE unsigned long hashCode() const noexcept
 	{
 		if (as.ss.ss_family == AF_INET) {
-			return (unsigned long)Utils::hash32(((uint32_t)as.sa_in.sin_addr.s_addr + (uint32_t)as.sa_in.sin_port) ^ (uint32_t)Utils::s_mapNonce);
+			return (unsigned long) Utils::hash32(((uint32_t) as.sa_in.sin_addr.s_addr + (uint32_t) as.sa_in.sin_port) ^ (uint32_t) Utils::s_mapNonce);
 		} else if (as.ss.ss_family == AF_INET6) {
-			return (unsigned long)Utils::hash64(
+			return (unsigned long) Utils::hash64(
 				(Utils::loadAsIsEndian<uint64_t>(as.sa_in6.sin6_addr.s6_addr) +
 				 Utils::loadAsIsEndian<uint64_t>(as.sa_in6.sin6_addr.s6_addr + 8) +
-				 (uint64_t)as.sa_in6.sin6_port) ^
+				 (uint64_t) as.sa_in6.sin6_port) ^
 				Utils::s_mapNonce);
 		}
-		return Utils::fnv1a32(this,sizeof(InetAddress));
+		return Utils::fnv1a32(this, sizeof(InetAddress));
 	}
 
 	/**
@@ -398,48 +460,61 @@ public:
 	/**
 	 * @return True if address family is non-zero
 	 */
-	explicit ZT_INLINE operator bool() const noexcept { return (as.ss.ss_family != 0); }
+	explicit ZT_INLINE operator bool() const noexcept
+	{ return (as.ss.ss_family != 0); }
+
+	static constexpr int marshalSizeMax() noexcept
+	{ return ZT_INETADDRESS_MARSHAL_SIZE_MAX; }
 
-	static constexpr int marshalSizeMax() noexcept { return ZT_INETADDRESS_MARSHAL_SIZE_MAX; }
 	int marshal(uint8_t data[ZT_INETADDRESS_MARSHAL_SIZE_MAX]) const noexcept;
-	int unmarshal(const uint8_t *restrict data,int len) noexcept;
+
+	int unmarshal(const uint8_t *restrict data, int len) noexcept;
 
 	ZT_INLINE bool operator==(const InetAddress &a) const noexcept
 	{
 		if (as.ss.ss_family == a.as.ss.ss_family) {
 			if (as.ss.ss_family == AF_INET)
-				return ((as.sa_in.sin_port == a.as.sa_in.sin_port)&&(as.sa_in.sin_addr.s_addr == a.as.sa_in.sin_addr.s_addr));
+				return ((as.sa_in.sin_port == a.as.sa_in.sin_port) && (as.sa_in.sin_addr.s_addr == a.as.sa_in.sin_addr.s_addr));
 			if (as.ss.ss_family == AF_INET6)
-				return ((as.sa_in6.sin6_port == a.as.sa_in6.sin6_port)&&(memcmp(as.sa_in6.sin6_addr.s6_addr,a.as.sa_in6.sin6_addr.s6_addr,16) == 0));
-			return memcmp(this,&a,sizeof(InetAddress)) == 0;
+				return ((as.sa_in6.sin6_port == a.as.sa_in6.sin6_port) && (memcmp(as.sa_in6.sin6_addr.s6_addr, a.as.sa_in6.sin6_addr.s6_addr, 16) == 0));
+			return memcmp(this, &a, sizeof(InetAddress)) == 0;
 		}
 		return false;
 	}
+
 	ZT_INLINE bool operator<(const InetAddress &a) const noexcept
 	{
 		if (as.ss.ss_family == a.as.ss.ss_family) {
 			if (as.ss.ss_family == AF_INET) {
-				const uint16_t p0 = Utils::ntoh((uint16_t)as.sa_in.sin_port);
-				const uint16_t p1 = Utils::ntoh((uint16_t)a.as.sa_in.sin_port);
+				const uint16_t p0 = Utils::ntoh((uint16_t) as.sa_in.sin_port);
+				const uint16_t p1 = Utils::ntoh((uint16_t) a.as.sa_in.sin_port);
 				if (p0 == p1)
-					return Utils::ntoh((uint32_t)as.sa_in.sin_addr.s_addr) < Utils::ntoh((uint32_t)a.as.sa_in.sin_addr.s_addr);
+					return Utils::ntoh((uint32_t) as.sa_in.sin_addr.s_addr) < Utils::ntoh((uint32_t) a.as.sa_in.sin_addr.s_addr);
 				return p0 < p1;
 			}
 			if (as.ss.ss_family == AF_INET6) {
-				const uint16_t p0 = Utils::ntoh((uint16_t)as.sa_in6.sin6_port);
-				const uint16_t p1 = Utils::ntoh((uint16_t)a.as.sa_in6.sin6_port);
+				const uint16_t p0 = Utils::ntoh((uint16_t) as.sa_in6.sin6_port);
+				const uint16_t p1 = Utils::ntoh((uint16_t) a.as.sa_in6.sin6_port);
 				if (p0 == p1)
-					return memcmp(as.sa_in6.sin6_addr.s6_addr,a.as.sa_in6.sin6_addr.s6_addr,16) < 0;
+					return memcmp(as.sa_in6.sin6_addr.s6_addr, a.as.sa_in6.sin6_addr.s6_addr, 16) < 0;
 				return p0 < p1;
 			}
-			return memcmp(this,&a,sizeof(InetAddress)) < 0;
+			return memcmp(this, &a, sizeof(InetAddress)) < 0;
 		}
 		return as.ss.ss_family < a.as.ss.ss_family;
 	}
-	ZT_INLINE bool operator!=(const InetAddress &a) const noexcept { return !(*this == a); }
-	ZT_INLINE bool operator>(const InetAddress &a) const noexcept { return (a < *this); }
-	ZT_INLINE bool operator<=(const InetAddress &a) const noexcept { return !(a < *this); }
-	ZT_INLINE bool operator>=(const InetAddress &a) const noexcept { return !(*this < a); }
+
+	ZT_INLINE bool operator!=(const InetAddress &a) const noexcept
+	{ return !(*this == a); }
+
+	ZT_INLINE bool operator>(const InetAddress &a) const noexcept
+	{ return (a < *this); }
+
+	ZT_INLINE bool operator<=(const InetAddress &a) const noexcept
+	{ return !(a < *this); }
+
+	ZT_INLINE bool operator>=(const InetAddress &a) const noexcept
+	{ return !(*this < a); }
 
 	/**
 	 * Compute an IPv6 link-local address
@@ -490,17 +565,18 @@ public:
 	 * @param zeroTierAddress 40-bit device address (in least significant 40 bits, highest 24 bits ignored)
 	 * @return IPv6 private unicast address with /88 netmask
 	 */
-	static InetAddress makeIpv6rfc4193(uint64_t nwid,uint64_t zeroTierAddress) noexcept;
+	static InetAddress makeIpv6rfc4193(uint64_t nwid, uint64_t zeroTierAddress) noexcept;
 
 	/**
 	 * Compute a private IPv6 "6plane" unicast address from network ID and ZeroTier address
 	 */
-	static InetAddress makeIpv66plane(uint64_t nwid,uint64_t zeroTierAddress) noexcept;
+	static InetAddress makeIpv66plane(uint64_t nwid, uint64_t zeroTierAddress) noexcept;
 
 	/**
 	 * Union allowing this to be accessed as a sockaddr of any supported type.
 	 */
-	union {
+	union
+	{
 		sockaddr_storage ss;
 		sockaddr sa;
 		sockaddr_in sa_in;
@@ -508,22 +584,53 @@ public:
 	} as;
 };
 
-static ZT_INLINE InetAddress *asInetAddress(sockaddr_in *const p) noexcept { return reinterpret_cast<InetAddress *>(p); }
-static ZT_INLINE InetAddress *asInetAddress(sockaddr_in6 *const p) noexcept { return reinterpret_cast<InetAddress *>(p); }
-static ZT_INLINE InetAddress *asInetAddress(sockaddr *const p) noexcept { return reinterpret_cast<InetAddress *>(p); }
-static ZT_INLINE InetAddress *asInetAddress(sockaddr_storage *const p) noexcept { return reinterpret_cast<InetAddress *>(p); }
-static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_in *const p) noexcept { return reinterpret_cast<const InetAddress *>(p); }
-static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_in6 *const p) noexcept { return reinterpret_cast<const InetAddress *>(p); }
-static ZT_INLINE const InetAddress *asInetAddress(const sockaddr *const p) noexcept { return reinterpret_cast<const InetAddress *>(p); }
-static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_storage *const p) noexcept { return reinterpret_cast<const InetAddress *>(p); }
-static ZT_INLINE InetAddress &asInetAddress(sockaddr_in &p) noexcept { return *reinterpret_cast<InetAddress *>(&p); }
-static ZT_INLINE InetAddress &asInetAddress(sockaddr_in6 &p) noexcept { return *reinterpret_cast<InetAddress *>(&p); }
-static ZT_INLINE InetAddress &asInetAddress(sockaddr &p) noexcept { return *reinterpret_cast<InetAddress *>(&p); }
-static ZT_INLINE InetAddress &asInetAddress(sockaddr_storage &p) noexcept { return *reinterpret_cast<InetAddress *>(&p); }
-static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_in &p) noexcept { return *reinterpret_cast<const InetAddress *>(&p); }
-static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_in6 &p) noexcept { return *reinterpret_cast<const InetAddress *>(&p); }
-static ZT_INLINE const InetAddress &asInetAddress(const sockaddr &p) noexcept { return *reinterpret_cast<const InetAddress *>(&p); }
-static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_storage &p) noexcept { return *reinterpret_cast<const InetAddress *>(&p); }
+static ZT_INLINE InetAddress *asInetAddress(sockaddr_in *const p) noexcept
+{ return reinterpret_cast<InetAddress *>(p); }
+
+static ZT_INLINE InetAddress *asInetAddress(sockaddr_in6 *const p) noexcept
+{ return reinterpret_cast<InetAddress *>(p); }
+
+static ZT_INLINE InetAddress *asInetAddress(sockaddr *const p) noexcept
+{ return reinterpret_cast<InetAddress *>(p); }
+
+static ZT_INLINE InetAddress *asInetAddress(sockaddr_storage *const p) noexcept
+{ return reinterpret_cast<InetAddress *>(p); }
+
+static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_in *const p) noexcept
+{ return reinterpret_cast<const InetAddress *>(p); }
+
+static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_in6 *const p) noexcept
+{ return reinterpret_cast<const InetAddress *>(p); }
+
+static ZT_INLINE const InetAddress *asInetAddress(const sockaddr *const p) noexcept
+{ return reinterpret_cast<const InetAddress *>(p); }
+
+static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_storage *const p) noexcept
+{ return reinterpret_cast<const InetAddress *>(p); }
+
+static ZT_INLINE InetAddress &asInetAddress(sockaddr_in &p) noexcept
+{ return *reinterpret_cast<InetAddress *>(&p); }
+
+static ZT_INLINE InetAddress &asInetAddress(sockaddr_in6 &p) noexcept
+{ return *reinterpret_cast<InetAddress *>(&p); }
+
+static ZT_INLINE InetAddress &asInetAddress(sockaddr &p) noexcept
+{ return *reinterpret_cast<InetAddress *>(&p); }
+
+static ZT_INLINE InetAddress &asInetAddress(sockaddr_storage &p) noexcept
+{ return *reinterpret_cast<InetAddress *>(&p); }
+
+static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_in &p) noexcept
+{ return *reinterpret_cast<const InetAddress *>(&p); }
+
+static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_in6 &p) noexcept
+{ return *reinterpret_cast<const InetAddress *>(&p); }
+
+static ZT_INLINE const InetAddress &asInetAddress(const sockaddr &p) noexcept
+{ return *reinterpret_cast<const InetAddress *>(&p); }
+
+static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_storage &p) noexcept
+{ return *reinterpret_cast<const InetAddress *>(&p); }
 
 } // namespace ZeroTier
 

+ 11 - 11
node/Locator.cpp

@@ -15,7 +15,7 @@
 
 namespace ZeroTier {
 
-bool Locator::sign(const int64_t ts,const Identity &id) noexcept
+bool Locator::sign(const int64_t ts, const Identity &id) noexcept
 {
 	uint8_t signData[ZT_LOCATOR_MARSHAL_SIZE_MAX];
 	if (!id.hasPrivate())
@@ -23,7 +23,7 @@ bool Locator::sign(const int64_t ts,const Identity &id) noexcept
 	m_ts = ts;
 	if (m_endpointCount > 0)
 		std::sort(m_at, m_at + m_endpointCount);
-	const unsigned int signLen = marshal(signData,true);
+	const unsigned int signLen = marshal(signData, true);
 	m_signatureLength = id.sign(signData, signLen, m_signature, sizeof(m_signature));
 	return (m_signatureLength > 0);
 }
@@ -33,11 +33,11 @@ bool Locator::verify(const Identity &id) const noexcept
 	if ((m_ts == 0) || (m_endpointCount > ZT_LOCATOR_MAX_ENDPOINTS) || (m_signatureLength > ZT_SIGNATURE_BUFFER_SIZE))
 		return false;
 	uint8_t signData[ZT_LOCATOR_MARSHAL_SIZE_MAX];
-	const unsigned int signLen = marshal(signData,true);
+	const unsigned int signLen = marshal(signData, true);
 	return id.verify(signData, signLen, m_signature, m_signatureLength);
 }
 
-int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool excludeSignature) const noexcept
+int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX], const bool excludeSignature) const noexcept
 {
 	if ((m_endpointCount > ZT_LOCATOR_MAX_ENDPOINTS) || (m_signatureLength > ZT_SIGNATURE_BUFFER_SIZE))
 		return -1;
@@ -47,7 +47,7 @@ int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool exclud
 	int p = 9;
 
 	if (m_ts > 0) {
-		Utils::storeBigEndian(data + p,(uint16_t)m_endpointCount);
+		Utils::storeBigEndian(data + p, (uint16_t) m_endpointCount);
 		p += 2;
 		for (unsigned int i = 0;i < m_endpointCount;++i) {
 			int tmp = m_at[i].marshal(data + p);
@@ -57,10 +57,10 @@ int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool exclud
 		}
 
 		if (!excludeSignature) {
-			Utils::storeBigEndian(data + p,(uint16_t)m_signatureLength);
+			Utils::storeBigEndian(data + p, (uint16_t) m_signatureLength);
 			p += 2;
 			Utils::copy(data + p, m_signature, m_signatureLength);
-			p += (int)m_signatureLength;
+			p += (int) m_signatureLength;
 		}
 
 		Utils::storeBigEndian(data + p, m_flags);
@@ -70,7 +70,7 @@ int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool exclud
 	return p;
 }
 
-int Locator::unmarshal(const uint8_t *restrict data,const int len) noexcept
+int Locator::unmarshal(const uint8_t *restrict data, const int len) noexcept
 {
 	if (len <= (1 + 8 + 2 + 48))
 		return -1;
@@ -86,7 +86,7 @@ int Locator::unmarshal(const uint8_t *restrict data,const int len) noexcept
 		if (ec > ZT_LOCATOR_MAX_ENDPOINTS)
 			return -1;
 		m_endpointCount = ec;
-		for (unsigned int i = 0; i < ec; ++i) {
+		for (unsigned int i = 0;i < ec;++i) {
 			int tmp = m_at[i].unmarshal(data + p, len - p);
 			if (tmp < 0)
 				return -1;
@@ -100,10 +100,10 @@ int Locator::unmarshal(const uint8_t *restrict data,const int len) noexcept
 		if (sl > ZT_SIGNATURE_BUFFER_SIZE)
 			return -1;
 		m_signatureLength = sl;
-		if ((p + (int)sl) > len)
+		if ((p + (int) sl) > len)
 			return -1;
 		Utils::copy(m_signature, data + p, sl);
-		p += (int)sl;
+		p += (int) sl;
 
 		if ((p + 2) > len)
 			return -1;

+ 2 - 2
node/Locator.hpp

@@ -52,7 +52,7 @@ public:
 	/**
 	 * @return True if locator is signed
 	 */
-	ZT_INLINE bool isSigned() const noexcept { return (m_signatureLength > 0); }
+	ZT_INLINE bool isSigned() const noexcept { return m_signatureLength > 0; }
 
 	/**
 	 * @return Length of signature in bytes or 0 if none
@@ -110,7 +110,7 @@ public:
 	 */
 	bool verify(const Identity &id) const noexcept;
 
-	explicit ZT_INLINE operator bool() const noexcept { return (m_ts != 0); }
+	explicit ZT_INLINE operator bool() const noexcept { return m_ts != 0; }
 
 	static constexpr int marshalSizeMax() noexcept { return ZT_LOCATOR_MARSHAL_SIZE_MAX; }
 	int marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],bool excludeSignature = false) const noexcept;

+ 2 - 0
node/Membership.cpp

@@ -33,6 +33,7 @@ void Membership::pushCredentials(const RuntimeEnvironment *RR,void *tPtr,const i
 	if (!nconf.com) // sanity check
 		return;
 
+#if 0
 	SharedPtr<Buf> outp(new Buf());
 	Protocol::Header &ph = outp->as<Protocol::Header>(); // NOLINT(hicpp-use-auto,modernize-use-auto)
 
@@ -109,6 +110,7 @@ void Membership::pushCredentials(const RuntimeEnvironment *RR,void *tPtr,const i
 			// TODO
 		}
 	}
+#endif
 
 	m_lastPushedCredentials = now;
 }

+ 2 - 2
node/Membership.hpp

@@ -103,7 +103,7 @@ public:
 	template<typename T>
 	ZT_INLINE bool peerOwnsAddress(const NetworkConfig &nconf,const T &r) const noexcept
 	{
-		if (s_isUnspoofableAddress(nconf, r))
+		if (m_isUnspoofableAddress(nconf, r))
 			return true;
 		for(Map< uint32_t,CertificateOfOwnership >::const_iterator i(m_remoteCoos.begin());i != m_remoteCoos.end();++i) {
 			if (m_isCredentialTimestampValid(nconf, i->second) && (i->second.owns(r)))
@@ -158,7 +158,7 @@ private:
 	// This returns true if a resource is an IPv6 NDP-emulated address. These embed the ZT
 	// address of the peer and therefore cannot be spoofed, causing peerOwnsAddress() to
 	// always return true for them. A certificate is not required for these.
-	ZT_INLINE static bool s_isUnspoofableAddress(const NetworkConfig &nconf, const MAC &m) noexcept { return false; }
+	constexpr bool m_isUnspoofableAddress(const NetworkConfig &nconf, const MAC &m) const noexcept { return false; }
 	bool m_isUnspoofableAddress(const NetworkConfig &nconf, const InetAddress &ip) const noexcept;
 
 	// This compares the remote credential's timestamp to the timestamp in our network config

+ 7 - 6
node/Meter.hpp

@@ -34,7 +34,7 @@ namespace ZeroTier {
  * @tparam TUNIT Unit of time in milliseconds (default: 1000 for one second)
  * @tparam LSIZE Log size in units of time (default: 10 for 10s worth of data)
  */
-template<int64_t TUNIT = 1000,unsigned long LSIZE = 10>
+template<int64_t TUNIT = 1000, unsigned long LSIZE = 10>
 class Meter
 {
 public:
@@ -43,7 +43,8 @@ public:
 	 *
 	 * @param now Start time
 	 */
-	ZT_INLINE Meter() noexcept {} // NOLINT(cppcoreguidelines-pro-type-member-init,hicpp-member-init,hicpp-use-equals-default,modernize-use-equals-default)
+	ZT_INLINE Meter() noexcept
+	{} // NOLINT(cppcoreguidelines-pro-type-member-init,hicpp-member-init,hicpp-use-equals-default,modernize-use-equals-default)
 
 	/**
 	 * Add a measurement
@@ -51,7 +52,7 @@ public:
 	 * @param now Current time
 	 * @param count Count of items (usually bytes)
 	 */
-	ZT_INLINE void log(const int64_t now,uint64_t count) noexcept
+	ZT_INLINE void log(const int64_t now, uint64_t count) noexcept
 	{
 		// We log by choosing a log bucket based on the current time in units modulo
 		// the log size and then if it's a new bucket setting it or otherwise adding
@@ -71,12 +72,12 @@ public:
 	 * @param rate Result parameter: rate in count/TUNIT
 	 * @param total Total count for life of object
 	 */
-	ZT_INLINE void rate(double &rate,uint64_t &total) const noexcept
+	ZT_INLINE void rate(double &rate, uint64_t &total) const noexcept
 	{
 		total = 0;
-		for(unsigned long i=0;i<LSIZE;++i)
+		for (unsigned long i = 0;i < LSIZE;++i)
 			total += m_counts[i].load();
-		rate = (double)total / (double)LSIZE;
+		rate = (double) total / (double) LSIZE;
 		total += m_totalExclCounts.load();
 	}
 

+ 11 - 11
node/Network.cpp

@@ -539,8 +539,8 @@ Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,const F
 	m_id(nwid),
 	m_mac(renv->identity.address(), nwid),
 	m_portInitialized(false),
-	m_lastConfigUpdate(0),
 	m_destroyed(false),
+	m_lastConfigUpdate(0),
 	_netconfFailure(NETCONF_FAILURE_NONE)
 {
 	if (controllerFingerprint)
@@ -556,7 +556,7 @@ Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,const F
 		bool got = false;
 		try {
 			Dictionary dict;
-			std::vector<uint8_t> nconfData(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp));
+			Vector<uint8_t> nconfData(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp));
 			if (nconfData.size() > 2) {
 				nconfData.push_back(0);
 				if (dict.decode(nconfData.data(),(unsigned int)nconfData.size())) {
@@ -864,7 +864,7 @@ void Network::multicastSubscribe(void *tPtr,const MulticastGroup &mg)
 void Network::multicastUnsubscribe(const MulticastGroup &mg)
 {
 	Mutex::Lock l(m_myMulticastGroups_l);
-	std::vector<MulticastGroup>::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg));
+	Vector<MulticastGroup>::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg));
 	if ((i != m_myMulticastGroups.end()) && (*i == mg) )
 		m_myMulticastGroups.erase(i);
 }
@@ -984,7 +984,7 @@ uint64_t Network::handleConfigChunk(void *tPtr,uint64_t packetId,const SharedPtr
 		c->chunks[chunkIndex].assign(chunkData,chunkData + chunkLen);
 
 		int haveLength = 0;
-		for(std::map< int,std::vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
+		for(std::map< int,Vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
 			haveLength += (int)ch->second.size();
 		if (haveLength > ZT_MAX_NETWORK_CONFIG_BYTES) {
 			c->touchCtr = 0;
@@ -994,8 +994,8 @@ uint64_t Network::handleConfigChunk(void *tPtr,uint64_t packetId,const SharedPtr
 		}
 
 		if (haveLength == totalLength) {
-			std::vector<uint8_t> assembledConfig;
-			for(std::map< int,std::vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
+			Vector<uint8_t> assembledConfig;
+			for(std::map< int,Vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
 				assembledConfig.insert(assembledConfig.end(),ch->second.begin(),ch->second.end());
 
 			Dictionary dict;
@@ -1048,10 +1048,10 @@ int Network::setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToD
 		if (saveToDisk) {
 			try {
 				Dictionary d;
-				if (nconf.toDictionary(d,false)) {
+				if (nconf.toDictionary(d)) {
 					uint64_t tmp[2];
 					tmp[0] = m_id; tmp[1] = 0;
-					std::vector<uint8_t> d2;
+					Vector<uint8_t> d2;
 					d.encode(d2);
 					RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,d2.data(),(unsigned int)d2.size());
 				}
@@ -1445,7 +1445,7 @@ void Network::m_externalConfig(ZT_VirtualNetworkConfig *ec) const
 	ec->status = m_status();
 	ec->type = (m_config) ? (m_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE;
 	ec->mtu = (m_config) ? m_config.mtu : ZT_DEFAULT_MTU;
-	std::vector<Address> ab;
+	Vector<Address> ab;
 	for(unsigned int i=0;i < m_config.specialistCount;++i) {
 		if ((m_config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
 			ab.push_back(Address(m_config.specialists[i]));
@@ -1503,7 +1503,7 @@ void Network::m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const
 	// Assumes _myMulticastGroups_l and _memberships_l are locked
 	ScopedPtr<Packet> outp(new Packet(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE));
 
-	for(std::vector<MulticastGroup>::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) {
+	for(Vector<MulticastGroup>::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) {
 		if ((outp->size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) {
 			outp->compress();
 			RR->sw->send(tPtr,*outp,true);
@@ -1529,7 +1529,7 @@ Vector<MulticastGroup> Network::m_allMulticastGroups() const
 	Vector<MulticastGroup> mgs;
 	mgs.reserve(m_myMulticastGroups.size() + m_multicastGroupsBehindMe.size() + 1);
 	mgs.insert(mgs.end(), m_myMulticastGroups.begin(), m_myMulticastGroups.end());
-	for(Map<MulticastGroup,uint64_t>::const_iterator i(m_multicastGroupsBehindMe.begin());i != m_multicastGroupsBehindMe.end();++i)
+	for(Map<MulticastGroup,int64_t>::const_iterator i(m_multicastGroupsBehindMe.begin());i != m_multicastGroupsBehindMe.end();++i)
 		mgs.push_back(i->first);
 	if ((m_config) && (m_config.enableBroadcast()))
 		mgs.push_back(Network::BROADCAST);

+ 17 - 20
node/Node.cpp

@@ -31,13 +31,7 @@ namespace ZeroTier {
 
 namespace {
 
-/**
- * All core objects of a ZeroTier node.
- *
- * This is just a box that allows us to allocate all core objects
- * and data structures at once for a bit of memory saves and improved
- * cache adjacency.
- */
+// Structure containing all the core objects for a ZeroTier node to reduce memory allocations.
 struct _NodeObjects
 {
 	ZT_INLINE _NodeObjects(RuntimeEnvironment *const RR,void *const tPtr) :
@@ -195,7 +189,7 @@ struct _processBackgroundTasks_eachPeer
 	Node *const parent;
 	void *const tPtr;
 	bool online;
-	std::vector< SharedPtr<Peer> > rootsNotOnline;
+	Vector< SharedPtr<Peer> > rootsNotOnline;
 	ZT_INLINE void operator()(const SharedPtr<Peer> &peer,const bool isRoot) noexcept
 	{
 		peer->pulse(tPtr,now,isRoot);
@@ -226,7 +220,7 @@ ZT_ResultCode Node::processBackgroundTasks(void *tPtr,int64_t now,volatile int64
 					postEvent(tPtr, m_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
 				}
 
-				RR->topology->rankRoots(now);
+				RR->topology->rankRoots();
 
 				if (pf.online) {
 					// If we have at least one online root, request whois for roots not online.
@@ -234,7 +228,7 @@ ZT_ResultCode Node::processBackgroundTasks(void *tPtr,int64_t now,volatile int64
 					// IP addresses. It will also auto-discover IPs for roots that were not added
 					// with an initial bootstrap address.
 					// TODO
-					//for (std::vector<Address>::const_iterator r(pf.rootsNotOnline.begin()); r != pf.rootsNotOnline.end(); ++r)
+					//for (Vector<Address>::const_iterator r(pf.rootsNotOnline.begin()); r != pf.rootsNotOnline.end(); ++r)
 					//	RR->sw->requestWhois(tPtr,now,*r);
 				}
 			} catch ( ... ) {
@@ -360,7 +354,7 @@ ZT_ResultCode Node::removeRoot(void *tPtr,const ZT_Identity *identity)
 {
 	if (!identity)
 		return ZT_RESULT_ERROR_BAD_PARAMETER;
-	RR->topology->removeRoot(*reinterpret_cast<const Identity *>(identity));
+	RR->topology->removeRoot(tPtr, *reinterpret_cast<const Identity *>(identity));
 	return ZT_RESULT_OK;
 }
 
@@ -380,7 +374,7 @@ void Node::status(ZT_NodeStatus *status) const
 
 ZT_PeerList *Node::peers() const
 {
-	std::vector< SharedPtr<Peer> > peers;
+	Vector< SharedPtr<Peer> > peers;
 	RR->topology->getAllPeers(peers);
 	std::sort(peers.begin(),peers.end(),_sortPeerPtrsByAddress());
 
@@ -393,7 +387,7 @@ ZT_PeerList *Node::peers() const
 
 	const int64_t now = m_now;
 	pl->peerCount = 0;
-	for(std::vector< SharedPtr<Peer> >::iterator pi(peers.begin());pi!=peers.end();++pi) { // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
+	for(Vector< SharedPtr<Peer> >::iterator pi(peers.begin());pi!=peers.end();++pi) { // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
 		ZT_Peer *const p = &(pl->peers[pl->peerCount]);
 
 		p->address = (*pi)->address().toInt();
@@ -420,14 +414,15 @@ ZT_PeerList *Node::peers() const
 				Utils::copy<sizeof(sockaddr_storage)>(&(p->bootstrap[p->bootstrapAddressCount++]),&(*i));
 		}
 
-		std::vector< SharedPtr<Path> > paths;
+		Vector< SharedPtr<Path> > paths;
 		(*pi)->getAllPaths(paths);
 		p->pathCount = 0;
-		for(std::vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) { // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
+		for(Vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) { // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
 			Utils::copy<sizeof(sockaddr_storage)>(&(p->paths[p->pathCount].address),&((*path)->address()));
 			p->paths[p->pathCount].lastSend = (*path)->lastOut();
 			p->paths[p->pathCount].lastReceive = (*path)->lastIn();
-			p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
+			// TODO
+			//p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
 			p->paths[p->pathCount].alive = (*path)->alive(now) ? 1 : 0;
 			p->paths[p->pathCount].preferred = (p->pathCount == 0) ? 1 : 0;
 			++p->pathCount;
@@ -613,15 +608,17 @@ void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &de
 
 	if (destination == RR->identity.address()) {
 		SharedPtr<Network> n(network(nwid));
-		if (!n) return;
+		if (!n)
+			return;
 		n->setConfiguration((void *)0,nc,true);
 	} else {
 		Dictionary dconf;
-		if (nc.toDictionary(dconf,sendLegacyFormatConfig)) {
+		if (nc.toDictionary(dconf)) {
 			uint64_t configUpdateId = Utils::random();
-			if (!configUpdateId) ++configUpdateId;
+			if (!configUpdateId)
+				++configUpdateId;
 
-			std::vector<uint8_t> ddata;
+			Vector<uint8_t> ddata;
 			dconf.encode(ddata);
 			// TODO
 			/*

+ 1 - 2
node/Peer.cpp

@@ -164,11 +164,10 @@ void Peer::send(void *tPtr,int64_t now,const void *data,unsigned int len) noexce
 	sent(now,len);
 }
 
-unsigned int Peer::hello(void *tPtr,int64_t localSocket,const InetAddress &atAddress,int64_t now)
+unsigned int Peer::hello(void *tPtr,int64_t localSocket,const InetAddress &atAddress,const int64_t now)
 {
 	Buf outp;
 
-	const int64_t now = RR->node->now();
 	const uint64_t packetId = m_identityKey->nextMessage(RR->identity.address(),m_id.address());
 	int ii = Protocol::newPacket(outp,packetId,m_id.address(),RR->identity.address(),Protocol::VERB_HELLO);
 

+ 7 - 0
node/Poly1305.hpp

@@ -32,6 +32,13 @@ public:
 	void update(const void *data,unsigned int len) noexcept;
 	void finish(void *auth) noexcept;
 
+	static ZT_INLINE void compute(void *const auth, const void *const data, const unsigned int len, const void *const key) noexcept
+	{
+		Poly1305 p(key);
+		p.update(data,len);
+		p.finish(auth);
+	}
+
 private:
 	struct {
 	  size_t aligner;

+ 19 - 17
node/SelfAwareness.cpp

@@ -27,13 +27,15 @@ namespace ZeroTier {
 class _ResetWithinScope
 {
 public:
-	ZT_INLINE _ResetWithinScope(void *tPtr,int64_t now,int inetAddressFamily,InetAddress::IpScope scope) :
+	ZT_INLINE _ResetWithinScope(void *tPtr, int64_t now, int inetAddressFamily, InetAddress::IpScope scope) :
 		_now(now),
 		_tPtr(tPtr),
 		_family(inetAddressFamily),
-		_scope(scope) {}
+		_scope(scope)
+	{}
 
-	ZT_INLINE void operator()(const SharedPtr<Peer> &p) { p->resetWithinScope(_tPtr,_scope,_family,_now); }
+	ZT_INLINE void operator()(const SharedPtr<Peer> &p)
+	{ p->resetWithinScope(_tPtr, _scope, _family, _now); }
 
 private:
 	int64_t _now;
@@ -47,17 +49,17 @@ SelfAwareness::SelfAwareness(const RuntimeEnvironment *renv) :
 {
 }
 
-void SelfAwareness::iam(void *tPtr,const Identity &reporter,const int64_t receivedOnLocalSocket,const InetAddress &reporterPhysicalAddress,const InetAddress &myPhysicalAddress,bool trusted,int64_t now)
+void SelfAwareness::iam(void *tPtr, const Identity &reporter, const int64_t receivedOnLocalSocket, const InetAddress &reporterPhysicalAddress, const InetAddress &myPhysicalAddress, bool trusted, int64_t now)
 {
 	const InetAddress::IpScope scope = myPhysicalAddress.ipScope();
 
-	if ((scope != reporterPhysicalAddress.ipScope())||(scope == InetAddress::IP_SCOPE_NONE)||(scope == InetAddress::IP_SCOPE_LOOPBACK)||(scope == InetAddress::IP_SCOPE_MULTICAST))
+	if ((scope != reporterPhysicalAddress.ipScope()) || (scope == InetAddress::IP_SCOPE_NONE) || (scope == InetAddress::IP_SCOPE_LOOPBACK) || (scope == InetAddress::IP_SCOPE_MULTICAST))
 		return;
 
 	Mutex::Lock l(m_phy_l);
 	p_PhySurfaceEntry &entry = m_phy[p_PhySurfaceKey(reporter.address(), receivedOnLocalSocket, reporterPhysicalAddress, scope)];
 
-	if ( (trusted) && ((now - entry.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT) && (!entry.mySurface.ipsEqual(myPhysicalAddress)) ) {
+	if ((trusted) && ((now - entry.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT) && (!entry.mySurface.ipsEqual(myPhysicalAddress))) {
 		// Changes to external surface reported by trusted peers causes path reset in this scope
 		entry.mySurface = myPhysicalAddress;
 		entry.ts = now;
@@ -66,17 +68,17 @@ void SelfAwareness::iam(void *tPtr,const Identity &reporter,const int64_t receiv
 		// Erase all entries in this scope that were not reported from this remote address to prevent 'thrashing'
 		// due to multiple reports of endpoint change.
 		// Don't use 'entry' after this since hash table gets modified.
-		for(Map<p_PhySurfaceKey,p_PhySurfaceEntry>::iterator i(m_phy.begin());i != m_phy.end();) {
-			if ((i->first.scope == scope)&&(i->first.reporterPhysicalAddress != reporterPhysicalAddress))
+		for (Map<p_PhySurfaceKey, p_PhySurfaceEntry>::iterator i(m_phy.begin());i != m_phy.end();) {
+			if ((i->first.scope == scope) && (i->first.reporterPhysicalAddress != reporterPhysicalAddress))
 				m_phy.erase(i++);
 			else ++i;
 		}
 
 		// Reset all paths within this scope and address family
-		_ResetWithinScope rset(tPtr,now,myPhysicalAddress.family(),(InetAddress::IpScope)scope);
+		_ResetWithinScope rset(tPtr, now, myPhysicalAddress.family(), (InetAddress::IpScope) scope);
 		RR->topology->eachPeer<_ResetWithinScope &>(rset);
 
-		RR->t->resettingPathsInScope(tPtr,0x9afff100,reporter,reporterPhysicalAddress,entry.mySurface,myPhysicalAddress,scope);
+		RR->t->resettingPathsInScope(tPtr, 0x9afff100, reporter, reporterPhysicalAddress, entry.mySurface, myPhysicalAddress, scope);
 	} else {
 		// Otherwise just update DB to use to determine external surface info
 		entry.mySurface = myPhysicalAddress;
@@ -88,30 +90,30 @@ void SelfAwareness::iam(void *tPtr,const Identity &reporter,const int64_t receiv
 void SelfAwareness::clean(int64_t now)
 {
 	Mutex::Lock l(m_phy_l);
-	for(Map<p_PhySurfaceKey,p_PhySurfaceEntry>::iterator i(m_phy.begin());i != m_phy.end();) {
+	for (Map<p_PhySurfaceKey, p_PhySurfaceEntry>::iterator i(m_phy.begin());i != m_phy.end();) {
 		if ((now - i->second.ts) >= ZT_SELFAWARENESS_ENTRY_TIMEOUT)
 			m_phy.erase(i++);
 		else ++i;
 	}
 }
 
-MultiMap<unsigned int,InetAddress> SelfAwareness::externalAddresses(const int64_t now) const
+MultiMap<unsigned int, InetAddress> SelfAwareness::externalAddresses(const int64_t now) const
 {
-	MultiMap<unsigned int,InetAddress> r;
+	MultiMap<unsigned int, InetAddress> r;
 
 	// Count endpoints reporting each IP/port combo
-	Map<InetAddress,unsigned long> counts;
+	Map<InetAddress, unsigned long> counts;
 	{
 		Mutex::Lock l(m_phy_l);
-		for(Map<p_PhySurfaceKey,p_PhySurfaceEntry>::const_iterator i(m_phy.begin());i != m_phy.end();++i) {
+		for (Map<p_PhySurfaceKey, p_PhySurfaceEntry>::const_iterator i(m_phy.begin());i != m_phy.end();++i) {
 			if ((now - i->second.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT)
 				++counts[i->second.mySurface];
 		}
 	}
 
 	// Invert to create a map from count to address
-	for(Map<InetAddress,unsigned long>::iterator i(counts.begin());i!=counts.end();++i)
-		r.insert(std::pair<unsigned long,InetAddress>(i->second,i->first));
+	for (Map<InetAddress, unsigned long>::iterator i(counts.begin());i != counts.end();++i)
+		r.insert(std::pair<unsigned long, InetAddress>(i->second, i->first));
 
 	return r;
 }

+ 2 - 1
node/SharedPtr.hpp

@@ -144,7 +144,8 @@ public:
 	ZT_INLINE bool weakGC()
 	{
 		if (m_ptr) {
-			if (m_ptr->__refCount.compare_exchange_strong(1,0)) {
+			int one = 1;
+			if (m_ptr->__refCount.compare_exchange_strong(one,(int)0)) {
 				delete m_ptr;
 				m_ptr = nullptr;
 				return true;

+ 5 - 5
node/Tests.cpp

@@ -413,7 +413,7 @@ extern "C" const char *ZTT_general()
 				return "FCV object life cycle test failed (2)";
 			}
 			test.clear();
-			if (cnt != (long)test.size()) {
+			if (cnt != (long)test2.size()) {
 				ZT_T_PRINTF("FAILED (expected 512 objects, got %lu (3))" ZT_EOL_S,cnt);
 				return "FCV object life cycle test failed (3)";
 			}
@@ -515,7 +515,7 @@ extern "C" const char *ZTT_general()
 				FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS> message;
 				FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS> ref;
 
-				int frags = 1 + (int)(Utils::random() % 16);
+				int frags = 1 + (int)(Utils::random() % ZT_MAX_PACKET_FRAGMENTS);
 				int skip = ((k & 3) == 1) ? -1 : (int)(Utils::random() % frags);
 				bool complete = false;
 				message.resize(frags);
@@ -803,12 +803,12 @@ extern "C" const char *ZTT_crypto()
 		{
 			uint8_t tag[16];
 			ZT_T_PRINTF("[crypto] Testing Poly1305... ");
-			poly1305(tag,POLY1305_TV0_INPUT,sizeof(POLY1305_TV0_INPUT),POLY1305_TV0_KEY);
+			Poly1305::compute(tag,POLY1305_TV0_INPUT,sizeof(POLY1305_TV0_INPUT),POLY1305_TV0_KEY);
 			if (memcmp(tag,POLY1305_TV0_TAG,16) != 0) {
 				ZT_T_PRINTF("FAILED (test vector 0)" ZT_EOL_S);
 				return "poly1305 test vector 0 failed";
 			}
-			poly1305(tag,POLY1305_TV1_INPUT,sizeof(POLY1305_TV1_INPUT),POLY1305_TV1_KEY);
+			Poly1305::compute(tag,POLY1305_TV1_INPUT,sizeof(POLY1305_TV1_INPUT),POLY1305_TV1_KEY);
 			if (memcmp(tag,POLY1305_TV1_TAG,16) != 0) {
 				ZT_T_PRINTF("FAILED (test vector 1)" ZT_EOL_S);
 				return "poly1305 test vector 1 failed";
@@ -1014,7 +1014,7 @@ extern "C" const char *ZTT_benchmarkCrypto()
 			ZT_T_PRINTF("[crypto] Benchmarking Poly1305... ");
 			int64_t start = now();
 			for(long i=0;i<150000;++i)
-				poly1305(tag,tmp,sizeof(tmp),tag);
+				Poly1305::compute(tag,tmp,sizeof(tmp),tag);
 			int64_t end = now();
 			foo = tag[0]; // prevent optimization
 			ZT_T_PRINTF("%.4f MiB/sec" ZT_EOL_S,((16384.0 * 150000.0) / 1048576.0) / ((double)(end - start) / 1000.0));

+ 8 - 0
node/Utils.hpp

@@ -51,6 +51,11 @@ namespace Utils {
 #define ZT_CONST_TO_BE_UINT64(x) ((uint64_t)(x))
 #endif
 
+#define ZT_ROR64(x, r) (((x) >> (r)) | ((x) << (64 - (r))))
+#define ZT_ROL64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
+#define ZT_ROR32(x, r) (((x) >> (r)) | ((x) << (32 - (r))))
+#define ZT_ROL32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
+
 #ifdef ZT_ARCH_X64
 struct CPUIDRegisters
 {
@@ -759,6 +764,9 @@ struct Mallocator
 	ZT_INLINE size_type max_size() const noexcept { return std::numeric_limits<size_t>::max() / sizeof(T); }
 	ZT_INLINE void construct(pointer p,const T& val) { new((void *)p) T(val); }
 	ZT_INLINE void destroy(pointer p) { p->~T(); }
+
+	constexpr bool operator==(const Mallocator &) const noexcept { return true; }
+	constexpr bool operator!=(const Mallocator &) const noexcept { return false; }
 };
 
 } // namespace Utils