|
@@ -64,10 +64,6 @@ Switch::Switch(const RuntimeEnvironment *renv) :
|
|
|
{
|
|
|
}
|
|
|
|
|
|
-Switch::~Switch()
|
|
|
-{
|
|
|
-}
|
|
|
-
|
|
|
void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len)
|
|
|
{
|
|
|
try {
|
|
@@ -221,7 +217,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
|
|
|
|
|
if (packet.hops() < ZT_RELAY_MAX_HOPS) {
|
|
|
#ifdef ZT_ENABLE_CLUSTER
|
|
|
- if (source != RR->identity.address())
|
|
|
+ if (source != RR->identity.address()) // don't increment hops for cluster frontplane relays
|
|
|
packet.incrementHops();
|
|
|
#else
|
|
|
packet.incrementHops();
|
|
@@ -229,13 +225,74 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
|
|
|
|
|
|
SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
|
|
|
if ((relayTo)&&((relayTo->sendDirect(packet.data(),packet.size(),now,false)))) {
|
|
|
- if (source != RR->identity.address()) {
|
|
|
- Mutex::Lock _l(_lastUniteAttempt_m);
|
|
|
- uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)];
|
|
|
- if ((now - luts) >= ZT_MIN_UNITE_INTERVAL) {
|
|
|
- luts = now;
|
|
|
- _unite(source,destination);
|
|
|
+ if (source != RR->identity.address()) { // don't send RENDEZVOUS for cluster frontplane relays
|
|
|
+
|
|
|
+ bool shouldUnite;
|
|
|
+ {
|
|
|
+ Mutex::Lock _l(_lastUniteAttempt_m);
|
|
|
+ uint64_t &lastUniteAt = _lastUniteAttempt[_LastUniteKey(source,destination)];
|
|
|
+ shouldUnite = ((now - lastUniteAt) >= ZT_MIN_UNITE_INTERVAL);
|
|
|
+ if (shouldUnite)
|
|
|
+ lastUniteAt = now;
|
|
|
}
|
|
|
+
|
|
|
+ if (shouldUnite) {
|
|
|
+ const InetAddress *hintToSource = (InetAddress *)0;
|
|
|
+ const InetAddress *hintToDest = (InetAddress *)0;
|
|
|
+
|
|
|
+ InetAddress destV4,destV6;
|
|
|
+ InetAddress sourceV4,sourceV6;
|
|
|
+ relayTo->getRendezvousAddresses(now,destV4,destV6);
|
|
|
+
|
|
|
+ const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(source));
|
|
|
+ if (sourcePeer) {
|
|
|
+ sourcePeer->getRendezvousAddresses(now,sourceV4,sourceV6);
|
|
|
+ if ((destV6)&&(sourceV6)) {
|
|
|
+ hintToSource = &destV6;
|
|
|
+ hintToDest = &sourceV6;
|
|
|
+ } else if ((destV4)&&(sourceV4)) {
|
|
|
+ hintToSource = &destV4;
|
|
|
+ hintToDest = &sourceV4;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ((hintToSource)&&(hintToDest)) {
|
|
|
+ TRACE(">> RENDEZVOUS: %s(%s) <> %s(%s)",p1.toString().c_str(),p1a->toString().c_str(),p2.toString().c_str(),p2a->toString().c_str());
|
|
|
+ unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for obscure NAT-t reasons
|
|
|
+ const unsigned int completed = alt + 2;
|
|
|
+ while (alt != completed) {
|
|
|
+ if ((alt & 1) == 0) {
|
|
|
+ Packet outp(source,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
|
+ outp.append((uint8_t)0);
|
|
|
+ destination.appendTo(outp);
|
|
|
+ outp.append((uint16_t)hintToSource->port());
|
|
|
+ if (hintToSource->ss_family == AF_INET6) {
|
|
|
+ outp.append((uint8_t)16);
|
|
|
+ outp.append(hintToSource->rawIpData(),16);
|
|
|
+ } else {
|
|
|
+ outp.append((uint8_t)4);
|
|
|
+ outp.append(hintToSource->rawIpData(),4);
|
|
|
+ }
|
|
|
+ send(outp,true);
|
|
|
+ } else {
|
|
|
+ Packet outp(destination,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
|
+ outp.append((uint8_t)0);
|
|
|
+ source.appendTo(outp);
|
|
|
+ outp.append((uint16_t)hintToDest->port());
|
|
|
+ if (hintToDest->ss_family == AF_INET6) {
|
|
|
+ outp.append((uint8_t)16);
|
|
|
+ outp.append(hintToDest->rawIpData(),16);
|
|
|
+ } else {
|
|
|
+ outp.append((uint8_t)4);
|
|
|
+ outp.append(hintToDest->rawIpData(),4);
|
|
|
+ }
|
|
|
+ send(outp,true);
|
|
|
+ }
|
|
|
+ ++alt;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
}
|
|
|
} else {
|
|
|
#ifdef ZT_ENABLE_CLUSTER
|
|
@@ -824,96 +881,4 @@ bool Switch::_trySend(Packet &packet,bool encrypt)
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
-bool Switch::_unite(const Address &p1,const Address &p2)
|
|
|
-{
|
|
|
- if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
|
|
|
- return false;
|
|
|
-
|
|
|
- const uint64_t now = RR->node->now();
|
|
|
- InetAddress *p1a = (InetAddress *)0;
|
|
|
- InetAddress *p2a = (InetAddress *)0;
|
|
|
- InetAddress p1v4,p1v6,p2v4,p2v6,uv4,uv6;
|
|
|
- {
|
|
|
- const SharedPtr<Peer> p1p(RR->topology->getPeer(p1));
|
|
|
- const SharedPtr<Peer> p2p(RR->topology->getPeer(p2));
|
|
|
- if ((!p1p)&&(!p2p)) return false;
|
|
|
- if (p1p) p1p->getBestActiveAddresses(now,p1v4,p1v6);
|
|
|
- if (p2p) p2p->getBestActiveAddresses(now,p2v4,p2v6);
|
|
|
- }
|
|
|
- if ((p1v6)&&(p2v6)) {
|
|
|
- p1a = &p1v6;
|
|
|
- p2a = &p2v6;
|
|
|
- } else if ((p1v4)&&(p2v4)) {
|
|
|
- p1a = &p1v4;
|
|
|
- p2a = &p2v4;
|
|
|
- } else {
|
|
|
- SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer());
|
|
|
- if (!upstream)
|
|
|
- return false;
|
|
|
- upstream->getBestActiveAddresses(now,uv4,uv6);
|
|
|
- if ((p1v6)&&(uv6)) {
|
|
|
- p1a = &p1v6;
|
|
|
- p2a = &uv6;
|
|
|
- } else if ((p1v4)&&(uv4)) {
|
|
|
- p1a = &p1v4;
|
|
|
- p2a = &uv4;
|
|
|
- } else if ((p2v6)&&(uv6)) {
|
|
|
- p1a = &p2v6;
|
|
|
- p2a = &uv6;
|
|
|
- } else if ((p2v4)&&(uv4)) {
|
|
|
- p1a = &p2v4;
|
|
|
- p2a = &uv4;
|
|
|
- } else return false;
|
|
|
- }
|
|
|
-
|
|
|
- TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),p1a->toString().c_str(),p2.toString().c_str(),p2a->toString().c_str());
|
|
|
-
|
|
|
- /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
|
|
|
- * P2 in randomized order in terms of which gets sent first. This is done
|
|
|
- * since in a few cases NAT-t can be sensitive to slight timing differences
|
|
|
- * in terms of when the two peers initiate. Normally this is accounted for
|
|
|
- * by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
|
|
|
- * given that relay are hosted on cloud providers this can in some
|
|
|
- * cases have a few ms of latency between packet departures. By randomizing
|
|
|
- * the order we make each attempted NAT-t favor one or the other going
|
|
|
- * first, meaning if it doesn't succeed the first time it might the second
|
|
|
- * and so forth. */
|
|
|
- unsigned int alt = (unsigned int)RR->node->prng() & 1;
|
|
|
- const unsigned int completed = alt + 2;
|
|
|
- while (alt != completed) {
|
|
|
- if ((alt & 1) == 0) {
|
|
|
- // Tell p1 where to find p2.
|
|
|
- Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
|
- outp.append((unsigned char)0);
|
|
|
- p2.appendTo(outp);
|
|
|
- outp.append((uint16_t)p2a->port());
|
|
|
- if (p2a->isV6()) {
|
|
|
- outp.append((unsigned char)16);
|
|
|
- outp.append(p2a->rawIpData(),16);
|
|
|
- } else {
|
|
|
- outp.append((unsigned char)4);
|
|
|
- outp.append(p2a->rawIpData(),4);
|
|
|
- }
|
|
|
- send(outp,true);
|
|
|
- } else {
|
|
|
- // Tell p2 where to find p1.
|
|
|
- Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
|
- outp.append((unsigned char)0);
|
|
|
- p1.appendTo(outp);
|
|
|
- outp.append((uint16_t)p1a->port());
|
|
|
- if (p1a->isV6()) {
|
|
|
- outp.append((unsigned char)16);
|
|
|
- outp.append(p1a->rawIpData(),16);
|
|
|
- } else {
|
|
|
- outp.append((unsigned char)4);
|
|
|
- outp.append(p1a->rawIpData(),4);
|
|
|
- }
|
|
|
- send(outp,true);
|
|
|
- }
|
|
|
- ++alt; // counts up and also flips LSB
|
|
|
- }
|
|
|
-
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
} // namespace ZeroTier
|