AES.hpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. /*
  2. * Copyright (c)2019 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2023-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_AES_HPP
  14. #define ZT_AES_HPP
  15. #include "Constants.hpp"
  16. #include "Utils.hpp"
  17. #include "SHA512.hpp"
  18. #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
  19. #include <wmmintrin.h>
  20. #include <emmintrin.h>
  21. #include <smmintrin.h>
  22. #include <immintrin.h>
  23. #define ZT_AES_AESNI 1
  24. #endif
  25. #define ZT_AES_KEY_SIZE 32
  26. #define ZT_AES_BLOCK_SIZE 16
  27. namespace ZeroTier {
  28. /**
  29. * AES-256 and pals
  30. */
  31. class AES
  32. {
  33. public:
  34. /**
  35. * This will be true if your platform's type of AES acceleration is supported on this machine
  36. */
  37. static const bool HW_ACCEL;
  38. ZT_ALWAYS_INLINE AES() {}
  39. ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }
  40. ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); }
  41. /**
  42. * Set (or re-set) this AES256 cipher's key
  43. */
  44. ZT_ALWAYS_INLINE void init(const uint8_t key[32])
  45. {
  46. #ifdef ZT_AES_AESNI
  47. if (likely(HW_ACCEL)) {
  48. _init_aesni(key);
  49. return;
  50. }
  51. #endif
  52. _initSW(key);
  53. }
  54. /**
  55. * Encrypt a single AES block (ECB mode)
  56. *
  57. * @param in Input block
  58. * @param out Output block (can be same as input)
  59. */
  60. ZT_ALWAYS_INLINE void encrypt(const uint8_t in[16],uint8_t out[16]) const
  61. {
  62. #ifdef ZT_AES_AESNI
  63. if (likely(HW_ACCEL)) {
  64. _encrypt_aesni(in,out);
  65. return;
  66. }
  67. #endif
  68. _encryptSW(in,out);
  69. }
  70. /**
  71. * Compute GMAC-AES256 (GCM without ciphertext)
  72. *
  73. * @param iv 96-bit IV
  74. * @param in Input data
  75. * @param len Length of input
  76. * @param out 128-bit authorization tag from GMAC
  77. */
  78. ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const
  79. {
  80. #ifdef ZT_AES_AESNI
  81. if (likely(HW_ACCEL)) {
  82. _gmac_aesni(iv,(const uint8_t *)in,len,out);
  83. return;
  84. }
  85. #endif
  86. _gmacSW(iv,(const uint8_t *)in,len,out);
  87. }
  88. /**
  89. * Encrypt or decrypt (they're the same) using AES256-CTR
  90. *
  91. * The counter here is a 128-bit big-endian that starts at the IV. The code only
  92. * increments the least significant 64 bits, making it only safe to use for a
  93. * maximum of 2^64-1 bytes (much larger than we ever do).
  94. *
  95. * @param iv 128-bit CTR IV
  96. * @param in Input plaintext or ciphertext
  97. * @param len Length of input
  98. * @param out Output plaintext or ciphertext
  99. */
  100. ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
  101. {
  102. #ifdef ZT_AES_AESNI
  103. if (likely(HW_ACCEL)) {
  104. _crypt_ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out);
  105. return;
  106. }
  107. #endif
  108. uint64_t ctr[2],cenc[2];
  109. memcpy(ctr,iv,16);
  110. uint64_t bctr = Utils::ntoh(ctr[1]);
  111. const uint8_t *i = (const uint8_t *)in;
  112. uint8_t *o = (uint8_t *)out;
  113. while (len >= 16) {
  114. _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
  115. ctr[1] = Utils::hton(++bctr);
  116. #ifdef ZT_NO_TYPE_PUNNING
  117. for(unsigned int k=0;k<16;++k)
  118. *(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
  119. #else
  120. *((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[0];
  121. o += 8;
  122. i += 8;
  123. *((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[1];
  124. o += 8;
  125. i += 8;
  126. #endif
  127. len -= 16;
  128. }
  129. if (len) {
  130. _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
  131. for(unsigned int k=0;k<len;++k)
  132. *(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
  133. }
  134. }
  135. /**
  136. * Perform AES-GMAC-SIV encryption
  137. *
  138. * This is basically AES-CMAC-SIV but with GMAC in place of CMAC after
  139. * GMAC is run through AES as a keyed hash to make it behave like a
  140. * proper PRF.
  141. *
  142. * See: https://github.com/miscreant/meta/wiki/AES-SIV
  143. *
  144. * The advantage is that this can be described in terms of FIPS and NSA
  145. * ceritifable primitives that are present in FIPS-compliant crypto
  146. * modules.
  147. *
  148. * The extra AES-ECB (keyed hash) encryption of the AES-CTR IV prior
  149. * to use makes the IV itself a secret. This is not strictly necessary
  150. * but comes at little cost.
  151. *
  152. * This code is ZeroTier-specific in a few ways, like the way the IV
  153. * is specified, but would not be hard to generalize.
  154. *
  155. * @param k1 GMAC key
  156. * @param k2 GMAC auth tag keyed hash key
  157. * @param k3 CTR IV keyed hash key
  158. * @param k4 AES-CTR key
  159. * @param iv 64-bit packet IV
  160. * @param pc Packet characteristics byte
  161. * @param in Message plaintext
  162. * @param len Length of plaintext
  163. * @param out Output buffer to receive ciphertext
  164. * @param tag Output buffer to receive 64-bit authentication tag
  165. */
  166. static ZT_ALWAYS_INLINE void gmacSivEncrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[8],const uint8_t pc,const void *in,const unsigned int len,void *out,uint8_t tag[8])
  167. {
  168. #ifdef __GNUC__
  169. uint8_t __attribute__ ((aligned (16))) miv[12];
  170. uint8_t __attribute__ ((aligned (16))) ctrIv[16];
  171. #else
  172. uint8_t miv[12];
  173. uint8_t ctrIv[16];
  174. #endif
  175. // GMAC IV is 64-bit packet IV followed by other packet attributes to extend to 96 bits
  176. #ifndef __GNUC__
  177. for(unsigned int i=0;i<8;++i) miv[i] = iv[i];
  178. #else
  179. *((uint64_t *)miv) = *((const uint64_t *)iv);
  180. #endif
  181. miv[8] = pc;
  182. miv[9] = (uint8_t)(len >> 16);
  183. miv[10] = (uint8_t)(len >> 8);
  184. miv[11] = (uint8_t)len;
  185. // Compute auth tag: AES-ECB[k2](GMAC[k1](miv,plaintext))[0:8]
  186. k1.gmac(miv,in,len,ctrIv);
  187. k2.encrypt(ctrIv,ctrIv); // ECB mode encrypt step is because GMAC is not a PRF
  188. #ifdef ZT_NO_TYPE_PUNNING
  189. for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i];
  190. #else
  191. *((uint64_t *)tag) = *((uint64_t *)ctrIv);
  192. #endif
  193. // Create synthetic CTR IV: AES-ECB[k3](TAG | MIV[0:4] | (MIV[4:8] XOR MIV[8:12]))
  194. #ifndef __GNUC__
  195. for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i];
  196. for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4];
  197. #else
  198. ((uint32_t *)ctrIv)[2] = ((const uint32_t *)miv)[0];
  199. ((uint32_t *)ctrIv)[3] = ((const uint32_t *)miv)[1] ^ ((const uint32_t *)miv)[2];
  200. #endif
  201. k3.encrypt(ctrIv,ctrIv);
  202. // Encrypt with AES[k4]-CTR
  203. k4.ctr(ctrIv,in,len,out);
  204. }
  205. /**
  206. * Decrypt a message encrypted with AES-GMAC-SIV and check its authenticity
  207. *
  208. * @param k1 GMAC key
  209. * @param k2 GMAC auth tag keyed hash key
  210. * @param k3 CTR IV keyed hash key
  211. * @param k4 AES-CTR key
  212. * @param iv 64-bit message IV
  213. * @param pc Packet characteristics byte
  214. * @param in Message ciphertext
  215. * @param len Length of ciphertext
  216. * @param out Output buffer to receive plaintext
  217. * @param tag Authentication tag supplied with message
  218. * @return True if authentication tags match and message appears authentic
  219. */
  220. static ZT_ALWAYS_INLINE bool gmacSivDecrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[8],const uint8_t pc,const void *in,const unsigned int len,void *out,const uint8_t tag[8])
  221. {
  222. #ifdef __GNUC__
  223. uint8_t __attribute__ ((aligned (16))) miv[12];
  224. uint8_t __attribute__ ((aligned (16))) ctrIv[16];
  225. uint8_t __attribute__ ((aligned (16))) gmacOut[16];
  226. #else
  227. uint8_t miv[12];
  228. uint8_t ctrIv[16];
  229. uint8_t gmacOut[16];
  230. #endif
  231. // Extend packet IV to 96-bit message IV using direction byte and message length
  232. #ifdef ZT_NO_TYPE_PUNNING
  233. for(unsigned int i=0;i<8;++i) miv[i] = iv[i];
  234. #else
  235. *((uint64_t *)miv) = *((const uint64_t *)iv);
  236. #endif
  237. miv[8] = pc;
  238. miv[9] = (uint8_t)(len >> 16);
  239. miv[10] = (uint8_t)(len >> 8);
  240. miv[11] = (uint8_t)len;
  241. // Recover synthetic and secret CTR IV from auth tag and packet IV
  242. #ifndef __GNUC__
  243. for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i];
  244. for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i];
  245. for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4];
  246. #else
  247. *((uint64_t *)ctrIv) = *((const uint64_t *)tag);
  248. ((uint32_t *)ctrIv)[2] = ((const uint32_t *)miv)[0];
  249. ((uint32_t *)ctrIv)[3] = ((const uint32_t *)miv)[1] ^ ((const uint32_t *)miv)[2];
  250. #endif
  251. k3.encrypt(ctrIv,ctrIv);
  252. // Decrypt with AES[k4]-CTR
  253. k4.ctr(ctrIv,in,len,out);
  254. // Compute AES[k2](GMAC[k1](iv,plaintext))
  255. k1.gmac(miv,out,len,gmacOut);
  256. k2.encrypt(gmacOut,gmacOut);
  257. // Check that packet's auth tag matches first 64 bits of AES(GMAC)
  258. #ifdef ZT_NO_TYPE_PUNNING
  259. return Utils::secureEq(gmacOut,tag,8);
  260. #else
  261. return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag));
  262. #endif
  263. }
  264. /**
  265. * Use KBKDF with HMAC-SHA-384 to derive four sub-keys for AES-GMAC-SIV from a single master key
  266. *
  267. * See section 5.1 at https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
  268. *
  269. * @param masterKey Master 256-bit key
  270. * @param k1 GMAC key
  271. * @param k2 GMAC auth tag keyed hash key
  272. * @param k3 CTR IV keyed hash key
  273. * @param k4 AES-CTR key
  274. */
  275. static ZT_ALWAYS_INLINE void initGmacCtrKeys(const uint8_t masterKey[32],AES &k1,AES &k2,AES &k3,AES &k4)
  276. {
  277. uint8_t k[32];
  278. KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K1,0,0,k);
  279. k1.init(k);
  280. KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K2,0,0,k);
  281. k2.init(k);
  282. KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K3,0,0,k);
  283. k3.init(k);
  284. KBKDFHMACSHA384(masterKey,ZT_PROTO_KBKDF_LABEL_KEY_USE_AES_GMAC_SIV_K4,0,0,k);
  285. k4.init(k);
  286. }
  287. private:
  288. static const uint32_t Te0[256];
  289. static const uint32_t Te1[256];
  290. static const uint32_t Te2[256];
  291. static const uint32_t Te3[256];
  292. static const uint32_t rcon[10];
  293. void _initSW(const uint8_t key[32]);
  294. void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
  295. void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
  296. /**************************************************************************/
  297. union {
  298. #ifdef ZT_AES_ARMNEON
  299. struct {
  300. uint32x4_t k[15];
  301. } neon;
  302. #endif
  303. #ifdef ZT_AES_AESNI
  304. struct {
  305. __m128i k[15];
  306. __m128i h,hh,hhh,hhhh;
  307. } ni;
  308. #endif
  309. struct {
  310. uint64_t h[2];
  311. uint32_t ek[60];
  312. } sw;
  313. } _k;
  314. /**************************************************************************/
  315. #ifdef ZT_AES_ARMNEON /******************************************************/
  316. static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)
  317. {
  318. uint32_t round1[4], round2[4], prv1[4], prv2[4];
  319. vst1q_u32(prv1, prev1);
  320. vst1q_u32(prv2, prev2);
  321. round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
  322. round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
  323. round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
  324. round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
  325. round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
  326. round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
  327. round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
  328. round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
  329. *e1 = vld1q_u3(round1);
  330. *e2 = vld1q_u3(round2);
  331. //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
  332. //return expansion;
  333. }
  334. inline void _init_armneon(uint8x16_t encKey)
  335. {
  336. uint32x4_t *schedule = _k.neon.k;
  337. uint32x4_t e1,e2;
  338. (*schedule)[0] = vld1q_u32(encKey);
  339. (*schedule)[1] = vld1q_u32(encKey + 16);
  340. _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);
  341. (*schedule)[2] = e1; (*schedule)[3] = e2;
  342. _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);
  343. (*schedule)[4] = e1; (*schedule)[5] = e2;
  344. _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);
  345. (*schedule)[6] = e1; (*schedule)[7] = e2;
  346. _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);
  347. (*schedule)[8] = e1; (*schedule)[9] = e2;
  348. _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);
  349. (*schedule)[10] = e1; (*schedule)[11] = e2;
  350. _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);
  351. (*schedule)[12] = e1; (*schedule)[13] = e2;
  352. _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);
  353. (*schedule)[14] = e1;
  354. /*
  355. doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
  356. (*schedule)[2] = doubleRound[0];
  357. (*schedule)[3] = doubleRound[1];
  358. doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
  359. (*schedule)[4] = doubleRound[0];
  360. (*schedule)[5] = doubleRound[1];
  361. doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
  362. (*schedule)[6] = doubleRound[0];
  363. (*schedule)[7] = doubleRound[1];
  364. doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
  365. (*schedule)[8] = doubleRound[0];
  366. (*schedule)[9] = doubleRound[1];
  367. doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
  368. (*schedule)[10] = doubleRound[0];
  369. (*schedule)[11] = doubleRound[1];
  370. doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
  371. (*schedule)[12] = doubleRound[0];
  372. (*schedule)[13] = doubleRound[1];
  373. doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
  374. (*schedule)[14] = doubleRound[0];
  375. */
  376. }
  377. inline void _encrypt_armneon(uint8x16_t *data) const
  378. {
  379. *data = veorq_u8(*data, _k.neon.k[0]);
  380. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  381. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  382. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  383. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  384. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  385. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  386. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  387. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  388. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  389. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  390. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  391. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  392. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  393. *data = vaeseq_u8(*data, _k.neon.k[14]);
  394. }
  395. #endif /*********************************************************************/
  396. #ifdef ZT_AES_AESNI /********************************************************/
  397. static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b)
  398. {
  399. __m128i x,y;
  400. b = _mm_shuffle_epi32(b,0xff);
  401. y = _mm_slli_si128(a,0x04);
  402. x = _mm_xor_si128(a,y);
  403. y = _mm_slli_si128(y,0x04);
  404. x = _mm_xor_si128(x,y);
  405. y = _mm_slli_si128(y,0x04);
  406. x = _mm_xor_si128(x,y);
  407. x = _mm_xor_si128(x,b);
  408. return x;
  409. }
  410. static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b)
  411. {
  412. __m128i x,y,z;
  413. y = _mm_aeskeygenassist_si128(a,0x00);
  414. z = _mm_shuffle_epi32(y,0xaa);
  415. y = _mm_slli_si128(b,0x04);
  416. x = _mm_xor_si128(b,y);
  417. y = _mm_slli_si128(y,0x04);
  418. x = _mm_xor_si128(x,y);
  419. y = _mm_slli_si128(y,0x04);
  420. x = _mm_xor_si128(x,y);
  421. x = _mm_xor_si128(x,z);
  422. return x;
  423. }
  424. ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32])
  425. {
  426. __m128i t1,t2;
  427. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  428. _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
  429. _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
  430. _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
  431. _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
  432. _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
  433. _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
  434. _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
  435. _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
  436. _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
  437. _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
  438. _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
  439. _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
  440. _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
  441. _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
  442. __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  443. h = _mm_aesenc_si128(h,_k.ni.k[1]);
  444. h = _mm_aesenc_si128(h,_k.ni.k[2]);
  445. h = _mm_aesenc_si128(h,_k.ni.k[3]);
  446. h = _mm_aesenc_si128(h,_k.ni.k[4]);
  447. h = _mm_aesenc_si128(h,_k.ni.k[5]);
  448. h = _mm_aesenc_si128(h,_k.ni.k[6]);
  449. h = _mm_aesenc_si128(h,_k.ni.k[7]);
  450. h = _mm_aesenc_si128(h,_k.ni.k[8]);
  451. h = _mm_aesenc_si128(h,_k.ni.k[9]);
  452. h = _mm_aesenc_si128(h,_k.ni.k[10]);
  453. h = _mm_aesenc_si128(h,_k.ni.k[11]);
  454. h = _mm_aesenc_si128(h,_k.ni.k[12]);
  455. h = _mm_aesenc_si128(h,_k.ni.k[13]);
  456. h = _mm_aesenclast_si128(h,_k.ni.k[14]);
  457. const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  458. __m128i hswap = _mm_shuffle_epi8(h,shuf);
  459. __m128i hh = _mult_block_aesni(shuf,hswap,h);
  460. __m128i hhh = _mult_block_aesni(shuf,hswap,hh);
  461. __m128i hhhh = _mult_block_aesni(shuf,hswap,hhh);
  462. _k.ni.h = hswap;
  463. _k.ni.hh = _mm_shuffle_epi8(hh,shuf);
  464. _k.ni.hhh = _mm_shuffle_epi8(hhh,shuf);
  465. _k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf);
  466. }
  467. ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const
  468. {
  469. __m128i tmp;
  470. tmp = _mm_loadu_si128((const __m128i *)in);
  471. tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
  472. tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
  473. tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
  474. tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
  475. tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
  476. tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
  477. tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
  478. tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
  479. tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
  480. tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
  481. tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
  482. tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
  483. tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
  484. tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
  485. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
  486. }
  487. ZT_ALWAYS_INLINE void _crypt_ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const
  488. {
  489. const __m64 iv0 = (__m64)(*((const uint64_t *)iv));
  490. uint64_t ctr = Utils::ntoh(*((const uint64_t *)(iv+8)));
  491. #define ZT_AES_CTR_AESNI_ROUND(k) \
  492. c0 = _mm_aesenc_si128(c0,k); \
  493. c1 = _mm_aesenc_si128(c1,k); \
  494. c2 = _mm_aesenc_si128(c2,k); \
  495. c3 = _mm_aesenc_si128(c3,k); \
  496. c4 = _mm_aesenc_si128(c4,k); \
  497. c5 = _mm_aesenc_si128(c5,k); \
  498. c6 = _mm_aesenc_si128(c6,k); \
  499. c7 = _mm_aesenc_si128(c7,k)
  500. while (len >= 128) {
  501. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr),iv0),_k.ni.k[0]);
  502. __m128i c1 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+1ULL)),iv0),_k.ni.k[0]);
  503. __m128i c2 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+2ULL)),iv0),_k.ni.k[0]);
  504. __m128i c3 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+3ULL)),iv0),_k.ni.k[0]);
  505. __m128i c4 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+4ULL)),iv0),_k.ni.k[0]);
  506. __m128i c5 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+5ULL)),iv0),_k.ni.k[0]);
  507. __m128i c6 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+6ULL)),iv0),_k.ni.k[0]);
  508. __m128i c7 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+7ULL)),iv0),_k.ni.k[0]);
  509. ctr += 8;
  510. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[1]);
  511. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[2]);
  512. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[3]);
  513. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[4]);
  514. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[5]);
  515. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[6]);
  516. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[7]);
  517. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[8]);
  518. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[9]);
  519. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[10]);
  520. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[11]);
  521. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[12]);
  522. ZT_AES_CTR_AESNI_ROUND(_k.ni.k[13]);
  523. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,_k.ni.k[14])));
  524. _mm_storeu_si128((__m128i *)(out + 16),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 16)),_mm_aesenclast_si128(c1,_k.ni.k[14])));
  525. _mm_storeu_si128((__m128i *)(out + 32),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 32)),_mm_aesenclast_si128(c2,_k.ni.k[14])));
  526. _mm_storeu_si128((__m128i *)(out + 48),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 48)),_mm_aesenclast_si128(c3,_k.ni.k[14])));
  527. _mm_storeu_si128((__m128i *)(out + 64),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 64)),_mm_aesenclast_si128(c4,_k.ni.k[14])));
  528. _mm_storeu_si128((__m128i *)(out + 80),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 80)),_mm_aesenclast_si128(c5,_k.ni.k[14])));
  529. _mm_storeu_si128((__m128i *)(out + 96),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 96)),_mm_aesenclast_si128(c6,_k.ni.k[14])));
  530. _mm_storeu_si128((__m128i *)(out + 112),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 112)),_mm_aesenclast_si128(c7,_k.ni.k[14])));
  531. in += 128;
  532. out += 128;
  533. len -= 128;
  534. }
  535. #undef ZT_AES_CTR_AESNI_ROUND
  536. while (len >= 16) {
  537. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),_k.ni.k[0]);
  538. c0 = _mm_aesenc_si128(c0,_k.ni.k[1]);
  539. c0 = _mm_aesenc_si128(c0,_k.ni.k[2]);
  540. c0 = _mm_aesenc_si128(c0,_k.ni.k[3]);
  541. c0 = _mm_aesenc_si128(c0,_k.ni.k[4]);
  542. c0 = _mm_aesenc_si128(c0,_k.ni.k[5]);
  543. c0 = _mm_aesenc_si128(c0,_k.ni.k[6]);
  544. c0 = _mm_aesenc_si128(c0,_k.ni.k[7]);
  545. c0 = _mm_aesenc_si128(c0,_k.ni.k[8]);
  546. c0 = _mm_aesenc_si128(c0,_k.ni.k[9]);
  547. c0 = _mm_aesenc_si128(c0,_k.ni.k[10]);
  548. c0 = _mm_aesenc_si128(c0,_k.ni.k[11]);
  549. c0 = _mm_aesenc_si128(c0,_k.ni.k[12]);
  550. c0 = _mm_aesenc_si128(c0,_k.ni.k[13]);
  551. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,_k.ni.k[14])));
  552. in += 16;
  553. out += 16;
  554. len -= 16;
  555. }
  556. if (len) {
  557. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),_k.ni.k[0]);
  558. c0 = _mm_aesenc_si128(c0,_k.ni.k[1]);
  559. c0 = _mm_aesenc_si128(c0,_k.ni.k[2]);
  560. c0 = _mm_aesenc_si128(c0,_k.ni.k[3]);
  561. c0 = _mm_aesenc_si128(c0,_k.ni.k[4]);
  562. c0 = _mm_aesenc_si128(c0,_k.ni.k[5]);
  563. c0 = _mm_aesenc_si128(c0,_k.ni.k[6]);
  564. c0 = _mm_aesenc_si128(c0,_k.ni.k[7]);
  565. c0 = _mm_aesenc_si128(c0,_k.ni.k[8]);
  566. c0 = _mm_aesenc_si128(c0,_k.ni.k[9]);
  567. c0 = _mm_aesenc_si128(c0,_k.ni.k[10]);
  568. c0 = _mm_aesenc_si128(c0,_k.ni.k[11]);
  569. c0 = _mm_aesenc_si128(c0,_k.ni.k[12]);
  570. c0 = _mm_aesenc_si128(c0,_k.ni.k[13]);
  571. c0 = _mm_aesenclast_si128(c0,_k.ni.k[14]);
  572. for(unsigned int i=0;i<len;++i)
  573. out[i] = in[i] ^ ((const uint8_t *)&c0)[i];
  574. }
  575. }
  576. static ZT_ALWAYS_INLINE __m128i _mult_block_aesni(__m128i shuf,__m128i h,__m128i y)
  577. {
  578. y = _mm_shuffle_epi8(y,shuf);
  579. __m128i t1 = _mm_clmulepi64_si128(h,y,0x00);
  580. __m128i t2 = _mm_clmulepi64_si128(h,y,0x01);
  581. __m128i t3 = _mm_clmulepi64_si128(h,y,0x10);
  582. __m128i t4 = _mm_clmulepi64_si128(h,y,0x11);
  583. t2 = _mm_xor_si128(t2,t3);
  584. t3 = _mm_slli_si128(t2,8);
  585. t2 = _mm_srli_si128(t2,8);
  586. t1 = _mm_xor_si128(t1,t3);
  587. t4 = _mm_xor_si128(t4,t2);
  588. __m128i t5 = _mm_srli_epi32(t1,31);
  589. t1 = _mm_slli_epi32(t1,1);
  590. __m128i t6 = _mm_srli_epi32(t4,31);
  591. t4 = _mm_slli_epi32(t4,1);
  592. t3 = _mm_srli_si128(t5,12);
  593. t6 = _mm_slli_si128(t6,4);
  594. t5 = _mm_slli_si128(t5,4);
  595. t1 = _mm_or_si128(t1,t5);
  596. t4 = _mm_or_si128(t4,t6);
  597. t4 = _mm_or_si128(t4,t3);
  598. t5 = _mm_slli_epi32(t1,31);
  599. t6 = _mm_slli_epi32(t1,30);
  600. t3 = _mm_slli_epi32(t1,25);
  601. t5 = _mm_xor_si128(t5,t6);
  602. t5 = _mm_xor_si128(t5,t3);
  603. t6 = _mm_srli_si128(t5,4);
  604. t4 = _mm_xor_si128(t4,t6);
  605. t5 = _mm_slli_si128(t5,12);
  606. t1 = _mm_xor_si128(t1,t5);
  607. t4 = _mm_xor_si128(t4,t1);
  608. t5 = _mm_srli_epi32(t1,1);
  609. t2 = _mm_srli_epi32(t1,2);
  610. t3 = _mm_srli_epi32(t1,7);
  611. t4 = _mm_xor_si128(t4,t2);
  612. t4 = _mm_xor_si128(t4,t3);
  613. t4 = _mm_xor_si128(t4,t5);
  614. return _mm_shuffle_epi8(t4,shuf);
  615. }
  616. static ZT_ALWAYS_INLINE __m128i _ghash_aesni(__m128i shuf,__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(shuf,h,_mm_xor_si128(y,x)); }
  617. ZT_ALWAYS_INLINE void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int len,uint8_t out[16]) const
  618. {
  619. const __m128i *const ab = (const __m128i *)in;
  620. const unsigned int blocks = len / 16;
  621. const unsigned int pblocks = blocks - (blocks % 4);
  622. const unsigned int rem = len % 16;
  623. const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  624. __m128i y = _mm_setzero_si128();
  625. unsigned int i = 0;
  626. for (;i<pblocks;i+=4) {
  627. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y,_mm_loadu_si128(ab + i + 0)),shuf);
  628. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 1),shuf);
  629. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 2),shuf);
  630. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 3),shuf);
  631. _mm_prefetch(ab + i + 4,_MM_HINT_T0);
  632. __m128i t0 = _mm_clmulepi64_si128(_k.ni.hhhh,d1,0x00);
  633. __m128i t1 = _mm_clmulepi64_si128(_k.ni.hhh,d2,0x00);
  634. __m128i t2 = _mm_clmulepi64_si128(_k.ni.hh,d3,0x00);
  635. __m128i t3 = _mm_clmulepi64_si128(_k.ni.h,d4,0x00);
  636. __m128i t8 = _mm_xor_si128(t0,t1);
  637. t8 = _mm_xor_si128(t8,t2);
  638. t8 = _mm_xor_si128(t8,t3);
  639. __m128i t4 = _mm_clmulepi64_si128(_k.ni.hhhh,d1,0x11);
  640. __m128i t5 = _mm_clmulepi64_si128(_k.ni.hhh,d2,0x11);
  641. __m128i t6 = _mm_clmulepi64_si128(_k.ni.hh,d3,0x11);
  642. __m128i t7 = _mm_clmulepi64_si128(_k.ni.h,d4,0x11);
  643. __m128i t9 = _mm_xor_si128(t4,t5);
  644. t9 = _mm_xor_si128(t9,t6);
  645. t9 = _mm_xor_si128(t9,t7);
  646. t0 = _mm_shuffle_epi32(_k.ni.hhhh,78);
  647. t4 = _mm_shuffle_epi32(d1,78);
  648. t0 = _mm_xor_si128(t0,_k.ni.hhhh);
  649. t4 = _mm_xor_si128(t4,d1);
  650. t1 = _mm_shuffle_epi32(_k.ni.hhh,78);
  651. t5 = _mm_shuffle_epi32(d2,78);
  652. t1 = _mm_xor_si128(t1,_k.ni.hhh);
  653. t5 = _mm_xor_si128(t5,d2);
  654. t2 = _mm_shuffle_epi32(_k.ni.hh,78);
  655. t6 = _mm_shuffle_epi32(d3,78);
  656. t2 = _mm_xor_si128(t2,_k.ni.hh);
  657. t6 = _mm_xor_si128(t6,d3);
  658. t3 = _mm_shuffle_epi32(_k.ni.h,78);
  659. t7 = _mm_shuffle_epi32(d4,78);
  660. t3 = _mm_xor_si128(t3,_k.ni.h);
  661. t7 = _mm_xor_si128(t7,d4);
  662. t0 = _mm_clmulepi64_si128(t0,t4,0x00);
  663. t1 = _mm_clmulepi64_si128(t1,t5,0x00);
  664. t2 = _mm_clmulepi64_si128(t2,t6,0x00);
  665. t3 = _mm_clmulepi64_si128(t3,t7,0x00);
  666. t0 = _mm_xor_si128(t0,t8);
  667. t0 = _mm_xor_si128(t0,t9);
  668. t0 = _mm_xor_si128(t1,t0);
  669. t0 = _mm_xor_si128(t2,t0);
  670. t0 = _mm_xor_si128(t3,t0);
  671. t4 = _mm_slli_si128(t0,8);
  672. t0 = _mm_srli_si128(t0,8);
  673. t3 = _mm_xor_si128(t4,t8);
  674. t6 = _mm_xor_si128(t0,t9);
  675. t7 = _mm_srli_epi32(t3,31);
  676. t8 = _mm_srli_epi32(t6,31);
  677. t3 = _mm_slli_epi32(t3,1);
  678. t6 = _mm_slli_epi32(t6,1);
  679. t9 = _mm_srli_si128(t7,12);
  680. t8 = _mm_slli_si128(t8,4);
  681. t7 = _mm_slli_si128(t7,4);
  682. t3 = _mm_or_si128(t3,t7);
  683. t6 = _mm_or_si128(t6,t8);
  684. t6 = _mm_or_si128(t6,t9);
  685. t7 = _mm_slli_epi32(t3,31);
  686. t8 = _mm_slli_epi32(t3,30);
  687. t9 = _mm_slli_epi32(t3,25);
  688. t7 = _mm_xor_si128(t7,t8);
  689. t7 = _mm_xor_si128(t7,t9);
  690. t8 = _mm_srli_si128(t7,4);
  691. t7 = _mm_slli_si128(t7,12);
  692. t3 = _mm_xor_si128(t3,t7);
  693. t2 = _mm_srli_epi32(t3,1);
  694. t4 = _mm_srli_epi32(t3,2);
  695. t5 = _mm_srli_epi32(t3,7);
  696. t2 = _mm_xor_si128(t2,t4);
  697. t2 = _mm_xor_si128(t2,t5);
  698. t2 = _mm_xor_si128(t2,t8);
  699. t3 = _mm_xor_si128(t3,t2);
  700. t6 = _mm_xor_si128(t6,t3);
  701. y = _mm_shuffle_epi8(t6,shuf);
  702. }
  703. for (;i<blocks;++i)
  704. y = _ghash_aesni(shuf,_k.ni.h,y,_mm_loadu_si128(ab + i));
  705. if (rem) {
  706. __m128i last = _mm_setzero_si128();
  707. memcpy(&last,ab + blocks,rem);
  708. y = _ghash_aesni(shuf,_k.ni.h,y,last);
  709. }
  710. y = _ghash_aesni(shuf,_k.ni.h,y,_mm_set_epi64((__m64)0LL,(__m64)Utils::hton((uint64_t)len * (uint64_t)8)));
  711. __m128i t = _mm_xor_si128(_mm_set_epi32(0x01000000,(int)*((const uint32_t *)(iv+8)),(int)*((const uint32_t *)(iv+4)),(int)*((const uint32_t *)(iv))),_k.ni.k[0]);
  712. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  713. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  714. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  715. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  716. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  717. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  718. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  719. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  720. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  721. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  722. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  723. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  724. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  725. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  726. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));
  727. }
  728. #endif /* ZT_AES_AESNI ******************************************************/
  729. };
  730. } // namespace ZeroTier
  731. #endif