2
0

Node.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #include <stdio.h>
  27. #include <stdlib.h>
  28. #include <stdarg.h>
  29. #include <string.h>
  30. #include <stdint.h>
  31. #include "../version.h"
  32. #include "Constants.hpp"
  33. #include "SharedPtr.hpp"
  34. #include "Node.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "NetworkController.hpp"
  37. #include "Switch.hpp"
  38. #include "Multicaster.hpp"
  39. #include "Topology.hpp"
  40. #include "Buffer.hpp"
  41. #include "Packet.hpp"
  42. #include "Address.hpp"
  43. #include "Identity.hpp"
  44. #include "SelfAwareness.hpp"
  45. #include "Network.hpp"
  46. #include "Trace.hpp"
  47. namespace ZeroTier {
  48. /****************************************************************************/
  49. /* Public Node interface (C++, exposed via CAPI bindings) */
  50. /****************************************************************************/
  51. Node::Node(void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now) :
  52. _RR(this),
  53. RR(&_RR),
  54. _uPtr(uptr),
  55. _networks(8),
  56. _now(now),
  57. _lastPingCheck(0),
  58. _lastHousekeepingRun(0),
  59. _lastMemoizedTraceSettings(0)
  60. {
  61. if (callbacks->version != 0)
  62. throw ZT_EXCEPTION_INVALID_ARGUMENT;
  63. ZT_FAST_MEMCPY(&_cb,callbacks,sizeof(ZT_Node_Callbacks));
  64. // Initialize non-cryptographic PRNG from a good random source
  65. Utils::getSecureRandom((void *)_prngState,sizeof(_prngState));
  66. _online = false;
  67. memset(_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr));
  68. memset(_expectingRepliesTo,0,sizeof(_expectingRepliesTo));
  69. memset(_lastIdentityVerification,0,sizeof(_lastIdentityVerification));
  70. uint64_t idtmp[2];
  71. idtmp[0] = 0; idtmp[1] = 0;
  72. char tmp[2048];
  73. int n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,tmp,sizeof(tmp) - 1);
  74. if (n > 0) {
  75. tmp[n] = (char)0;
  76. if (RR->identity.fromString(tmp)) {
  77. RR->identity.toString(false,RR->publicIdentityStr);
  78. RR->identity.toString(true,RR->secretIdentityStr);
  79. } else {
  80. n = -1;
  81. }
  82. }
  83. if (n <= 0) {
  84. RR->identity.generate();
  85. RR->identity.toString(false,RR->publicIdentityStr);
  86. RR->identity.toString(true,RR->secretIdentityStr);
  87. idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
  88. stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,RR->secretIdentityStr,(unsigned int)strlen(RR->secretIdentityStr));
  89. stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
  90. } else {
  91. idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
  92. n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,tmp,sizeof(tmp) - 1);
  93. if ((n > 0)&&(n < (int)sizeof(RR->publicIdentityStr))&&(n < (int)sizeof(tmp))) {
  94. if (memcmp(tmp,RR->publicIdentityStr,n))
  95. stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
  96. }
  97. }
  98. char *m = (char *)0;
  99. try {
  100. const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0);
  101. const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0);
  102. const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0);
  103. const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0);
  104. const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0);
  105. m = reinterpret_cast<char *>(::malloc(16 + ts + sws + mcs + topologys + sas));
  106. if (!m)
  107. throw std::bad_alloc();
  108. RR->rtmem = m;
  109. while (((uintptr_t)m & 0xf) != 0) ++m;
  110. RR->t = new (m) Trace(RR);
  111. m += ts;
  112. RR->sw = new (m) Switch(RR);
  113. m += sws;
  114. RR->mc = new (m) Multicaster(RR);
  115. m += mcs;
  116. RR->topology = new (m) Topology(RR,tptr);
  117. m += topologys;
  118. RR->sa = new (m) SelfAwareness(RR);
  119. } catch ( ... ) {
  120. if (RR->sa) RR->sa->~SelfAwareness();
  121. if (RR->topology) RR->topology->~Topology();
  122. if (RR->mc) RR->mc->~Multicaster();
  123. if (RR->sw) RR->sw->~Switch();
  124. if (RR->t) RR->t->~Trace();
  125. ::free(m);
  126. throw;
  127. }
  128. postEvent(tptr,ZT_EVENT_UP);
  129. }
  130. Node::~Node()
  131. {
  132. {
  133. Mutex::Lock _l(_networks_m);
  134. _networks.clear(); // destroy all networks before shutdown
  135. }
  136. if (RR->sa) RR->sa->~SelfAwareness();
  137. if (RR->topology) RR->topology->~Topology();
  138. if (RR->mc) RR->mc->~Multicaster();
  139. if (RR->sw) RR->sw->~Switch();
  140. if (RR->t) RR->t->~Trace();
  141. ::free(RR->rtmem);
  142. }
  143. ZT_ResultCode Node::processWirePacket(
  144. void *tptr,
  145. int64_t now,
  146. int64_t localSocket,
  147. const struct sockaddr_storage *remoteAddress,
  148. const void *packetData,
  149. unsigned int packetLength,
  150. volatile int64_t *nextBackgroundTaskDeadline)
  151. {
  152. _now = now;
  153. RR->sw->onRemotePacket(tptr,localSocket,*(reinterpret_cast<const InetAddress *>(remoteAddress)),packetData,packetLength);
  154. return ZT_RESULT_OK;
  155. }
  156. ZT_ResultCode Node::processVirtualNetworkFrame(
  157. void *tptr,
  158. int64_t now,
  159. uint64_t nwid,
  160. uint64_t sourceMac,
  161. uint64_t destMac,
  162. unsigned int etherType,
  163. unsigned int vlanId,
  164. const void *frameData,
  165. unsigned int frameLength,
  166. volatile int64_t *nextBackgroundTaskDeadline)
  167. {
  168. _now = now;
  169. SharedPtr<Network> nw(this->network(nwid));
  170. if (nw) {
  171. RR->sw->onLocalEthernet(tptr,nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength);
  172. return ZT_RESULT_OK;
  173. } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
  174. }
  175. // Closure used to ping upstream and active/online peers
  176. class _PingPeersThatNeedPing
  177. {
  178. public:
  179. _PingPeersThatNeedPing(const RuntimeEnvironment *renv,void *tPtr,Hashtable< Address,std::vector<InetAddress> > &alwaysContact,int64_t now) :
  180. RR(renv),
  181. _tPtr(tPtr),
  182. _alwaysContact(alwaysContact),
  183. _now(now),
  184. _bestCurrentUpstream(RR->topology->getUpstreamPeer())
  185. {
  186. }
  187. inline void operator()(Topology &t,const SharedPtr<Peer> &p)
  188. {
  189. const std::vector<InetAddress> *const alwaysContactEndpoints = _alwaysContact.get(p->address());
  190. if (alwaysContactEndpoints) {
  191. const unsigned int sent = p->doPingAndKeepalive(_tPtr,_now);
  192. bool contacted = (sent != 0);
  193. if ((sent & 0x1) == 0) { // bit 0x1 == IPv4 sent
  194. for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) {
  195. const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
  196. if (addr.ss_family == AF_INET) {
  197. p->sendHELLO(_tPtr,-1,addr,_now);
  198. contacted = true;
  199. break;
  200. }
  201. }
  202. }
  203. if ((sent & 0x2) == 0) { // bit 0x2 == IPv6 sent
  204. for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) {
  205. const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
  206. if (addr.ss_family == AF_INET6) {
  207. p->sendHELLO(_tPtr,-1,addr,_now);
  208. contacted = true;
  209. break;
  210. }
  211. }
  212. }
  213. if ((!contacted)&&(_bestCurrentUpstream)) {
  214. const SharedPtr<Path> up(_bestCurrentUpstream->getAppropriatePath(_now,true));
  215. if (up)
  216. p->sendHELLO(_tPtr,up->localSocket(),up->address(),_now);
  217. }
  218. _alwaysContact.erase(p->address()); // after this we'll WHOIS all upstreams that remain
  219. } else if (p->isActive(_now)) {
  220. p->doPingAndKeepalive(_tPtr,_now);
  221. }
  222. }
  223. private:
  224. const RuntimeEnvironment *RR;
  225. void *_tPtr;
  226. Hashtable< Address,std::vector<InetAddress> > &_alwaysContact;
  227. const int64_t _now;
  228. const SharedPtr<Peer> _bestCurrentUpstream;
  229. };
  230. ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
  231. {
  232. _now = now;
  233. Mutex::Lock bl(_backgroundTasksLock);
  234. unsigned long timeUntilNextPingCheck = ZT_PING_CHECK_INVERVAL;
  235. const int64_t timeSinceLastPingCheck = now - _lastPingCheck;
  236. if (timeSinceLastPingCheck >= ZT_PING_CHECK_INVERVAL) {
  237. try {
  238. _lastPingCheck = now;
  239. // Get designated VL1 upstreams
  240. Hashtable< Address,std::vector<InetAddress> > alwaysContact;
  241. RR->topology->getUpstreamsToContact(alwaysContact);
  242. // Check last receive time on designated upstreams to see if we seem to be online
  243. int64_t lastReceivedFromUpstream = 0;
  244. {
  245. Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
  246. Address *upstreamAddress = (Address *)0;
  247. std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
  248. while (i.next(upstreamAddress,upstreamStableEndpoints)) {
  249. SharedPtr<Peer> p(RR->topology->getPeerNoCache(*upstreamAddress));
  250. if (p)
  251. lastReceivedFromUpstream = std::max(p->lastReceive(),lastReceivedFromUpstream);
  252. }
  253. }
  254. // Clean up any old local controller auth memorizations.
  255. {
  256. _localControllerAuthorizations_m.lock();
  257. Hashtable< _LocalControllerAuth,int64_t >::Iterator i(_localControllerAuthorizations);
  258. _LocalControllerAuth *k = (_LocalControllerAuth *)0;
  259. int64_t *v = (int64_t *)0;
  260. while (i.next(k,v)) {
  261. if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3))
  262. _localControllerAuthorizations.erase(*k);
  263. }
  264. _localControllerAuthorizations_m.unlock();
  265. }
  266. // Get peers we should stay connected to according to network configs
  267. // Also get networks and whether they need config so we only have to do one pass over networks
  268. std::vector< std::pair< SharedPtr<Network>,bool > > networkConfigNeeded;
  269. {
  270. Mutex::Lock l(_networks_m);
  271. Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(_networks);
  272. uint64_t *nwid = (uint64_t *)0;
  273. SharedPtr<Network> *network = (SharedPtr<Network> *)0;
  274. while (i.next(nwid,network)) {
  275. (*network)->config().alwaysContactAddresses(alwaysContact);
  276. networkConfigNeeded.push_back( std::pair< SharedPtr<Network>,bool >(*network,(((now - (*network)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!(*network)->hasConfig()))) );
  277. }
  278. }
  279. // Ping active peers, upstreams, and others that we should always contact
  280. _PingPeersThatNeedPing pfunc(RR,tptr,alwaysContact,now);
  281. RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc);
  282. // Run WHOIS to create Peer for alwaysContact addresses that could not be contacted
  283. {
  284. Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
  285. Address *upstreamAddress = (Address *)0;
  286. std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
  287. while (i.next(upstreamAddress,upstreamStableEndpoints))
  288. RR->sw->requestWhois(tptr,now,*upstreamAddress);
  289. }
  290. // Refresh network config or broadcast network updates to members as needed
  291. for(std::vector< std::pair< SharedPtr<Network>,bool > >::const_iterator n(networkConfigNeeded.begin());n!=networkConfigNeeded.end();++n) {
  292. if (n->second)
  293. n->first->requestConfiguration(tptr);
  294. n->first->sendUpdatesToMembers(tptr);
  295. }
  296. // Update online status, post status change as event
  297. const bool oldOnline = _online;
  298. _online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amUpstream()));
  299. if (oldOnline != _online)
  300. postEvent(tptr,_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
  301. } catch ( ... ) {
  302. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  303. }
  304. } else {
  305. timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck;
  306. }
  307. if ((now - _lastMemoizedTraceSettings) >= (ZT_HOUSEKEEPING_PERIOD / 4)) {
  308. _lastMemoizedTraceSettings = now;
  309. RR->t->updateMemoizedSettings();
  310. }
  311. if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
  312. _lastHousekeepingRun = now;
  313. try {
  314. RR->topology->doPeriodicTasks(tptr,now);
  315. RR->sa->clean(now);
  316. RR->mc->clean(now);
  317. } catch ( ... ) {
  318. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  319. }
  320. }
  321. try {
  322. *nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min(timeUntilNextPingCheck,RR->sw->doTimerTasks(tptr,now)),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY);
  323. } catch ( ... ) {
  324. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  325. }
  326. return ZT_RESULT_OK;
  327. }
  328. ZT_ResultCode Node::join(uint64_t nwid,void *uptr,void *tptr)
  329. {
  330. Mutex::Lock _l(_networks_m);
  331. SharedPtr<Network> &nw = _networks[nwid];
  332. if (!nw)
  333. nw = SharedPtr<Network>(new Network(RR,tptr,nwid,uptr,(const NetworkConfig *)0));
  334. return ZT_RESULT_OK;
  335. }
  336. ZT_ResultCode Node::leave(uint64_t nwid,void **uptr,void *tptr)
  337. {
  338. ZT_VirtualNetworkConfig ctmp;
  339. void **nUserPtr = (void **)0;
  340. {
  341. Mutex::Lock _l(_networks_m);
  342. SharedPtr<Network> *nw = _networks.get(nwid);
  343. RR->sw->removeNetworkQoSControlBlock(nwid);
  344. if (!nw)
  345. return ZT_RESULT_OK;
  346. if (uptr)
  347. *uptr = (*nw)->userPtr();
  348. (*nw)->externalConfig(&ctmp);
  349. (*nw)->destroy();
  350. nUserPtr = (*nw)->userPtr();
  351. }
  352. if (nUserPtr)
  353. RR->node->configureVirtualNetworkPort(tptr,nwid,nUserPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
  354. {
  355. Mutex::Lock _l(_networks_m);
  356. _networks.erase(nwid);
  357. }
  358. uint64_t tmp[2];
  359. tmp[0] = nwid; tmp[1] = 0;
  360. RR->node->stateObjectDelete(tptr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp);
  361. return ZT_RESULT_OK;
  362. }
  363. ZT_ResultCode Node::multicastSubscribe(void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
  364. {
  365. SharedPtr<Network> nw(this->network(nwid));
  366. if (nw) {
  367. nw->multicastSubscribe(tptr,MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
  368. return ZT_RESULT_OK;
  369. } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
  370. }
  371. ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
  372. {
  373. SharedPtr<Network> nw(this->network(nwid));
  374. if (nw) {
  375. nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
  376. return ZT_RESULT_OK;
  377. } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
  378. }
  379. ZT_ResultCode Node::orbit(void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
  380. {
  381. RR->topology->addMoon(tptr,moonWorldId,Address(moonSeed));
  382. return ZT_RESULT_OK;
  383. }
  384. ZT_ResultCode Node::deorbit(void *tptr,uint64_t moonWorldId)
  385. {
  386. RR->topology->removeMoon(tptr,moonWorldId);
  387. return ZT_RESULT_OK;
  388. }
  389. uint64_t Node::address() const
  390. {
  391. return RR->identity.address().toInt();
  392. }
  393. void Node::status(ZT_NodeStatus *status) const
  394. {
  395. status->address = RR->identity.address().toInt();
  396. status->publicIdentity = RR->publicIdentityStr;
  397. status->secretIdentity = RR->secretIdentityStr;
  398. status->online = _online ? 1 : 0;
  399. }
  400. ZT_PeerList *Node::peers() const
  401. {
  402. std::vector< std::pair< Address,SharedPtr<Peer> > > peers(RR->topology->allPeers());
  403. std::sort(peers.begin(),peers.end());
  404. char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));
  405. if (!buf)
  406. return (ZT_PeerList *)0;
  407. ZT_PeerList *pl = (ZT_PeerList *)buf;
  408. pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList));
  409. pl->peerCount = 0;
  410. for(std::vector< std::pair< Address,SharedPtr<Peer> > >::iterator pi(peers.begin());pi!=peers.end();++pi) {
  411. ZT_Peer *p = &(pl->peers[pl->peerCount++]);
  412. p->address = pi->second->address().toInt();
  413. p->hadAggregateLink = 0;
  414. if (pi->second->remoteVersionKnown()) {
  415. p->versionMajor = pi->second->remoteVersionMajor();
  416. p->versionMinor = pi->second->remoteVersionMinor();
  417. p->versionRev = pi->second->remoteVersionRevision();
  418. } else {
  419. p->versionMajor = -1;
  420. p->versionMinor = -1;
  421. p->versionRev = -1;
  422. }
  423. p->latency = pi->second->latency(_now);
  424. if (p->latency >= 0xffff)
  425. p->latency = -1;
  426. p->role = RR->topology->role(pi->second->identity().address());
  427. std::vector< SharedPtr<Path> > paths(pi->second->paths(_now));
  428. SharedPtr<Path> bestp(pi->second->getAppropriatePath(_now,false));
  429. p->hadAggregateLink |= pi->second->hasAggregateLink();
  430. p->pathCount = 0;
  431. for(std::vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) {
  432. ZT_FAST_MEMCPY(&(p->paths[p->pathCount].address),&((*path)->address()),sizeof(struct sockaddr_storage));
  433. p->paths[p->pathCount].lastSend = (*path)->lastOut();
  434. p->paths[p->pathCount].lastReceive = (*path)->lastIn();
  435. p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
  436. p->paths[p->pathCount].expired = 0;
  437. p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0;
  438. p->paths[p->pathCount].latency = (*path)->latency();
  439. p->paths[p->pathCount].packetDelayVariance = (*path)->packetDelayVariance();
  440. p->paths[p->pathCount].throughputDisturbCoeff = (*path)->throughputDisturbanceCoefficient();
  441. p->paths[p->pathCount].packetErrorRatio = (*path)->packetErrorRatio();
  442. p->paths[p->pathCount].packetLossRatio = (*path)->packetLossRatio();
  443. p->paths[p->pathCount].stability = (*path)->lastComputedStability();
  444. p->paths[p->pathCount].throughput = (*path)->meanThroughput();
  445. p->paths[p->pathCount].maxThroughput = (*path)->maxLifetimeThroughput();
  446. p->paths[p->pathCount].allocation = (float)(*path)->allocation() / (float)255;
  447. p->paths[p->pathCount].ifname = (*path)->getName();
  448. ++p->pathCount;
  449. }
  450. }
  451. return pl;
  452. }
  453. ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
  454. {
  455. Mutex::Lock _l(_networks_m);
  456. const SharedPtr<Network> *nw = _networks.get(nwid);
  457. if (nw) {
  458. ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
  459. (*nw)->externalConfig(nc);
  460. return nc;
  461. }
  462. return (ZT_VirtualNetworkConfig *)0;
  463. }
  464. ZT_VirtualNetworkList *Node::networks() const
  465. {
  466. Mutex::Lock _l(_networks_m);
  467. char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size()));
  468. if (!buf)
  469. return (ZT_VirtualNetworkList *)0;
  470. ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf;
  471. nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
  472. nl->networkCount = 0;
  473. Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(*const_cast< Hashtable< uint64_t,SharedPtr<Network> > *>(&_networks));
  474. uint64_t *k = (uint64_t *)0;
  475. SharedPtr<Network> *v = (SharedPtr<Network> *)0;
  476. while (i.next(k,v))
  477. (*v)->externalConfig(&(nl->networks[nl->networkCount++]));
  478. return nl;
  479. }
  480. void Node::freeQueryResult(void *qr)
  481. {
  482. if (qr)
  483. ::free(qr);
  484. }
  485. int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr)
  486. {
  487. if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress *>(addr)))) {
  488. Mutex::Lock _l(_directPaths_m);
  489. if (std::find(_directPaths.begin(),_directPaths.end(),*(reinterpret_cast<const InetAddress *>(addr))) == _directPaths.end()) {
  490. _directPaths.push_back(*(reinterpret_cast<const InetAddress *>(addr)));
  491. return 1;
  492. }
  493. }
  494. return 0;
  495. }
  496. void Node::clearLocalInterfaceAddresses()
  497. {
  498. Mutex::Lock _l(_directPaths_m);
  499. _directPaths.clear();
  500. }
  501. int Node::sendUserMessage(void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
  502. {
  503. try {
  504. if (RR->identity.address().toInt() != dest) {
  505. Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE);
  506. outp.append(typeId);
  507. outp.append(data,len);
  508. outp.compress();
  509. RR->sw->send(tptr,outp,true);
  510. return 1;
  511. }
  512. } catch ( ... ) {}
  513. return 0;
  514. }
  515. void Node::setNetconfMaster(void *networkControllerInstance)
  516. {
  517. RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
  518. if (networkControllerInstance)
  519. RR->localNetworkController->init(RR->identity,this);
  520. }
  521. /****************************************************************************/
  522. /* Node methods used only within node/ */
  523. /****************************************************************************/
  524. bool Node::shouldUsePathForZeroTierTraffic(void *tPtr,const Address &ztaddr,const int64_t localSocket,const InetAddress &remoteAddress)
  525. {
  526. if (!Path::isAddressValidForPath(remoteAddress))
  527. return false;
  528. if (RR->topology->isProhibitedEndpoint(ztaddr,remoteAddress))
  529. return false;
  530. {
  531. Mutex::Lock _l(_networks_m);
  532. Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(_networks);
  533. uint64_t *k = (uint64_t *)0;
  534. SharedPtr<Network> *v = (SharedPtr<Network> *)0;
  535. while (i.next(k,v)) {
  536. if ((*v)->hasConfig()) {
  537. for(unsigned int k=0;k<(*v)->config().staticIpCount;++k) {
  538. if ((*v)->config().staticIps[k].containsAddress(remoteAddress))
  539. return false;
  540. }
  541. }
  542. }
  543. }
  544. return ( (_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast<ZT_Node *>(this),_uPtr,tPtr,ztaddr.toInt(),localSocket,reinterpret_cast<const struct sockaddr_storage *>(&remoteAddress)) != 0) : true);
  545. }
  546. uint64_t Node::prng()
  547. {
  548. // https://en.wikipedia.org/wiki/Xorshift#xorshift.2B
  549. uint64_t x = _prngState[0];
  550. const uint64_t y = _prngState[1];
  551. _prngState[0] = y;
  552. x ^= x << 23;
  553. const uint64_t z = x ^ y ^ (x >> 17) ^ (y >> 26);
  554. _prngState[1] = z;
  555. return z + y;
  556. }
  557. ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork, const ZT_PhysicalPathConfiguration *pathConfig)
  558. {
  559. RR->topology->setPhysicalPathConfiguration(pathNetwork,pathConfig);
  560. return ZT_RESULT_OK;
  561. }
  562. World Node::planet() const
  563. {
  564. return RR->topology->planet();
  565. }
  566. std::vector<World> Node::moons() const
  567. {
  568. return RR->topology->moons();
  569. }
  570. void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig)
  571. {
  572. _localControllerAuthorizations_m.lock();
  573. _localControllerAuthorizations[_LocalControllerAuth(nwid,destination)] = now();
  574. _localControllerAuthorizations_m.unlock();
  575. if (destination == RR->identity.address()) {
  576. SharedPtr<Network> n(network(nwid));
  577. if (!n) return;
  578. n->setConfiguration((void *)0,nc,true);
  579. } else {
  580. Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> *dconf = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
  581. try {
  582. if (nc.toDictionary(*dconf,sendLegacyFormatConfig)) {
  583. uint64_t configUpdateId = prng();
  584. if (!configUpdateId) ++configUpdateId;
  585. const unsigned int totalSize = dconf->sizeBytes();
  586. unsigned int chunkIndex = 0;
  587. while (chunkIndex < totalSize) {
  588. const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
  589. Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
  590. if (requestPacketId) {
  591. outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
  592. outp.append(requestPacketId);
  593. }
  594. const unsigned int sigStart = outp.size();
  595. outp.append(nwid);
  596. outp.append((uint16_t)chunkLen);
  597. outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
  598. outp.append((uint8_t)0); // no flags
  599. outp.append((uint64_t)configUpdateId);
  600. outp.append((uint32_t)totalSize);
  601. outp.append((uint32_t)chunkIndex);
  602. C25519::Signature sig(RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart));
  603. outp.append((uint8_t)1);
  604. outp.append((uint16_t)ZT_C25519_SIGNATURE_LEN);
  605. outp.append(sig.data,ZT_C25519_SIGNATURE_LEN);
  606. outp.compress();
  607. RR->sw->send((void *)0,outp,true);
  608. chunkIndex += chunkLen;
  609. }
  610. }
  611. delete dconf;
  612. } catch ( ... ) {
  613. delete dconf;
  614. throw;
  615. }
  616. }
  617. }
  618. void Node::ncSendRevocation(const Address &destination,const Revocation &rev)
  619. {
  620. if (destination == RR->identity.address()) {
  621. SharedPtr<Network> n(network(rev.networkId()));
  622. if (!n) return;
  623. n->addCredential((void *)0,RR->identity.address(),rev);
  624. } else {
  625. Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
  626. outp.append((uint8_t)0x00);
  627. outp.append((uint16_t)0);
  628. outp.append((uint16_t)0);
  629. outp.append((uint16_t)1);
  630. rev.serialize(outp);
  631. outp.append((uint16_t)0);
  632. RR->sw->send((void *)0,outp,true);
  633. }
  634. }
  635. void Node::ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode)
  636. {
  637. if (destination == RR->identity.address()) {
  638. SharedPtr<Network> n(network(nwid));
  639. if (!n) return;
  640. switch(errorCode) {
  641. case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
  642. case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
  643. n->setNotFound();
  644. break;
  645. case NetworkController::NC_ERROR_ACCESS_DENIED:
  646. n->setAccessDenied();
  647. break;
  648. default: break;
  649. }
  650. } else if (requestPacketId) {
  651. Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
  652. outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
  653. outp.append(requestPacketId);
  654. switch(errorCode) {
  655. //case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
  656. //case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
  657. default:
  658. outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
  659. break;
  660. case NetworkController::NC_ERROR_ACCESS_DENIED:
  661. outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
  662. break;
  663. }
  664. outp.append(nwid);
  665. RR->sw->send((void *)0,outp,true);
  666. } // else we can't send an ERROR() in response to nothing, so discard
  667. }
  668. } // namespace ZeroTier
  669. /****************************************************************************/
  670. /* CAPI bindings */
  671. /****************************************************************************/
  672. extern "C" {
  673. enum ZT_ResultCode ZT_Node_new(ZT_Node **node,void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now)
  674. {
  675. *node = (ZT_Node *)0;
  676. try {
  677. *node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr,tptr,callbacks,now));
  678. return ZT_RESULT_OK;
  679. } catch (std::bad_alloc &exc) {
  680. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  681. } catch (std::runtime_error &exc) {
  682. return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
  683. } catch ( ... ) {
  684. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  685. }
  686. }
  687. void ZT_Node_delete(ZT_Node *node)
  688. {
  689. try {
  690. delete (reinterpret_cast<ZeroTier::Node *>(node));
  691. } catch ( ... ) {}
  692. }
  693. enum ZT_ResultCode ZT_Node_processWirePacket(
  694. ZT_Node *node,
  695. void *tptr,
  696. int64_t now,
  697. int64_t localSocket,
  698. const struct sockaddr_storage *remoteAddress,
  699. const void *packetData,
  700. unsigned int packetLength,
  701. volatile int64_t *nextBackgroundTaskDeadline)
  702. {
  703. try {
  704. return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr,now,localSocket,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline);
  705. } catch (std::bad_alloc &exc) {
  706. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  707. } catch ( ... ) {
  708. return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up
  709. }
  710. }
  711. enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
  712. ZT_Node *node,
  713. void *tptr,
  714. int64_t now,
  715. uint64_t nwid,
  716. uint64_t sourceMac,
  717. uint64_t destMac,
  718. unsigned int etherType,
  719. unsigned int vlanId,
  720. const void *frameData,
  721. unsigned int frameLength,
  722. volatile int64_t *nextBackgroundTaskDeadline)
  723. {
  724. try {
  725. return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr,now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline);
  726. } catch (std::bad_alloc &exc) {
  727. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  728. } catch ( ... ) {
  729. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  730. }
  731. }
  732. enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
  733. {
  734. try {
  735. return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr,now,nextBackgroundTaskDeadline);
  736. } catch (std::bad_alloc &exc) {
  737. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  738. } catch ( ... ) {
  739. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  740. }
  741. }
  742. enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid,void *uptr,void *tptr)
  743. {
  744. try {
  745. return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid,uptr,tptr);
  746. } catch (std::bad_alloc &exc) {
  747. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  748. } catch ( ... ) {
  749. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  750. }
  751. }
  752. enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid,void **uptr,void *tptr)
  753. {
  754. try {
  755. return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid,uptr,tptr);
  756. } catch (std::bad_alloc &exc) {
  757. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  758. } catch ( ... ) {
  759. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  760. }
  761. }
  762. enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
  763. {
  764. try {
  765. return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr,nwid,multicastGroup,multicastAdi);
  766. } catch (std::bad_alloc &exc) {
  767. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  768. } catch ( ... ) {
  769. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  770. }
  771. }
  772. enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
  773. {
  774. try {
  775. return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi);
  776. } catch (std::bad_alloc &exc) {
  777. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  778. } catch ( ... ) {
  779. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  780. }
  781. }
  782. enum ZT_ResultCode ZT_Node_orbit(ZT_Node *node,void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
  783. {
  784. try {
  785. return reinterpret_cast<ZeroTier::Node *>(node)->orbit(tptr,moonWorldId,moonSeed);
  786. } catch ( ... ) {
  787. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  788. }
  789. }
  790. enum ZT_ResultCode ZT_Node_deorbit(ZT_Node *node,void *tptr,uint64_t moonWorldId)
  791. {
  792. try {
  793. return reinterpret_cast<ZeroTier::Node *>(node)->deorbit(tptr,moonWorldId);
  794. } catch ( ... ) {
  795. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  796. }
  797. }
  798. uint64_t ZT_Node_address(ZT_Node *node)
  799. {
  800. return reinterpret_cast<ZeroTier::Node *>(node)->address();
  801. }
  802. void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status)
  803. {
  804. try {
  805. reinterpret_cast<ZeroTier::Node *>(node)->status(status);
  806. } catch ( ... ) {}
  807. }
  808. ZT_PeerList *ZT_Node_peers(ZT_Node *node)
  809. {
  810. try {
  811. return reinterpret_cast<ZeroTier::Node *>(node)->peers();
  812. } catch ( ... ) {
  813. return (ZT_PeerList *)0;
  814. }
  815. }
  816. ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid)
  817. {
  818. try {
  819. return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
  820. } catch ( ... ) {
  821. return (ZT_VirtualNetworkConfig *)0;
  822. }
  823. }
  824. ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
  825. {
  826. try {
  827. return reinterpret_cast<ZeroTier::Node *>(node)->networks();
  828. } catch ( ... ) {
  829. return (ZT_VirtualNetworkList *)0;
  830. }
  831. }
  832. void ZT_Node_freeQueryResult(ZT_Node *node,void *qr)
  833. {
  834. try {
  835. reinterpret_cast<ZeroTier::Node *>(node)->freeQueryResult(qr);
  836. } catch ( ... ) {}
  837. }
  838. int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr)
  839. {
  840. try {
  841. return reinterpret_cast<ZeroTier::Node *>(node)->addLocalInterfaceAddress(addr);
  842. } catch ( ... ) {
  843. return 0;
  844. }
  845. }
  846. void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node)
  847. {
  848. try {
  849. reinterpret_cast<ZeroTier::Node *>(node)->clearLocalInterfaceAddresses();
  850. } catch ( ... ) {}
  851. }
  852. int ZT_Node_sendUserMessage(ZT_Node *node,void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
  853. {
  854. try {
  855. return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr,dest,typeId,data,len);
  856. } catch ( ... ) {
  857. return 0;
  858. }
  859. }
  860. void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance)
  861. {
  862. try {
  863. reinterpret_cast<ZeroTier::Node *>(node)->setNetconfMaster(networkControllerInstance);
  864. } catch ( ... ) {}
  865. }
  866. enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig)
  867. {
  868. try {
  869. return reinterpret_cast<ZeroTier::Node *>(node)->setPhysicalPathConfiguration(pathNetwork,pathConfig);
  870. } catch ( ... ) {
  871. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  872. }
  873. }
  874. void ZT_version(int *major,int *minor,int *revision)
  875. {
  876. if (major) *major = ZEROTIER_ONE_VERSION_MAJOR;
  877. if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR;
  878. if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION;
  879. }
  880. } // extern "C"