123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160 |
- mod biguint {
- use num_bigint::BigUint;
- use num_traits::{One, Zero};
- use std::{i32, u32};
- fn check<T: Into<BigUint>>(x: T, n: u32) {
- let x: BigUint = x.into();
- let root = x.nth_root(n);
- println!("check {}.nth_root({}) = {}", x, n, root);
- if n == 2 {
- assert_eq!(root, x.sqrt())
- } else if n == 3 {
- assert_eq!(root, x.cbrt())
- }
- let lo = root.pow(n);
- assert!(lo <= x);
- assert_eq!(lo.nth_root(n), root);
- if !lo.is_zero() {
- assert_eq!((&lo - 1u32).nth_root(n), &root - 1u32);
- }
- let hi = (&root + 1u32).pow(n);
- assert!(hi > x);
- assert_eq!(hi.nth_root(n), &root + 1u32);
- assert_eq!((&hi - 1u32).nth_root(n), root);
- }
- #[test]
- fn test_sqrt() {
- check(99u32, 2);
- check(100u32, 2);
- check(120u32, 2);
- }
- #[test]
- fn test_cbrt() {
- check(8u32, 3);
- check(26u32, 3);
- }
- #[test]
- fn test_nth_root() {
- check(0u32, 1);
- check(10u32, 1);
- check(100u32, 4);
- }
- #[test]
- #[should_panic]
- fn test_nth_root_n_is_zero() {
- check(4u32, 0);
- }
- #[test]
- fn test_nth_root_big() {
- let x = BigUint::from(123_456_789_u32);
- let expected = BigUint::from(6u32);
- assert_eq!(x.nth_root(10), expected);
- check(x, 10);
- }
- #[test]
- fn test_nth_root_googol() {
- let googol = BigUint::from(10u32).pow(100u32);
- // perfect divisors of 100
- for &n in &[2, 4, 5, 10, 20, 25, 50, 100] {
- let expected = BigUint::from(10u32).pow(100u32 / n);
- assert_eq!(googol.nth_root(n), expected);
- check(googol.clone(), n);
- }
- }
- #[test]
- fn test_nth_root_twos() {
- const EXP: u32 = 12;
- const LOG2: usize = 1 << EXP;
- let x = BigUint::one() << LOG2;
- // the perfect divisors are just powers of two
- for exp in 1..=EXP {
- let n = 2u32.pow(exp);
- let expected = BigUint::one() << (LOG2 / n as usize);
- assert_eq!(x.nth_root(n), expected);
- check(x.clone(), n);
- }
- // degenerate cases should return quickly
- assert!(x.nth_root(x.bits() as u32).is_one());
- assert!(x.nth_root(i32::MAX as u32).is_one());
- assert!(x.nth_root(u32::MAX).is_one());
- }
- #[test]
- fn test_roots_rand1() {
- // A random input that found regressions
- let s = "575981506858479247661989091587544744717244516135539456183849\
- 986593934723426343633698413178771587697273822147578889823552\
- 182702908597782734558103025298880194023243541613924361007059\
- 353344183590348785832467726433749431093350684849462759540710\
- 026019022227591412417064179299354183441181373862905039254106\
- 4781867";
- let x: BigUint = s.parse().unwrap();
- check(x.clone(), 2);
- check(x.clone(), 3);
- check(x.clone(), 10);
- check(x, 100);
- }
- }
- mod bigint {
- use num_bigint::BigInt;
- use num_traits::Signed;
- fn check(x: i64, n: u32) {
- let big_x = BigInt::from(x);
- let res = big_x.nth_root(n);
- if n == 2 {
- assert_eq!(&res, &big_x.sqrt())
- } else if n == 3 {
- assert_eq!(&res, &big_x.cbrt())
- }
- if big_x.is_negative() {
- assert!(res.pow(n) >= big_x);
- assert!((res - 1u32).pow(n) < big_x);
- } else {
- assert!(res.pow(n) <= big_x);
- assert!((res + 1u32).pow(n) > big_x);
- }
- }
- #[test]
- fn test_nth_root() {
- check(-100, 3);
- }
- #[test]
- #[should_panic]
- fn test_nth_root_x_neg_n_even() {
- check(-100, 4);
- }
- #[test]
- #[should_panic]
- fn test_sqrt_x_neg() {
- check(-4, 2);
- }
- #[test]
- fn test_cbrt() {
- check(8, 3);
- check(-8, 3);
- }
- }
|