AES_aesni.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2025-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Constants.hpp"
  14. #include "AES.hpp"
  15. #ifdef ZT_AES_AESNI
  16. #ifdef __GNUC__
  17. #pragma GCC diagnostic ignored "-Wstrict-aliasing"
  18. #endif
  19. namespace ZeroTier {
  20. namespace {
  21. const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  22. #ifdef __GNUC__
  23. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
  24. #endif
  25. __m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
  26. {
  27. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  28. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  29. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  30. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  31. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  32. t2 = _mm_xor_si128(t2, t3);
  33. t3 = _mm_slli_si128(t2, 8);
  34. t2 = _mm_srli_si128(t2, 8);
  35. t1 = _mm_xor_si128(t1, t3);
  36. t4 = _mm_xor_si128(t4, t2);
  37. __m128i t5 = _mm_srli_epi32(t1, 31);
  38. t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
  39. t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
  40. t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
  41. t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
  42. t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
  43. return _mm_shuffle_epi8(t4, s_sseSwapBytes);
  44. }
  45. /* Disable VAES stuff on compilers too old to compile these intrinsics,
  46. * and MinGW64 also seems not to support them so disable on Windows.
  47. * The performance gain can be significant but regular SSE is already so
  48. * fast it's highly unlikely to be a rate limiting factor except on massive
  49. * servers and network infrastructure stuff. */
  50. #if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
  51. #define ZT_AES_VAES512 1
  52. #ifdef __GNUC__
  53. __attribute__((__target__("sse4,aes,avx,avx2,vaes,avx512f,avx512bw")))
  54. #endif
  55. void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  56. {
  57. const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
  58. const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
  59. const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
  60. const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
  61. const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
  62. const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
  63. const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
  64. const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
  65. const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
  66. const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
  67. const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
  68. const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
  69. const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
  70. const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
  71. const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
  72. do {
  73. __m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
  74. __m512i d0 = _mm512_set_epi64(
  75. (long long)Utils::hton(c1 + 3ULL), (long long)c0,
  76. (long long)Utils::hton(c1 + 2ULL), (long long)c0,
  77. (long long)Utils::hton(c1 + 1ULL), (long long)c0,
  78. (long long)Utils::hton(c1), (long long)c0);
  79. c1 += 4;
  80. in += 64;
  81. len -= 64;
  82. d0 = _mm512_xor_si512(d0, kk0);
  83. d0 = _mm512_aesenc_epi128(d0, kk1);
  84. d0 = _mm512_aesenc_epi128(d0, kk2);
  85. d0 = _mm512_aesenc_epi128(d0, kk3);
  86. d0 = _mm512_aesenc_epi128(d0, kk4);
  87. d0 = _mm512_aesenc_epi128(d0, kk5);
  88. d0 = _mm512_aesenc_epi128(d0, kk6);
  89. d0 = _mm512_aesenc_epi128(d0, kk7);
  90. d0 = _mm512_aesenc_epi128(d0, kk8);
  91. d0 = _mm512_aesenc_epi128(d0, kk9);
  92. d0 = _mm512_aesenc_epi128(d0, kk10);
  93. d0 = _mm512_aesenc_epi128(d0, kk11);
  94. d0 = _mm512_aesenc_epi128(d0, kk12);
  95. d0 = _mm512_aesenc_epi128(d0, kk13);
  96. d0 = _mm512_aesenclast_epi128(d0, kk14);
  97. _mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
  98. out += 64;
  99. } while (likely(len >= 64));
  100. }
  101. #define ZT_AES_VAES256 1
  102. #ifdef __GNUC__
  103. __attribute__((__target__("sse4,aes,avx,avx2,vaes")))
  104. #endif
  105. void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  106. {
  107. const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
  108. const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
  109. const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
  110. const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
  111. const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
  112. const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
  113. const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
  114. const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
  115. const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
  116. const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
  117. const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
  118. const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
  119. const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
  120. const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
  121. const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
  122. do {
  123. __m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
  124. __m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
  125. __m256i d0 = _mm256_set_epi64x(
  126. (long long)Utils::hton(c1 + 1ULL), (long long)c0,
  127. (long long)Utils::hton(c1), (long long)c0);
  128. __m256i d1 = _mm256_set_epi64x(
  129. (long long)Utils::hton(c1 + 3ULL), (long long)c0,
  130. (long long)Utils::hton(c1 + 2ULL), (long long)c0);
  131. c1 += 4;
  132. in += 64;
  133. len -= 64;
  134. d0 = _mm256_xor_si256(d0, kk0);
  135. d1 = _mm256_xor_si256(d1, kk0);
  136. d0 = _mm256_aesenc_epi128(d0, kk1);
  137. d1 = _mm256_aesenc_epi128(d1, kk1);
  138. d0 = _mm256_aesenc_epi128(d0, kk2);
  139. d1 = _mm256_aesenc_epi128(d1, kk2);
  140. d0 = _mm256_aesenc_epi128(d0, kk3);
  141. d1 = _mm256_aesenc_epi128(d1, kk3);
  142. d0 = _mm256_aesenc_epi128(d0, kk4);
  143. d1 = _mm256_aesenc_epi128(d1, kk4);
  144. d0 = _mm256_aesenc_epi128(d0, kk5);
  145. d1 = _mm256_aesenc_epi128(d1, kk5);
  146. d0 = _mm256_aesenc_epi128(d0, kk6);
  147. d1 = _mm256_aesenc_epi128(d1, kk6);
  148. d0 = _mm256_aesenc_epi128(d0, kk7);
  149. d1 = _mm256_aesenc_epi128(d1, kk7);
  150. d0 = _mm256_aesenc_epi128(d0, kk8);
  151. d1 = _mm256_aesenc_epi128(d1, kk8);
  152. d0 = _mm256_aesenc_epi128(d0, kk9);
  153. d1 = _mm256_aesenc_epi128(d1, kk9);
  154. d0 = _mm256_aesenc_epi128(d0, kk10);
  155. d1 = _mm256_aesenc_epi128(d1, kk10);
  156. d0 = _mm256_aesenc_epi128(d0, kk11);
  157. d1 = _mm256_aesenc_epi128(d1, kk11);
  158. d0 = _mm256_aesenc_epi128(d0, kk12);
  159. d1 = _mm256_aesenc_epi128(d1, kk12);
  160. d0 = _mm256_aesenc_epi128(d0, kk13);
  161. d1 = _mm256_aesenc_epi128(d1, kk13);
  162. d0 = _mm256_aesenclast_epi128(d0, kk14);
  163. d1 = _mm256_aesenclast_epi128(d1, kk14);
  164. _mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
  165. _mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
  166. out += 64;
  167. } while (likely(len >= 64));
  168. }
  169. #endif // does compiler support AVX2 and AVX512 AES intrinsics?
  170. #ifdef __GNUC__
  171. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  172. #endif
  173. __m128i p_init256_1_aesni(__m128i a, __m128i b) noexcept
  174. {
  175. __m128i x, y;
  176. b = _mm_shuffle_epi32(b, 0xff);
  177. y = _mm_slli_si128(a, 0x04);
  178. x = _mm_xor_si128(a, y);
  179. y = _mm_slli_si128(y, 0x04);
  180. x = _mm_xor_si128(x, y);
  181. y = _mm_slli_si128(y, 0x04);
  182. x = _mm_xor_si128(x, y);
  183. x = _mm_xor_si128(x, b);
  184. return x;
  185. }
  186. #ifdef __GNUC__
  187. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  188. #endif
  189. __m128i p_init256_2_aesni(__m128i a, __m128i b) noexcept
  190. {
  191. __m128i x, y, z;
  192. y = _mm_aeskeygenassist_si128(a, 0x00);
  193. z = _mm_shuffle_epi32(y, 0xaa);
  194. y = _mm_slli_si128(b, 0x04);
  195. x = _mm_xor_si128(b, y);
  196. y = _mm_slli_si128(y, 0x04);
  197. x = _mm_xor_si128(x, y);
  198. y = _mm_slli_si128(y, 0x04);
  199. x = _mm_xor_si128(x, y);
  200. x = _mm_xor_si128(x, z);
  201. return x;
  202. }
  203. } // anonymous namespace
  204. #ifdef __GNUC__
  205. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
  206. #endif
  207. void AES::GMAC::p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept
  208. {
  209. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
  210. // Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
  211. if (_rp) {
  212. for (;;) {
  213. if (!len)
  214. return;
  215. --len;
  216. _r[_rp++] = *(in++);
  217. if (_rp == 16) {
  218. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
  219. break;
  220. }
  221. }
  222. }
  223. if (likely(len >= 64)) {
  224. const __m128i sb = s_sseSwapBytes;
  225. const __m128i h = _aes.p_k.ni.h[0];
  226. const __m128i hh = _aes.p_k.ni.h[1];
  227. const __m128i hhh = _aes.p_k.ni.h[2];
  228. const __m128i hhhh = _aes.p_k.ni.h[3];
  229. const __m128i h2 = _aes.p_k.ni.h2[0];
  230. const __m128i hh2 = _aes.p_k.ni.h2[1];
  231. const __m128i hhh2 = _aes.p_k.ni.h2[2];
  232. const __m128i hhhh2 = _aes.p_k.ni.h2[3];
  233. const uint8_t *const end64 = in + (len & ~((unsigned int)63));
  234. len &= 63U;
  235. do {
  236. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
  237. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
  238. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
  239. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
  240. in += 64;
  241. __m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
  242. __m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
  243. __m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
  244. a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
  245. b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
  246. c = _mm_srli_epi32(a, 31);
  247. a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
  248. b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
  249. c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
  250. a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
  251. b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
  252. y = _mm_shuffle_epi8(b, sb);
  253. } while (likely(in != end64));
  254. }
  255. while (len >= 16) {
  256. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
  257. in += 16;
  258. len -= 16;
  259. }
  260. _mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
  261. // Any overflow is cached for a later run or finish().
  262. for (unsigned int i = 0; i < len; ++i)
  263. _r[i] = in[i];
  264. _rp = len; // len is always less than 16 here
  265. }
  266. #ifdef __GNUC__
  267. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul,aes")))
  268. #endif
  269. void AES::GMAC::p_aesNIFinish(uint8_t tag[16]) noexcept
  270. {
  271. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
  272. // Handle any remaining bytes, padding the last block with zeroes.
  273. if (_rp) {
  274. while (_rp < 16)
  275. _r[_rp++] = 0;
  276. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
  277. }
  278. // Interleave encryption of IV with the final GHASH of y XOR (length * 8).
  279. // Then XOR these together to get the final tag.
  280. const __m128i *const k = _aes.p_k.ni.k;
  281. const __m128i h = _aes.p_k.ni.h[0];
  282. y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
  283. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  284. __m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
  285. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  286. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  287. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  288. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  289. encIV = _mm_aesenc_si128(encIV, k[1]);
  290. t2 = _mm_xor_si128(t2, t3);
  291. t3 = _mm_slli_si128(t2, 8);
  292. encIV = _mm_aesenc_si128(encIV, k[2]);
  293. t2 = _mm_srli_si128(t2, 8);
  294. t1 = _mm_xor_si128(t1, t3);
  295. encIV = _mm_aesenc_si128(encIV, k[3]);
  296. t4 = _mm_xor_si128(t4, t2);
  297. __m128i t5 = _mm_srli_epi32(t1, 31);
  298. t1 = _mm_slli_epi32(t1, 1);
  299. __m128i t6 = _mm_srli_epi32(t4, 31);
  300. encIV = _mm_aesenc_si128(encIV, k[4]);
  301. t4 = _mm_slli_epi32(t4, 1);
  302. t3 = _mm_srli_si128(t5, 12);
  303. encIV = _mm_aesenc_si128(encIV, k[5]);
  304. t6 = _mm_slli_si128(t6, 4);
  305. t5 = _mm_slli_si128(t5, 4);
  306. encIV = _mm_aesenc_si128(encIV, k[6]);
  307. t1 = _mm_or_si128(t1, t5);
  308. t4 = _mm_or_si128(t4, t6);
  309. encIV = _mm_aesenc_si128(encIV, k[7]);
  310. t4 = _mm_or_si128(t4, t3);
  311. t5 = _mm_slli_epi32(t1, 31);
  312. encIV = _mm_aesenc_si128(encIV, k[8]);
  313. t6 = _mm_slli_epi32(t1, 30);
  314. t3 = _mm_slli_epi32(t1, 25);
  315. encIV = _mm_aesenc_si128(encIV, k[9]);
  316. t5 = _mm_xor_si128(t5, t6);
  317. t5 = _mm_xor_si128(t5, t3);
  318. encIV = _mm_aesenc_si128(encIV, k[10]);
  319. t6 = _mm_srli_si128(t5, 4);
  320. t4 = _mm_xor_si128(t4, t6);
  321. encIV = _mm_aesenc_si128(encIV, k[11]);
  322. t5 = _mm_slli_si128(t5, 12);
  323. t1 = _mm_xor_si128(t1, t5);
  324. t4 = _mm_xor_si128(t4, t1);
  325. t5 = _mm_srli_epi32(t1, 1);
  326. encIV = _mm_aesenc_si128(encIV, k[12]);
  327. t2 = _mm_srli_epi32(t1, 2);
  328. t3 = _mm_srli_epi32(t1, 7);
  329. encIV = _mm_aesenc_si128(encIV, k[13]);
  330. t4 = _mm_xor_si128(t4, t2);
  331. t4 = _mm_xor_si128(t4, t3);
  332. encIV = _mm_aesenclast_si128(encIV, k[14]);
  333. t4 = _mm_xor_si128(t4, t5);
  334. _mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
  335. }
  336. #ifdef __GNUC__
  337. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes")))
  338. #endif
  339. void AES::CTR::p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
  340. {
  341. const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
  342. uint64_t c1 = Utils::ntoh(_ctr[1]);
  343. const __m128i *const k = _aes.p_k.ni.k;
  344. const __m128i k0 = k[0];
  345. const __m128i k1 = k[1];
  346. const __m128i k2 = k[2];
  347. const __m128i k3 = k[3];
  348. const __m128i k4 = k[4];
  349. const __m128i k5 = k[5];
  350. const __m128i k6 = k[6];
  351. const __m128i k7 = k[7];
  352. const __m128i k8 = k[8];
  353. const __m128i k9 = k[9];
  354. const __m128i k10 = k[10];
  355. const __m128i k11 = k[11];
  356. const __m128i k12 = k[12];
  357. const __m128i k13 = k[13];
  358. const __m128i k14 = k[14];
  359. // Complete any unfinished blocks from previous calls to crypt().
  360. unsigned int totalLen = _len;
  361. if ((totalLen & 15U)) {
  362. for (;;) {
  363. if (unlikely(!len)) {
  364. _ctr[1] = Utils::hton(c1);
  365. _len = totalLen;
  366. return;
  367. }
  368. --len;
  369. out[totalLen++] = *(in++);
  370. if (!(totalLen & 15U)) {
  371. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  372. d0 = _mm_xor_si128(d0, k0);
  373. d0 = _mm_aesenc_si128(d0, k1);
  374. d0 = _mm_aesenc_si128(d0, k2);
  375. d0 = _mm_aesenc_si128(d0, k3);
  376. d0 = _mm_aesenc_si128(d0, k4);
  377. d0 = _mm_aesenc_si128(d0, k5);
  378. d0 = _mm_aesenc_si128(d0, k6);
  379. d0 = _mm_aesenc_si128(d0, k7);
  380. d0 = _mm_aesenc_si128(d0, k8);
  381. d0 = _mm_aesenc_si128(d0, k9);
  382. d0 = _mm_aesenc_si128(d0, k10);
  383. __m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
  384. d0 = _mm_aesenc_si128(d0, k11);
  385. const __m128i p0 = _mm_loadu_si128(outblk);
  386. d0 = _mm_aesenc_si128(d0, k12);
  387. d0 = _mm_aesenc_si128(d0, k13);
  388. d0 = _mm_aesenclast_si128(d0, k14);
  389. _mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
  390. break;
  391. }
  392. }
  393. }
  394. out += totalLen;
  395. _len = totalLen + len;
  396. if (likely(len >= 64)) {
  397. #if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  398. if (Utils::CPUID.vaes && (len >= 256)) {
  399. if (Utils::CPUID.avx512f) {
  400. p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
  401. } else {
  402. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  403. }
  404. goto skip_conventional_aesni_64;
  405. }
  406. #endif
  407. #if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  408. if (Utils::CPUID.vaes && (len >= 256)) {
  409. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  410. goto skip_conventional_aesni_64;
  411. }
  412. #endif
  413. const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
  414. len &= 63;
  415. __m128i d0, d1, d2, d3;
  416. do {
  417. const uint64_t c10 = Utils::hton(c1);
  418. const uint64_t c11 = Utils::hton(c1 + 1ULL);
  419. const uint64_t c12 = Utils::hton(c1 + 2ULL);
  420. const uint64_t c13 = Utils::hton(c1 + 3ULL);
  421. d0 = _mm_insert_epi64(dd, (long long)c10, 1);
  422. d1 = _mm_insert_epi64(dd, (long long)c11, 1);
  423. d2 = _mm_insert_epi64(dd, (long long)c12, 1);
  424. d3 = _mm_insert_epi64(dd, (long long)c13, 1);
  425. c1 += 4;
  426. d0 = _mm_xor_si128(d0, k0);
  427. d1 = _mm_xor_si128(d1, k0);
  428. d2 = _mm_xor_si128(d2, k0);
  429. d3 = _mm_xor_si128(d3, k0);
  430. d0 = _mm_aesenc_si128(d0, k1);
  431. d1 = _mm_aesenc_si128(d1, k1);
  432. d2 = _mm_aesenc_si128(d2, k1);
  433. d3 = _mm_aesenc_si128(d3, k1);
  434. d0 = _mm_aesenc_si128(d0, k2);
  435. d1 = _mm_aesenc_si128(d1, k2);
  436. d2 = _mm_aesenc_si128(d2, k2);
  437. d3 = _mm_aesenc_si128(d3, k2);
  438. d0 = _mm_aesenc_si128(d0, k3);
  439. d1 = _mm_aesenc_si128(d1, k3);
  440. d2 = _mm_aesenc_si128(d2, k3);
  441. d3 = _mm_aesenc_si128(d3, k3);
  442. d0 = _mm_aesenc_si128(d0, k4);
  443. d1 = _mm_aesenc_si128(d1, k4);
  444. d2 = _mm_aesenc_si128(d2, k4);
  445. d3 = _mm_aesenc_si128(d3, k4);
  446. d0 = _mm_aesenc_si128(d0, k5);
  447. d1 = _mm_aesenc_si128(d1, k5);
  448. d2 = _mm_aesenc_si128(d2, k5);
  449. d3 = _mm_aesenc_si128(d3, k5);
  450. d0 = _mm_aesenc_si128(d0, k6);
  451. d1 = _mm_aesenc_si128(d1, k6);
  452. d2 = _mm_aesenc_si128(d2, k6);
  453. d3 = _mm_aesenc_si128(d3, k6);
  454. d0 = _mm_aesenc_si128(d0, k7);
  455. d1 = _mm_aesenc_si128(d1, k7);
  456. d2 = _mm_aesenc_si128(d2, k7);
  457. d3 = _mm_aesenc_si128(d3, k7);
  458. d0 = _mm_aesenc_si128(d0, k8);
  459. d1 = _mm_aesenc_si128(d1, k8);
  460. d2 = _mm_aesenc_si128(d2, k8);
  461. d3 = _mm_aesenc_si128(d3, k8);
  462. d0 = _mm_aesenc_si128(d0, k9);
  463. d1 = _mm_aesenc_si128(d1, k9);
  464. d2 = _mm_aesenc_si128(d2, k9);
  465. d3 = _mm_aesenc_si128(d3, k9);
  466. d0 = _mm_aesenc_si128(d0, k10);
  467. d1 = _mm_aesenc_si128(d1, k10);
  468. d2 = _mm_aesenc_si128(d2, k10);
  469. d3 = _mm_aesenc_si128(d3, k10);
  470. d0 = _mm_aesenc_si128(d0, k11);
  471. d1 = _mm_aesenc_si128(d1, k11);
  472. d2 = _mm_aesenc_si128(d2, k11);
  473. d3 = _mm_aesenc_si128(d3, k11);
  474. d0 = _mm_aesenc_si128(d0, k12);
  475. d1 = _mm_aesenc_si128(d1, k12);
  476. d2 = _mm_aesenc_si128(d2, k12);
  477. d3 = _mm_aesenc_si128(d3, k12);
  478. d0 = _mm_aesenc_si128(d0, k13);
  479. d1 = _mm_aesenc_si128(d1, k13);
  480. d2 = _mm_aesenc_si128(d2, k13);
  481. d3 = _mm_aesenc_si128(d3, k13);
  482. d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
  483. d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
  484. d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
  485. d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
  486. in += 64;
  487. _mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
  488. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
  489. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
  490. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
  491. out += 64;
  492. } while (likely(in != eof64));
  493. }
  494. skip_conventional_aesni_64:
  495. while (len >= 16) {
  496. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  497. d0 = _mm_xor_si128(d0, k0);
  498. d0 = _mm_aesenc_si128(d0, k1);
  499. d0 = _mm_aesenc_si128(d0, k2);
  500. d0 = _mm_aesenc_si128(d0, k3);
  501. d0 = _mm_aesenc_si128(d0, k4);
  502. d0 = _mm_aesenc_si128(d0, k5);
  503. d0 = _mm_aesenc_si128(d0, k6);
  504. d0 = _mm_aesenc_si128(d0, k7);
  505. d0 = _mm_aesenc_si128(d0, k8);
  506. d0 = _mm_aesenc_si128(d0, k9);
  507. d0 = _mm_aesenc_si128(d0, k10);
  508. d0 = _mm_aesenc_si128(d0, k11);
  509. d0 = _mm_aesenc_si128(d0, k12);
  510. d0 = _mm_aesenc_si128(d0, k13);
  511. _mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
  512. in += 16;
  513. len -= 16;
  514. out += 16;
  515. }
  516. // Any remaining input is placed in _out. This will be picked up and crypted
  517. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  518. // an even multiple of 16.
  519. for (unsigned int i = 0; i < len; ++i)
  520. out[i] = in[i];
  521. _ctr[1] = Utils::hton(c1);
  522. }
  523. #ifdef __GNUC__
  524. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  525. #endif
  526. void AES::p_init_aesni(const uint8_t *key) noexcept
  527. {
  528. __m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
  529. p_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  530. p_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
  531. p_k.ni.k[2] = k2 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
  532. p_k.ni.k[3] = k3 = t2 = p_init256_2_aesni(t1, t2);
  533. p_k.ni.k[4] = k4 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
  534. p_k.ni.k[5] = k5 = t2 = p_init256_2_aesni(t1, t2);
  535. p_k.ni.k[6] = k6 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
  536. p_k.ni.k[7] = k7 = t2 = p_init256_2_aesni(t1, t2);
  537. p_k.ni.k[8] = k8 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
  538. p_k.ni.k[9] = k9 = t2 = p_init256_2_aesni(t1, t2);
  539. p_k.ni.k[10] = k10 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
  540. p_k.ni.k[11] = k11 = t2 = p_init256_2_aesni(t1, t2);
  541. p_k.ni.k[12] = k12 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
  542. p_k.ni.k[13] = k13 = t2 = p_init256_2_aesni(t1, t2);
  543. p_k.ni.k[14] = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
  544. p_k.ni.k[15] = _mm_aesimc_si128(k13);
  545. p_k.ni.k[16] = _mm_aesimc_si128(k12);
  546. p_k.ni.k[17] = _mm_aesimc_si128(k11);
  547. p_k.ni.k[18] = _mm_aesimc_si128(k10);
  548. p_k.ni.k[19] = _mm_aesimc_si128(k9);
  549. p_k.ni.k[20] = _mm_aesimc_si128(k8);
  550. p_k.ni.k[21] = _mm_aesimc_si128(k7);
  551. p_k.ni.k[22] = _mm_aesimc_si128(k6);
  552. p_k.ni.k[23] = _mm_aesimc_si128(k5);
  553. p_k.ni.k[24] = _mm_aesimc_si128(k4);
  554. p_k.ni.k[25] = _mm_aesimc_si128(k3);
  555. p_k.ni.k[26] = _mm_aesimc_si128(k2);
  556. p_k.ni.k[27] = _mm_aesimc_si128(k1);
  557. __m128i h = p_k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  558. h = _mm_aesenc_si128(h, k1);
  559. h = _mm_aesenc_si128(h, k2);
  560. h = _mm_aesenc_si128(h, k3);
  561. h = _mm_aesenc_si128(h, k4);
  562. h = _mm_aesenc_si128(h, k5);
  563. h = _mm_aesenc_si128(h, k6);
  564. h = _mm_aesenc_si128(h, k7);
  565. h = _mm_aesenc_si128(h, k8);
  566. h = _mm_aesenc_si128(h, k9);
  567. h = _mm_aesenc_si128(h, k10);
  568. h = _mm_aesenc_si128(h, k11);
  569. h = _mm_aesenc_si128(h, k12);
  570. h = _mm_aesenc_si128(h, k13);
  571. h = _mm_aesenclast_si128(h, p_k.ni.k[14]);
  572. __m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
  573. __m128i hh = p_gmacPCLMUL128(hswap, h);
  574. __m128i hhh = p_gmacPCLMUL128(hswap, hh);
  575. __m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
  576. p_k.ni.h[0] = hswap;
  577. p_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
  578. p_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
  579. p_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
  580. p_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
  581. p_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
  582. p_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
  583. p_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
  584. }
  585. #ifdef __GNUC__
  586. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  587. #endif
  588. void AES::p_encrypt_aesni(const void *const in, void *const out) const noexcept
  589. {
  590. __m128i tmp = _mm_loadu_si128((const __m128i *)in);
  591. tmp = _mm_xor_si128(tmp, p_k.ni.k[0]);
  592. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[1]);
  593. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[2]);
  594. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[3]);
  595. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[4]);
  596. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[5]);
  597. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[6]);
  598. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[7]);
  599. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[8]);
  600. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[9]);
  601. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[10]);
  602. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[11]);
  603. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[12]);
  604. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[13]);
  605. _mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, p_k.ni.k[14]));
  606. }
  607. #ifdef __GNUC__
  608. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  609. #endif
  610. void AES::p_decrypt_aesni(const void *in, void *out) const noexcept
  611. {
  612. __m128i tmp = _mm_loadu_si128((const __m128i *)in);
  613. tmp = _mm_xor_si128(tmp, p_k.ni.k[14]);
  614. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[15]);
  615. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[16]);
  616. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[17]);
  617. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[18]);
  618. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[19]);
  619. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[20]);
  620. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[21]);
  621. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[22]);
  622. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[23]);
  623. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[24]);
  624. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[25]);
  625. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[26]);
  626. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[27]);
  627. _mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, p_k.ni.k[0]));
  628. }
  629. } // namespace ZeroTier
  630. #endif // ZT_AES_AESNI