AES_armcrypto.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2025-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Constants.hpp"
  14. #include "AES.hpp"
  15. #ifdef ZT_AES_NEON
  16. namespace ZeroTier {
  17. namespace {
  18. ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
  19. {
  20. uint8x16_t r0, r1, t0, t1;
  21. r0 = vld1q_u8(b);
  22. const uint8x16_t z = veorq_u8(h, h);
  23. y = veorq_u8(r0, y);
  24. y = vrbitq_u8(y);
  25. const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
  26. t0 = vextq_u8(y, y, 8);
  27. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (r0) : "w" (h), "w" (y));
  28. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (r1) : "w" (h), "w" (y));
  29. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t1) : "w" (h), "w" (t0));
  30. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (h), "w" (t0));
  31. t0 = veorq_u8(t0, t1);
  32. t1 = vextq_u8(z, t0, 8);
  33. r0 = veorq_u8(r0, t1);
  34. t1 = vextq_u8(t0, z, 8);
  35. r1 = veorq_u8(r1, t1);
  36. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (r1), "w" (p));
  37. t1 = vextq_u8(t0, z, 8);
  38. r1 = veorq_u8(r1, t1);
  39. t1 = vextq_u8(z, t0, 8);
  40. r0 = veorq_u8(r0, t1);
  41. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t0) : "w" (r1), "w" (p));
  42. return vrbitq_u8(veorq_u8(r0, t0));
  43. }
  44. } // anonymous namespace
  45. void AES::GMAC::p_armUpdate(const uint8_t *in, unsigned int len) noexcept
  46. {
  47. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
  48. const uint8x16_t h = _aes.p_k.neon.h;
  49. if (_rp) {
  50. for(;;) {
  51. if (!len)
  52. return;
  53. --len;
  54. _r[_rp++] = *(in++);
  55. if (_rp == 16) {
  56. y = s_clmul_armneon_crypto(h, y, _r);
  57. break;
  58. }
  59. }
  60. }
  61. while (len >= 16) {
  62. y = s_clmul_armneon_crypto(h, y, in);
  63. in += 16;
  64. len -= 16;
  65. }
  66. vst1q_u8(reinterpret_cast<uint8_t *>(_y), y);
  67. for (unsigned int i = 0; i < len; ++i)
  68. _r[i] = in[i];
  69. _rp = len; // len is always less than 16 here
  70. }
  71. void AES::GMAC::p_armFinish(uint8_t tag[16]) noexcept
  72. {
  73. uint64_t tmp[2];
  74. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
  75. const uint8x16_t h = _aes.p_k.neon.h;
  76. if (_rp) {
  77. while (_rp < 16)
  78. _r[_rp++] = 0;
  79. y = s_clmul_armneon_crypto(h, y, _r);
  80. }
  81. tmp[0] = Utils::hton((uint64_t)_len << 3U);
  82. tmp[1] = 0;
  83. y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t *>(tmp));
  84. Utils::copy< 12 >(tmp, _iv);
  85. #if __BYTE_ORDER == __BIG_ENDIAN
  86. reinterpret_cast<uint32_t *>(tmp)[3] = 0x00000001;
  87. #else
  88. reinterpret_cast<uint32_t *>(tmp)[3] = 0x01000000;
  89. #endif
  90. _aes.encrypt(tmp, tmp);
  91. uint8x16_t yy = y;
  92. Utils::storeMachineEndian< uint64_t >(tag, tmp[0] ^ reinterpret_cast<const uint64_t *>(&yy)[0]);
  93. Utils::storeMachineEndian< uint64_t >(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t *>(&yy)[1]);
  94. }
  95. void AES::CTR::p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
  96. {
  97. uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t *>(_ctr)));
  98. const uint32x4_t one = {0,0,0,1};
  99. uint8x16_t k0 = _aes.p_k.neon.ek[0];
  100. uint8x16_t k1 = _aes.p_k.neon.ek[1];
  101. uint8x16_t k2 = _aes.p_k.neon.ek[2];
  102. uint8x16_t k3 = _aes.p_k.neon.ek[3];
  103. uint8x16_t k4 = _aes.p_k.neon.ek[4];
  104. uint8x16_t k5 = _aes.p_k.neon.ek[5];
  105. uint8x16_t k6 = _aes.p_k.neon.ek[6];
  106. uint8x16_t k7 = _aes.p_k.neon.ek[7];
  107. uint8x16_t k8 = _aes.p_k.neon.ek[8];
  108. uint8x16_t k9 = _aes.p_k.neon.ek[9];
  109. uint8x16_t k10 = _aes.p_k.neon.ek[10];
  110. uint8x16_t k11 = _aes.p_k.neon.ek[11];
  111. uint8x16_t k12 = _aes.p_k.neon.ek[12];
  112. uint8x16_t k13 = _aes.p_k.neon.ek[13];
  113. uint8x16_t k14 = _aes.p_k.neon.ek[14];
  114. unsigned int totalLen = _len;
  115. if ((totalLen & 15U) != 0) {
  116. for (;;) {
  117. if (unlikely(!len)) {
  118. vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
  119. _len = totalLen;
  120. return;
  121. }
  122. --len;
  123. out[totalLen++] = *(in++);
  124. if ((totalLen & 15U) == 0) {
  125. uint8_t *const otmp = out + (totalLen - 16);
  126. uint8x16_t d0 = vrev32q_u8(dd);
  127. uint8x16_t pt = vld1q_u8(otmp);
  128. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  129. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  130. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  131. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  132. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  133. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  134. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  135. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  136. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  137. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  138. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  139. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  140. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  141. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  142. vst1q_u8(otmp, veorq_u8(pt, d0));
  143. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  144. break;
  145. }
  146. }
  147. }
  148. out += totalLen;
  149. _len = totalLen + len;
  150. if (likely(len >= 64)) {
  151. const uint32x4_t four = vshlq_n_u32(one, 2);
  152. uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  153. uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
  154. uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
  155. for (;;) {
  156. len -= 64;
  157. uint8x16_t d0 = vrev32q_u8(dd);
  158. uint8x16_t d1 = vrev32q_u8(dd1);
  159. uint8x16_t d2 = vrev32q_u8(dd2);
  160. uint8x16_t d3 = vrev32q_u8(dd3);
  161. uint8x16_t pt0 = vld1q_u8(in);
  162. uint8x16_t pt1 = vld1q_u8(in + 16);
  163. uint8x16_t pt2 = vld1q_u8(in + 32);
  164. uint8x16_t pt3 = vld1q_u8(in + 48);
  165. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  166. d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
  167. d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
  168. d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
  169. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  170. d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
  171. d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
  172. d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
  173. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  174. d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
  175. d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
  176. d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
  177. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  178. d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
  179. d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
  180. d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
  181. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  182. d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
  183. d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
  184. d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
  185. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  186. d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
  187. d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
  188. d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
  189. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  190. d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
  191. d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
  192. d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
  193. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  194. d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
  195. d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
  196. d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
  197. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  198. d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
  199. d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
  200. d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
  201. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  202. d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
  203. d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
  204. d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
  205. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  206. d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
  207. d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
  208. d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
  209. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  210. d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
  211. d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
  212. d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
  213. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  214. d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
  215. d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
  216. d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
  217. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  218. d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
  219. d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
  220. d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
  221. d0 = veorq_u8(pt0, d0);
  222. d1 = veorq_u8(pt1, d1);
  223. d2 = veorq_u8(pt2, d2);
  224. d3 = veorq_u8(pt3, d3);
  225. vst1q_u8(out, d0);
  226. vst1q_u8(out + 16, d1);
  227. vst1q_u8(out + 32, d2);
  228. vst1q_u8(out + 48, d3);
  229. out += 64;
  230. in += 64;
  231. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
  232. if (unlikely(len < 64))
  233. break;
  234. dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
  235. dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
  236. dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
  237. }
  238. }
  239. while (len >= 16) {
  240. len -= 16;
  241. uint8x16_t d0 = vrev32q_u8(dd);
  242. uint8x16_t pt = vld1q_u8(in);
  243. in += 16;
  244. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  245. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  246. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  247. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  248. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  249. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  250. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  251. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  252. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  253. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  254. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  255. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  256. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  257. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  258. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  259. vst1q_u8(out, veorq_u8(pt, d0));
  260. out += 16;
  261. }
  262. // Any remaining input is placed in _out. This will be picked up and crypted
  263. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  264. // an even multiple of 16.
  265. for (unsigned int i = 0; i < len; ++i)
  266. out[i] = in[i];
  267. vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
  268. }
  269. #define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
  270. #define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
  271. #define ZT_INIT_ARMNEON_CRYPTO_NK 8
  272. #define ZT_INIT_ARMNEON_CRYPTO_NB 4
  273. #define ZT_INIT_ARMNEON_CRYPTO_NR 14
  274. void AES::p_init_armneon_crypto(const uint8_t *key) noexcept
  275. {
  276. static const uint8_t s_sbox[256] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,
  277. 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea,
  278. 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
  279. uint64_t h[2];
  280. uint32_t *const w = reinterpret_cast<uint32_t *>(p_k.neon.ek);
  281. for (unsigned int i=0;i<ZT_INIT_ARMNEON_CRYPTO_NK;++i) {
  282. const unsigned int j = i * 4;
  283. w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
  284. }
  285. for (unsigned int i=ZT_INIT_ARMNEON_CRYPTO_NK;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
  286. uint32_t t = w[i - 1];
  287. const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
  288. if (imod == 0) {
  289. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
  290. } else if (imod == 4) {
  291. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
  292. }
  293. w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
  294. }
  295. for (unsigned int i=0;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i)
  296. w[i] = Utils::hton(w[i]);
  297. p_k.neon.dk[0] = p_k.neon.ek[14];
  298. for (int i=1;i<14;++i)
  299. p_k.neon.dk[i] = vaesimcq_u8(p_k.neon.ek[14 - i]);
  300. p_k.neon.dk[14] = p_k.neon.ek[0];
  301. p_encrypt_armneon_crypto(Utils::ZERO256, h);
  302. Utils::copy<16>(&(p_k.neon.h), h);
  303. p_k.neon.h = vrbitq_u8(p_k.neon.h);
  304. p_k.sw.h[0] = Utils::ntoh(h[0]);
  305. p_k.sw.h[1] = Utils::ntoh(h[1]);
  306. }
  307. void AES::p_encrypt_armneon_crypto(const void *const in, void *const out) const noexcept
  308. {
  309. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
  310. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[0]));
  311. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[1]));
  312. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[2]));
  313. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[3]));
  314. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[4]));
  315. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[5]));
  316. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[6]));
  317. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[7]));
  318. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[8]));
  319. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[9]));
  320. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[10]));
  321. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[11]));
  322. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[12]));
  323. tmp = veorq_u8(vaeseq_u8(tmp, p_k.neon.ek[13]), p_k.neon.ek[14]);
  324. vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
  325. }
  326. void AES::p_decrypt_armneon_crypto(const void *const in, void *const out) const noexcept
  327. {
  328. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
  329. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[0]));
  330. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[1]));
  331. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[2]));
  332. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[3]));
  333. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[4]));
  334. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[5]));
  335. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[6]));
  336. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[7]));
  337. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[8]));
  338. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[9]));
  339. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[10]));
  340. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[11]));
  341. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[12]));
  342. tmp = veorq_u8(vaesdq_u8(tmp, p_k.neon.dk[13]), p_k.neon.dk[14]);
  343. vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
  344. }
  345. } // namespace ZeroTier
  346. #endif // ZT_AES_NEON