2
0

AES_armcrypto.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2025-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Constants.hpp"
  14. #include "AES.hpp"
  15. #ifdef ZT_AES_NEON
  16. namespace ZeroTier {
  17. namespace {
  18. ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
  19. {
  20. uint8x16_t r0, r1, t0, t1;
  21. r0 = vld1q_u8(b);
  22. const uint8x16_t z = veorq_u8(h, h);
  23. y = veorq_u8(r0, y);
  24. y = vrbitq_u8(y);
  25. const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
  26. t0 = vextq_u8(y, y, 8);
  27. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (r0) : "w" (h), "w" (y));
  28. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (r1) : "w" (h), "w" (y));
  29. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t1) : "w" (h), "w" (t0));
  30. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (h), "w" (t0));
  31. t0 = veorq_u8(t0, t1);
  32. t1 = vextq_u8(z, t0, 8);
  33. r0 = veorq_u8(r0, t1);
  34. t1 = vextq_u8(t0, z, 8);
  35. r1 = veorq_u8(r1, t1);
  36. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (r1), "w" (p));
  37. t1 = vextq_u8(t0, z, 8);
  38. r1 = veorq_u8(r1, t1);
  39. t1 = vextq_u8(z, t0, 8);
  40. r0 = veorq_u8(r0, t1);
  41. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t0) : "w" (r1), "w" (p));
  42. return vrbitq_u8(veorq_u8(r0, t0));
  43. }
  44. } // anonymous namespace
  45. void AES::GMAC::p_armUpdate(const uint8_t *in, unsigned int len) noexcept
  46. {
  47. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
  48. const uint8x16_t h = _aes.p_k.neon.h;
  49. if (_rp) {
  50. for(;;) {
  51. if (!len) {
  52. return;
  53. }
  54. --len;
  55. _r[_rp++] = *(in++);
  56. if (_rp == 16) {
  57. y = s_clmul_armneon_crypto(h, y, _r);
  58. break;
  59. }
  60. }
  61. }
  62. while (len >= 16) {
  63. y = s_clmul_armneon_crypto(h, y, in);
  64. in += 16;
  65. len -= 16;
  66. }
  67. vst1q_u8(reinterpret_cast<uint8_t *>(_y), y);
  68. for (unsigned int i = 0; i < len; ++i) {
  69. _r[i] = in[i];
  70. }
  71. _rp = len; // len is always less than 16 here
  72. }
  73. void AES::GMAC::p_armFinish(uint8_t tag[16]) noexcept
  74. {
  75. uint64_t tmp[2];
  76. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
  77. const uint8x16_t h = _aes.p_k.neon.h;
  78. if (_rp) {
  79. while (_rp < 16) {
  80. _r[_rp++] = 0;
  81. }
  82. y = s_clmul_armneon_crypto(h, y, _r);
  83. }
  84. tmp[0] = Utils::hton((uint64_t)_len << 3U);
  85. tmp[1] = 0;
  86. y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t *>(tmp));
  87. Utils::copy< 12 >(tmp, _iv);
  88. #if __BYTE_ORDER == __BIG_ENDIAN
  89. reinterpret_cast<uint32_t *>(tmp)[3] = 0x00000001;
  90. #else
  91. reinterpret_cast<uint32_t *>(tmp)[3] = 0x01000000;
  92. #endif
  93. _aes.encrypt(tmp, tmp);
  94. uint8x16_t yy = y;
  95. Utils::storeMachineEndian< uint64_t >(tag, tmp[0] ^ reinterpret_cast<const uint64_t *>(&yy)[0]);
  96. Utils::storeMachineEndian< uint64_t >(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t *>(&yy)[1]);
  97. }
  98. void AES::CTR::p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
  99. {
  100. uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t *>(_ctr)));
  101. const uint32x4_t one = {0,0,0,1};
  102. uint8x16_t k0 = _aes.p_k.neon.ek[0];
  103. uint8x16_t k1 = _aes.p_k.neon.ek[1];
  104. uint8x16_t k2 = _aes.p_k.neon.ek[2];
  105. uint8x16_t k3 = _aes.p_k.neon.ek[3];
  106. uint8x16_t k4 = _aes.p_k.neon.ek[4];
  107. uint8x16_t k5 = _aes.p_k.neon.ek[5];
  108. uint8x16_t k6 = _aes.p_k.neon.ek[6];
  109. uint8x16_t k7 = _aes.p_k.neon.ek[7];
  110. uint8x16_t k8 = _aes.p_k.neon.ek[8];
  111. uint8x16_t k9 = _aes.p_k.neon.ek[9];
  112. uint8x16_t k10 = _aes.p_k.neon.ek[10];
  113. uint8x16_t k11 = _aes.p_k.neon.ek[11];
  114. uint8x16_t k12 = _aes.p_k.neon.ek[12];
  115. uint8x16_t k13 = _aes.p_k.neon.ek[13];
  116. uint8x16_t k14 = _aes.p_k.neon.ek[14];
  117. unsigned int totalLen = _len;
  118. if ((totalLen & 15U) != 0) {
  119. for (;;) {
  120. if (unlikely(!len)) {
  121. vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
  122. _len = totalLen;
  123. return;
  124. }
  125. --len;
  126. out[totalLen++] = *(in++);
  127. if ((totalLen & 15U) == 0) {
  128. uint8_t *const otmp = out + (totalLen - 16);
  129. uint8x16_t d0 = vrev32q_u8(dd);
  130. uint8x16_t pt = vld1q_u8(otmp);
  131. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  132. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  133. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  134. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  135. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  136. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  137. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  138. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  139. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  140. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  141. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  142. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  143. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  144. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  145. vst1q_u8(otmp, veorq_u8(pt, d0));
  146. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  147. break;
  148. }
  149. }
  150. }
  151. out += totalLen;
  152. _len = totalLen + len;
  153. if (likely(len >= 64)) {
  154. const uint32x4_t four = vshlq_n_u32(one, 2);
  155. uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  156. uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
  157. uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
  158. for (;;) {
  159. len -= 64;
  160. uint8x16_t d0 = vrev32q_u8(dd);
  161. uint8x16_t d1 = vrev32q_u8(dd1);
  162. uint8x16_t d2 = vrev32q_u8(dd2);
  163. uint8x16_t d3 = vrev32q_u8(dd3);
  164. uint8x16_t pt0 = vld1q_u8(in);
  165. uint8x16_t pt1 = vld1q_u8(in + 16);
  166. uint8x16_t pt2 = vld1q_u8(in + 32);
  167. uint8x16_t pt3 = vld1q_u8(in + 48);
  168. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  169. d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
  170. d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
  171. d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
  172. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  173. d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
  174. d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
  175. d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
  176. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  177. d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
  178. d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
  179. d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
  180. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  181. d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
  182. d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
  183. d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
  184. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  185. d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
  186. d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
  187. d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
  188. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  189. d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
  190. d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
  191. d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
  192. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  193. d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
  194. d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
  195. d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
  196. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  197. d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
  198. d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
  199. d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
  200. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  201. d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
  202. d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
  203. d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
  204. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  205. d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
  206. d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
  207. d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
  208. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  209. d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
  210. d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
  211. d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
  212. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  213. d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
  214. d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
  215. d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
  216. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  217. d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
  218. d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
  219. d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
  220. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  221. d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
  222. d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
  223. d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
  224. d0 = veorq_u8(pt0, d0);
  225. d1 = veorq_u8(pt1, d1);
  226. d2 = veorq_u8(pt2, d2);
  227. d3 = veorq_u8(pt3, d3);
  228. vst1q_u8(out, d0);
  229. vst1q_u8(out + 16, d1);
  230. vst1q_u8(out + 32, d2);
  231. vst1q_u8(out + 48, d3);
  232. out += 64;
  233. in += 64;
  234. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
  235. if (unlikely(len < 64)) {
  236. break;
  237. }
  238. dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
  239. dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
  240. dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
  241. }
  242. }
  243. while (len >= 16) {
  244. len -= 16;
  245. uint8x16_t d0 = vrev32q_u8(dd);
  246. uint8x16_t pt = vld1q_u8(in);
  247. in += 16;
  248. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  249. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  250. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  251. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  252. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  253. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  254. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  255. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  256. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  257. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  258. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  259. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  260. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  261. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  262. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  263. vst1q_u8(out, veorq_u8(pt, d0));
  264. out += 16;
  265. }
  266. // Any remaining input is placed in _out. This will be picked up and crypted
  267. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  268. // an even multiple of 16.
  269. for (unsigned int i = 0; i < len; ++i) {
  270. out[i] = in[i];
  271. }
  272. vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
  273. }
  274. #define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
  275. #define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
  276. #define ZT_INIT_ARMNEON_CRYPTO_NK 8
  277. #define ZT_INIT_ARMNEON_CRYPTO_NB 4
  278. #define ZT_INIT_ARMNEON_CRYPTO_NR 14
  279. void AES::p_init_armneon_crypto(const uint8_t *key) noexcept
  280. {
  281. static const uint8_t s_sbox[256] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,
  282. 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea,
  283. 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
  284. uint64_t h[2];
  285. uint32_t *const w = reinterpret_cast<uint32_t *>(p_k.neon.ek);
  286. for (unsigned int i=0;i<ZT_INIT_ARMNEON_CRYPTO_NK;++i) {
  287. const unsigned int j = i * 4;
  288. w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
  289. }
  290. for (unsigned int i=ZT_INIT_ARMNEON_CRYPTO_NK;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
  291. uint32_t t = w[i - 1];
  292. const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
  293. if (imod == 0) {
  294. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
  295. } else if (imod == 4) {
  296. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
  297. }
  298. w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
  299. }
  300. for (unsigned int i=0;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
  301. w[i] = Utils::hton(w[i]);
  302. }
  303. p_k.neon.dk[0] = p_k.neon.ek[14];
  304. for (int i=1;i<14;++i) {
  305. p_k.neon.dk[i] = vaesimcq_u8(p_k.neon.ek[14 - i]);
  306. }
  307. p_k.neon.dk[14] = p_k.neon.ek[0];
  308. p_encrypt_armneon_crypto(Utils::ZERO256, h);
  309. Utils::copy<16>(&(p_k.neon.h), h);
  310. p_k.neon.h = vrbitq_u8(p_k.neon.h);
  311. p_k.sw.h[0] = Utils::ntoh(h[0]);
  312. p_k.sw.h[1] = Utils::ntoh(h[1]);
  313. }
  314. void AES::p_encrypt_armneon_crypto(const void *const in, void *const out) const noexcept
  315. {
  316. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
  317. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[0]));
  318. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[1]));
  319. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[2]));
  320. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[3]));
  321. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[4]));
  322. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[5]));
  323. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[6]));
  324. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[7]));
  325. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[8]));
  326. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[9]));
  327. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[10]));
  328. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[11]));
  329. tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[12]));
  330. tmp = veorq_u8(vaeseq_u8(tmp, p_k.neon.ek[13]), p_k.neon.ek[14]);
  331. vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
  332. }
  333. void AES::p_decrypt_armneon_crypto(const void *const in, void *const out) const noexcept
  334. {
  335. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
  336. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[0]));
  337. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[1]));
  338. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[2]));
  339. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[3]));
  340. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[4]));
  341. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[5]));
  342. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[6]));
  343. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[7]));
  344. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[8]));
  345. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[9]));
  346. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[10]));
  347. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[11]));
  348. tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[12]));
  349. tmp = veorq_u8(vaesdq_u8(tmp, p_k.neon.dk[13]), p_k.neon.dk[14]);
  350. vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
  351. }
  352. } // namespace ZeroTier
  353. #endif // ZT_AES_NEON