123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597 |
- /*
- * Copyright (c)2013-2020 ZeroTier, Inc.
- *
- * Use of this software is governed by the Business Source License included
- * in the LICENSE.TXT file in the project's root directory.
- *
- * Change Date: 2026-01-01
- *
- * On the date above, in accordance with the Business Source License, use
- * of this software will be governed by version 2.0 of the Apache License.
- */
- /****/
- #ifndef ZT_AES_HPP
- #define ZT_AES_HPP
- #include "Constants.hpp"
- #include "Utils.hpp"
- #include "SHA512.hpp"
- // Uncomment to disable all hardware acceleration (usually for testing)
- //#define ZT_AES_NO_ACCEL
- #if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_X64)
- #define ZT_AES_AESNI 1
- #endif
- #if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_ARM_HAS_NEON) && defined(ZT_ARCH_ARM_HAS_CRYPTO)
- #define ZT_AES_NEON 1
- #endif
- #ifndef ZT_INLINE
- #define ZT_INLINE inline
- #endif
- namespace ZeroTier {
- /**
- * AES-256 and pals including GMAC, CTR, etc.
- *
- * This includes hardware acceleration for certain processors. The software
- * mode is fallback and is significantly slower.
- */
- class AES
- {
- public:
- /**
- * @return True if this system has hardware AES acceleration
- */
- static ZT_INLINE bool accelerated()
- {
- #ifdef ZT_AES_AESNI
- return Utils::CPUID.aes;
- #else
- #ifdef ZT_AES_NEON
- return Utils::ARMCAP.aes;
- #else
- return false;
- #endif
- #endif
- }
- /**
- * Create an un-initialized AES instance (must call init() before use)
- */
- ZT_INLINE AES() noexcept
- {}
- /**
- * Create an AES instance with the given key
- *
- * @param key 256-bit key
- */
- explicit ZT_INLINE AES(const void *const key) noexcept
- { this->init(key); }
- ZT_INLINE ~AES()
- { Utils::burn(&p_k, sizeof(p_k)); }
- /**
- * Set (or re-set) this AES256 cipher's key
- *
- * @param key 256-bit / 32-byte key
- */
- ZT_INLINE void init(const void *const key) noexcept
- {
- #ifdef ZT_AES_AESNI
- if (likely(Utils::CPUID.aes)) {
- p_init_aesni(reinterpret_cast<const uint8_t *>(key));
- return;
- }
- #endif
- #ifdef ZT_AES_NEON
- if (Utils::ARMCAP.aes) {
- p_init_armneon_crypto(reinterpret_cast<const uint8_t *>(key));
- return;
- }
- #endif
- p_initSW(reinterpret_cast<const uint8_t *>(key));
- }
- /**
- * Encrypt a single AES block
- *
- * @param in Input block
- * @param out Output block (can be same as input)
- */
- ZT_INLINE void encrypt(const void *const in, void *const out) const noexcept
- {
- #ifdef ZT_AES_AESNI
- if (likely(Utils::CPUID.aes)) {
- p_encrypt_aesni(in, out);
- return;
- }
- #endif
- #ifdef ZT_AES_NEON
- if (Utils::ARMCAP.aes) {
- p_encrypt_armneon_crypto(in, out);
- return;
- }
- #endif
- p_encryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
- }
- /**
- * Decrypt a single AES block
- *
- * @param in Input block
- * @param out Output block (can be same as input)
- */
- ZT_INLINE void decrypt(const void *const in, void *const out) const noexcept
- {
- #ifdef ZT_AES_AESNI
- if (likely(Utils::CPUID.aes)) {
- p_decrypt_aesni(in, out);
- return;
- }
- #endif
- #ifdef ZT_AES_NEON
- if (Utils::ARMCAP.aes) {
- p_decrypt_armneon_crypto(in, out);
- return;
- }
- #endif
- p_decryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
- }
- class GMACSIVEncryptor;
- class GMACSIVDecryptor;
- /**
- * Streaming GMAC calculator
- */
- class GMAC
- {
- friend class GMACSIVEncryptor;
- friend class GMACSIVDecryptor;
- public:
- /**
- * @return True if this system has hardware GMAC acceleration
- */
- static ZT_INLINE bool accelerated()
- {
- #ifdef ZT_AES_AESNI
- return Utils::CPUID.aes;
- #else
- #ifdef ZT_AES_NEON
- return Utils::ARMCAP.pmull;
- #else
- return false;
- #endif
- #endif
- }
- /**
- * Create a new instance of GMAC (must be initialized with init() before use)
- *
- * @param aes Keyed AES instance to use
- */
- ZT_INLINE GMAC(const AES &aes) : _aes(aes)
- {}
- /**
- * Reset and initialize for a new GMAC calculation
- *
- * @param iv 96-bit initialization vector (pad with zeroes if actual IV is shorter)
- */
- ZT_INLINE void init(const uint8_t iv[12]) noexcept
- {
- _rp = 0;
- _len = 0;
- // We fill the least significant 32 bits in the _iv field with 1 since in GCM mode
- // this would hold the counter, but we're not doing GCM. The counter is therefore
- // always 1.
- #ifdef ZT_AES_AESNI // also implies an x64 processor
- *reinterpret_cast<uint64_t *>(_iv) = *reinterpret_cast<const uint64_t *>(iv);
- *reinterpret_cast<uint32_t *>(_iv + 8) = *reinterpret_cast<const uint64_t *>(iv + 8);
- *reinterpret_cast<uint32_t *>(_iv + 12) = 0x01000000; // 0x00000001 in big-endian byte order
- #else
- for(int i=0;i<12;++i) {
- _iv[i] = iv[i];
- }
- _iv[12] = 0;
- _iv[13] = 0;
- _iv[14] = 0;
- _iv[15] = 1;
- #endif
- _y[0] = 0;
- _y[1] = 0;
- }
- /**
- * Process data through GMAC
- *
- * @param data Bytes to process
- * @param len Length of input
- */
- void update(const void *data, unsigned int len) noexcept;
- /**
- * Process any remaining cached bytes and generate tag
- *
- * Don't call finish() more than once or you'll get an invalid result.
- *
- * @param tag 128-bit GMAC tag (can be truncated)
- */
- void finish(uint8_t tag[16]) noexcept;
- private:
- #ifdef ZT_AES_AESNI
- void p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept;
- void p_aesNIFinish(uint8_t tag[16]) noexcept;
- #endif
- #ifdef ZT_AES_NEON
- void p_armUpdate(const uint8_t *in, unsigned int len) noexcept;
- void p_armFinish(uint8_t tag[16]) noexcept;
- #endif
- const AES &_aes;
- unsigned int _rp;
- unsigned int _len;
- uint8_t _r[16]; // remainder
- uint8_t _iv[16];
- uint64_t _y[2];
- };
- /**
- * Streaming AES-CTR encrypt/decrypt
- *
- * NOTE: this doesn't support overflow of the counter in the least significant 32 bits.
- * AES-GMAC-CTR doesn't need this, so we don't support it as an optimization.
- */
- class CTR
- {
- friend class GMACSIVEncryptor;
- friend class GMACSIVDecryptor;
- public:
- ZT_INLINE CTR(const AES &aes) noexcept: _aes(aes)
- {}
- /**
- * Initialize this CTR instance to encrypt a new stream
- *
- * @param iv Unique initialization vector and initial 32-bit counter (least significant 32 bits, big-endian)
- * @param output Buffer to which to store output (MUST be large enough for total bytes processed!)
- */
- ZT_INLINE void init(const uint8_t iv[16], void *const output) noexcept
- {
- Utils::copy< 16 >(_ctr, iv);
- _out = reinterpret_cast<uint8_t *>(output);
- _len = 0;
- }
- /**
- * Initialize this CTR instance to encrypt a new stream
- *
- * @param iv Unique initialization vector
- * @param ic Initial counter (must be in big-endian byte order!)
- * @param output Buffer to which to store output (MUST be large enough for total bytes processed!)
- */
- ZT_INLINE void init(const uint8_t iv[12], const uint32_t ic, void *const output) noexcept
- {
- Utils::copy< 12 >(_ctr, iv);
- reinterpret_cast<uint32_t *>(_ctr)[3] = ic;
- _out = reinterpret_cast<uint8_t *>(output);
- _len = 0;
- }
- /**
- * Encrypt or decrypt data, writing result to the output provided to init()
- *
- * @param input Input data
- * @param len Length of input
- */
- void crypt(const void *input, unsigned int len) noexcept;
- /**
- * Finish any remaining bytes if total bytes processed wasn't a multiple of 16
- *
- * Don't call more than once for a given stream or data may be corrupted.
- */
- void finish() noexcept;
- private:
- #ifdef ZT_AES_AESNI
- void p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;
- #endif
- #ifdef ZT_AES_NEON
- void p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;
- #endif
- const AES &_aes;
- uint64_t _ctr[2];
- uint8_t *_out;
- unsigned int _len;
- };
- /**
- * Encryptor for AES-GMAC-SIV.
- *
- * Encryption requires two passes. The first pass starts after init
- * with aad (if any) followed by update1() and finish1(). Then the
- * update2() and finish2() methods must be used over the same data
- * (but NOT AAD) again.
- *
- * This supports encryption of a maximum of 2^31 bytes of data per
- * call to init().
- */
- class GMACSIVEncryptor
- {
- public:
- /**
- * Create a new AES-GMAC-SIV encryptor keyed with the provided AES instances
- *
- * @param k0 First of two AES instances keyed with K0
- * @param k1 Second of two AES instances keyed with K1
- */
- ZT_INLINE GMACSIVEncryptor(const AES &k0, const AES &k1) noexcept :
- _gmac(k0),
- _ctr(k1)
- {}
- /**
- * Initialize AES-GMAC-SIV
- *
- * @param iv IV in network byte order (byte order in which it will appear on the wire)
- * @param output Pointer to buffer to receive ciphertext, must be large enough for all to-be-processed data!
- */
- ZT_INLINE void init(const uint64_t iv, void *const output) noexcept
- {
- // Output buffer to receive the result of AES-CTR encryption.
- _output = output;
- // Initialize GMAC with 64-bit IV (and remaining 32 bits padded to zero).
- _tag[0] = iv;
- _tag[1] = 0;
- _gmac.init(reinterpret_cast<const uint8_t *>(_tag));
- }
- /**
- * Process AAD (additional authenticated data) that is not being encrypted.
- *
- * If such data exists this must be called before update1() and finish1().
- *
- * Note: current code only supports one single chunk of AAD. Don't call this
- * multiple times per message.
- *
- * @param aad Additional authenticated data
- * @param len Length of AAD in bytes
- */
- ZT_INLINE void aad(const void *const aad, unsigned int len) noexcept
- {
- // Feed ADD into GMAC first
- _gmac.update(aad, len);
- // End of AAD is padded to a multiple of 16 bytes to ensure unique encoding.
- len &= 0xfU;
- if (len != 0) {
- _gmac.update(Utils::ZERO256, 16 - len);
- }
- }
- /**
- * First pass plaintext input function
- *
- * @param input Plaintext chunk
- * @param len Length of plaintext chunk
- */
- ZT_INLINE void update1(const void *const input, const unsigned int len) noexcept
- { _gmac.update(input, len); }
- /**
- * Finish first pass, compute CTR IV, initialize second pass.
- */
- ZT_INLINE void finish1() noexcept
- {
- // Compute 128-bit GMAC tag.
- uint64_t tmp[2];
- _gmac.finish(reinterpret_cast<uint8_t *>(tmp));
- // Shorten to 64 bits, concatenate with message IV, and encrypt with AES to
- // yield the CTR IV and opaque IV/MAC blob. In ZeroTier's use of GMAC-SIV
- // this get split into the packet ID (64 bits) and the MAC (64 bits) in each
- // packet and then recombined on receipt for legacy reasons (but with no
- // cryptographic or performance impact).
- _tag[1] = tmp[0] ^ tmp[1];
- _ctr._aes.encrypt(_tag, _tag);
- // Initialize CTR with 96-bit CTR nonce and 32-bit counter. The counter
- // incorporates 31 more bits of entropy which should raise our security margin
- // a bit, but this is not included in the worst case analysis of GMAC-SIV.
- // The most significant bit of the counter is masked to zero to allow up to
- // 2^31 bytes to be encrypted before the counter loops. Some CTR implementations
- // increment the whole big-endian 128-bit integer in which case this could be
- // used for more than 2^31 bytes, but ours does not for performance reasons
- // and so 2^31 should be considered the input limit.
- tmp[0] = _tag[0];
- tmp[1] = _tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL);
- _ctr.init(reinterpret_cast<const uint8_t *>(tmp), _output);
- }
- /**
- * Second pass plaintext input function
- *
- * The same plaintext must be fed in the second time in the same order,
- * though chunk boundaries do not have to be the same.
- *
- * @param input Plaintext chunk
- * @param len Length of plaintext chunk
- */
- ZT_INLINE void update2(const void *const input, const unsigned int len) noexcept
- { _ctr.crypt(input, len); }
- /**
- * Finish second pass and return a pointer to the opaque 128-bit IV+MAC block
- *
- * The returned pointer remains valid as long as this object exists and init()
- * is not called again.
- *
- * @return Pointer to 128-bit opaque IV+MAC (packed into two 64-bit integers)
- */
- ZT_INLINE const uint64_t *finish2()
- {
- _ctr.finish();
- return _tag;
- }
- private:
- void *_output;
- uint64_t _tag[2];
- AES::GMAC _gmac;
- AES::CTR _ctr;
- };
- /**
- * Decryptor for AES-GMAC-SIV.
- *
- * GMAC-SIV decryption is single-pass. AAD (if any) must be processed first.
- */
- class GMACSIVDecryptor
- {
- public:
- ZT_INLINE GMACSIVDecryptor(const AES &k0, const AES &k1) noexcept:
- _ctr(k1),
- _gmac(k0)
- {}
- /**
- * Initialize decryptor for a new message
- *
- * @param tag 128-bit combined IV/MAC originally created by GMAC-SIV encryption
- * @param output Buffer in which to write output plaintext (must be large enough!)
- */
- ZT_INLINE void init(const uint64_t tag[2], void *const output) noexcept
- {
- uint64_t tmp[2];
- tmp[0] = tag[0];
- tmp[1] = tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL);
- _ctr.init(reinterpret_cast<const uint8_t *>(tmp), output);
- _ctr._aes.decrypt(tag, _ivMac);
- tmp[0] = _ivMac[0];
- tmp[1] = 0;
- _gmac.init(reinterpret_cast<const uint8_t *>(tmp));
- _output = output;
- _decryptedLen = 0;
- }
- /**
- * Process AAD (additional authenticated data) that wasn't encrypted
- *
- * @param aad Additional authenticated data
- * @param len Length of AAD in bytes
- */
- ZT_INLINE void aad(const void *const aad, unsigned int len) noexcept
- {
- _gmac.update(aad, len);
- len &= 0xfU;
- if (len != 0) {
- _gmac.update(Utils::ZERO256, 16 - len);
- }
- }
- /**
- * Feed ciphertext into the decryptor
- *
- * Unlike encryption, GMAC-SIV decryption requires only one pass.
- *
- * @param input Input ciphertext
- * @param len Length of ciphertext
- */
- ZT_INLINE void update(const void *const input, const unsigned int len) noexcept
- {
- _ctr.crypt(input, len);
- _decryptedLen += len;
- }
- /**
- * Flush decryption, compute MAC, and verify
- *
- * @return True if resulting plaintext (and AAD) pass message authentication check
- */
- ZT_INLINE bool finish() noexcept
- {
- _ctr.finish();
- uint64_t gmacTag[2];
- _gmac.update(_output, _decryptedLen);
- _gmac.finish(reinterpret_cast<uint8_t *>(gmacTag));
- return (gmacTag[0] ^ gmacTag[1]) == _ivMac[1];
- }
- private:
- uint64_t _ivMac[2];
- AES::CTR _ctr;
- AES::GMAC _gmac;
- void *_output;
- unsigned int _decryptedLen;
- };
- private:
- static const uint32_t Te0[256];
- static const uint32_t Te4[256];
- static const uint32_t Td0[256];
- static const uint8_t Td4[256];
- static const uint32_t rcon[15];
- void p_initSW(const uint8_t *key) noexcept;
- void p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept;
- void p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept;
- union
- {
- #ifdef ZT_AES_AESNI
- struct
- {
- __m128i k[28];
- __m128i h[4]; // h, hh, hhh, hhhh
- __m128i h2[4]; // _mm_xor_si128(_mm_shuffle_epi32(h, 78), h), etc.
- } ni;
- #endif
- #ifdef ZT_AES_NEON
- struct
- {
- uint64_t hsw[2]; // in case it has AES but not PMULL, not sure if that ever happens
- uint8x16_t ek[15];
- uint8x16_t dk[15];
- uint8x16_t h;
- } neon;
- #endif
- struct
- {
- uint64_t h[2];
- uint32_t ek[60];
- uint32_t dk[60];
- } sw;
- } p_k;
- #ifdef ZT_AES_AESNI
- void p_init_aesni(const uint8_t *key) noexcept;
- void p_encrypt_aesni(const void *in, void *out) const noexcept;
- void p_decrypt_aesni(const void *in, void *out) const noexcept;
- #endif
- #ifdef ZT_AES_NEON
- void p_init_armneon_crypto(const uint8_t *key) noexcept;
- void p_encrypt_armneon_crypto(const void *in, void *out) const noexcept;
- void p_decrypt_armneon_crypto(const void *in, void *out) const noexcept;
- #endif
- };
- } // namespace ZeroTier
- #endif
|