Cluster.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_CLUSTER
  28. #include <stdint.h>
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include <math.h>
  33. #include <algorithm>
  34. #include <utility>
  35. #include "../version.h"
  36. #include "Cluster.hpp"
  37. #include "RuntimeEnvironment.hpp"
  38. #include "MulticastGroup.hpp"
  39. #include "CertificateOfMembership.hpp"
  40. #include "Salsa20.hpp"
  41. #include "Poly1305.hpp"
  42. #include "Identity.hpp"
  43. #include "Topology.hpp"
  44. #include "Packet.hpp"
  45. #include "Switch.hpp"
  46. #include "Node.hpp"
  47. namespace ZeroTier {
  48. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  49. throw()
  50. {
  51. double dx = ((double)x2 - (double)x1);
  52. double dy = ((double)y2 - (double)y1);
  53. double dz = ((double)z2 - (double)z1);
  54. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  55. }
  56. Cluster::Cluster(
  57. const RuntimeEnvironment *renv,
  58. uint16_t id,
  59. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  60. int32_t x,
  61. int32_t y,
  62. int32_t z,
  63. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  64. void *sendFunctionArg,
  65. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  66. void *addressToLocationFunctionArg) :
  67. RR(renv),
  68. _sendFunction(sendFunction),
  69. _sendFunctionArg(sendFunctionArg),
  70. _addressToLocationFunction(addressToLocationFunction),
  71. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  72. _x(x),
  73. _y(y),
  74. _z(z),
  75. _id(id),
  76. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  77. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
  78. _peerAffinities(65536),
  79. _lastCleanedPeerAffinities(0),
  80. _lastCheckedPeersForAnnounce(0),
  81. _lastFlushed(0)
  82. {
  83. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  84. // Generate master secret by hashing the secret from our Identity key pair
  85. RR->identity.sha512PrivateKey(_masterSecret);
  86. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  87. memcpy(stmp,_masterSecret,sizeof(stmp));
  88. stmp[0] ^= Utils::hton(id);
  89. SHA512::hash(stmp,stmp,sizeof(stmp));
  90. SHA512::hash(stmp,stmp,sizeof(stmp));
  91. memcpy(_key,stmp,sizeof(_key));
  92. Utils::burn(stmp,sizeof(stmp));
  93. }
  94. Cluster::~Cluster()
  95. {
  96. Utils::burn(_masterSecret,sizeof(_masterSecret));
  97. Utils::burn(_key,sizeof(_key));
  98. delete [] _members;
  99. }
  100. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  101. {
  102. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  103. {
  104. // FORMAT: <[16] iv><[8] MAC><... data>
  105. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  106. return;
  107. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  108. char keytmp[32];
  109. memcpy(keytmp,_key,32);
  110. for(int i=0;i<8;++i)
  111. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  112. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  113. Utils::burn(keytmp,sizeof(keytmp));
  114. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  115. char polykey[ZT_POLY1305_KEY_LEN];
  116. memset(polykey,0,sizeof(polykey));
  117. s20.encrypt12(polykey,polykey,sizeof(polykey));
  118. // Compute 16-byte MAC
  119. char mac[ZT_POLY1305_MAC_LEN];
  120. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  121. // Check first 8 bytes of MAC against 64-bit MAC in stream
  122. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  123. return;
  124. // Decrypt!
  125. dmsg.setSize(len - 24);
  126. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  127. }
  128. if (dmsg.size() < 4)
  129. return;
  130. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  131. unsigned int ptr = 2;
  132. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  133. return;
  134. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  135. ptr += 2;
  136. if (toMemberId != _id) // sanity check: message not for us?
  137. return;
  138. { // make sure sender is actually considered a member
  139. Mutex::Lock _l3(_memberIds_m);
  140. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  141. return;
  142. }
  143. {
  144. _Member &m = _members[fromMemberId];
  145. Mutex::Lock mlck(m.lock);
  146. try {
  147. while (ptr < dmsg.size()) {
  148. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  149. const unsigned int nextPtr = ptr + mlen;
  150. if (nextPtr > dmsg.size())
  151. break;
  152. int mtype = -1;
  153. try {
  154. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  155. default:
  156. break;
  157. case STATE_MESSAGE_ALIVE: {
  158. ptr += 7; // skip version stuff, not used yet
  159. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  160. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  161. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  162. ptr += 8; // skip local clock, not used
  163. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  164. ptr += 8; // skip flags, unused
  165. #ifdef ZT_TRACE
  166. std::string addrs;
  167. #endif
  168. unsigned int physicalAddressCount = dmsg[ptr++];
  169. m.zeroTierPhysicalEndpoints.clear();
  170. for(unsigned int i=0;i<physicalAddressCount;++i) {
  171. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  172. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  173. if (!(m.zeroTierPhysicalEndpoints.back())) {
  174. m.zeroTierPhysicalEndpoints.pop_back();
  175. }
  176. #ifdef ZT_TRACE
  177. else {
  178. if (addrs.length() > 0)
  179. addrs.push_back(',');
  180. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  181. }
  182. #endif
  183. }
  184. #ifdef ZT_TRACE
  185. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  186. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  187. }
  188. #endif
  189. m.lastReceivedAliveAnnouncement = RR->node->now();
  190. } break;
  191. case STATE_MESSAGE_HAVE_PEER: {
  192. const uint64_t now = RR->node->now();
  193. Identity id;
  194. InetAddress physicalAddress;
  195. ptr += id.deserialize(dmsg,ptr);
  196. ptr += physicalAddress.deserialize(dmsg,ptr);
  197. if (id) {
  198. // Forget any paths that we have to this peer at its address
  199. if (physicalAddress) {
  200. SharedPtr<Peer> myPeerRecord(RR->topology->getPeerNoCache(id.address(),now));
  201. if (myPeerRecord)
  202. myPeerRecord->removePathByAddress(physicalAddress);
  203. }
  204. // Always save identity to update file time
  205. RR->topology->saveIdentity(id);
  206. // Set peer affinity to its new home
  207. {
  208. Mutex::Lock _l2(_peerAffinities_m);
  209. _PA &pa = _peerAffinities[id.address()];
  210. pa.ts = now;
  211. pa.mid = fromMemberId;
  212. }
  213. TRACE("[%u] has %s @ %s",(unsigned int)fromMemberId,id.address().toString().c_str(),physicalAddress.toString().c_str());
  214. }
  215. } break;
  216. case STATE_MESSAGE_MULTICAST_LIKE: {
  217. const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
  218. const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  219. const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
  220. const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
  221. RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
  222. TRACE("[%u] %s likes %s/%.8x on %.16llx",(unsigned int)fromMemberId,address.toString().c_str(),mac.toString().c_str(),(unsigned int)adi,nwid);
  223. } break;
  224. case STATE_MESSAGE_COM: {
  225. /* not currently used so not decoded yet
  226. CertificateOfMembership com;
  227. ptr += com.deserialize(dmsg,ptr);
  228. if (com) {
  229. TRACE("[%u] COM for %s on %.16llu rev %llu",(unsigned int)fromMemberId,com.issuedTo().toString().c_str(),com.networkId(),com.revision());
  230. }
  231. */
  232. } break;
  233. case STATE_MESSAGE_PROXY_UNITE: {
  234. const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  235. const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  236. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  237. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  238. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  239. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  240. TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
  241. const uint64_t now = RR->node->now();
  242. SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress,now));
  243. if ((localPeer)&&(numRemotePeerPaths > 0)) {
  244. InetAddress bestLocalV4,bestLocalV6;
  245. localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);
  246. InetAddress bestRemoteV4,bestRemoteV6;
  247. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  248. if ((bestRemoteV4)&&(bestRemoteV6))
  249. break;
  250. switch(remotePeerPaths[i].ss_family) {
  251. case AF_INET:
  252. if (!bestRemoteV4)
  253. bestRemoteV4 = remotePeerPaths[i];
  254. break;
  255. case AF_INET6:
  256. if (!bestRemoteV6)
  257. bestRemoteV6 = remotePeerPaths[i];
  258. break;
  259. }
  260. }
  261. Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  262. rendezvousForLocal.append((uint8_t)0);
  263. remotePeerAddress.appendTo(rendezvousForLocal);
  264. Buffer<2048> rendezvousForRemote;
  265. remotePeerAddress.appendTo(rendezvousForRemote);
  266. rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
  267. const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForRemote.size();
  268. rendezvousForRemote.addSize(2); // space for actual packet payload length
  269. rendezvousForRemote.append((uint8_t)0); // flags == 0
  270. localPeerAddress.appendTo(rendezvousForRemote);
  271. bool haveMatch = false;
  272. if ((bestLocalV6)&&(bestRemoteV6)) {
  273. haveMatch = true;
  274. rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
  275. rendezvousForLocal.append((uint8_t)16);
  276. rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
  277. rendezvousForRemote.append((uint16_t)bestLocalV6.port());
  278. rendezvousForRemote.append((uint8_t)16);
  279. rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
  280. rendezvousForRemote.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
  281. } else if ((bestLocalV4)&&(bestRemoteV4)) {
  282. haveMatch = true;
  283. rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
  284. rendezvousForLocal.append((uint8_t)4);
  285. rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
  286. rendezvousForRemote.append((uint16_t)bestLocalV4.port());
  287. rendezvousForRemote.append((uint8_t)4);
  288. rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
  289. rendezvousForRemote.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
  290. }
  291. if (haveMatch) {
  292. _send(fromMemberId,STATE_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
  293. _flush(fromMemberId); // we want this to go ASAP, since with port restricted cone NATs success can be timing-sensitive
  294. RR->sw->send(rendezvousForLocal,true,0);
  295. }
  296. }
  297. } break;
  298. case STATE_MESSAGE_PROXY_SEND: {
  299. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  300. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  301. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  302. Packet outp(rcpt,RR->identity.address(),verb);
  303. outp.append(dmsg.field(ptr,len),len); ptr += len;
  304. RR->sw->send(outp,true,0);
  305. TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  306. } break;
  307. }
  308. } catch ( ... ) {
  309. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  310. // drop invalids
  311. }
  312. ptr = nextPtr;
  313. }
  314. } catch ( ... ) {
  315. TRACE("invalid message (outer loop), discarding");
  316. // drop invalids
  317. }
  318. }
  319. }
  320. bool Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
  321. {
  322. if (len > 16384) // sanity check
  323. return false;
  324. const uint64_t now = RR->node->now();
  325. unsigned int canHasPeer = 0;
  326. { // Anyone got this peer?
  327. Mutex::Lock _l2(_peerAffinities_m);
  328. _PA *pa = _peerAffinities.get(toPeerAddress);
  329. if ((pa)&&(pa->mid != _id)&&((now - pa->ts) < ZT_PEER_ACTIVITY_TIMEOUT))
  330. canHasPeer = pa->mid;
  331. else return false;
  332. }
  333. Buffer<1024> buf;
  334. if (unite) {
  335. InetAddress v4,v6;
  336. if (fromPeerAddress) {
  337. SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress,now));
  338. if (fromPeer)
  339. fromPeer->getBestActiveAddresses(now,v4,v6);
  340. }
  341. uint8_t addrCount = 0;
  342. if (v4)
  343. ++addrCount;
  344. if (v6)
  345. ++addrCount;
  346. if (addrCount) {
  347. toPeerAddress.appendTo(buf);
  348. fromPeerAddress.appendTo(buf);
  349. buf.append(addrCount);
  350. if (v4)
  351. v4.serialize(buf);
  352. if (v6)
  353. v6.serialize(buf);
  354. }
  355. }
  356. {
  357. Mutex::Lock _l2(_members[canHasPeer].lock);
  358. if (buf.size() > 0)
  359. _send(canHasPeer,STATE_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
  360. if (_members[canHasPeer].zeroTierPhysicalEndpoints.size() > 0)
  361. RR->node->putPacket(InetAddress(),_members[canHasPeer].zeroTierPhysicalEndpoints.front(),data,len);
  362. }
  363. TRACE("sendViaCluster(): relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)canHasPeer);
  364. return true;
  365. }
  366. void Cluster::replicateHavePeer(const Identity &peerId,const InetAddress &physicalAddress)
  367. {
  368. const uint64_t now = RR->node->now();
  369. {
  370. Mutex::Lock _l2(_peerAffinities_m);
  371. _PA &pa = _peerAffinities[peerId.address()];
  372. if (pa.mid != _id) {
  373. pa.ts = now;
  374. pa.mid = _id;
  375. } else if ((now - pa.ts) < ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD) {
  376. return;
  377. } else {
  378. pa.ts = now;
  379. }
  380. }
  381. // announcement
  382. Buffer<4096> buf;
  383. peerId.serialize(buf,false);
  384. physicalAddress.serialize(buf);
  385. {
  386. Mutex::Lock _l(_memberIds_m);
  387. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  388. Mutex::Lock _l2(_members[*mid].lock);
  389. _send(*mid,STATE_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  390. }
  391. }
  392. }
  393. void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
  394. {
  395. Buffer<1024> buf;
  396. buf.append((uint64_t)nwid);
  397. peerAddress.appendTo(buf);
  398. group.mac().appendTo(buf);
  399. buf.append((uint32_t)group.adi());
  400. TRACE("replicating %s MULTICAST_LIKE %.16llx/%s/%u to all members",peerAddress.toString().c_str(),nwid,group.mac().toString().c_str(),(unsigned int)group.adi());
  401. {
  402. Mutex::Lock _l(_memberIds_m);
  403. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  404. Mutex::Lock _l2(_members[*mid].lock);
  405. _send(*mid,STATE_MESSAGE_MULTICAST_LIKE,buf.data(),buf.size());
  406. }
  407. }
  408. }
  409. void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
  410. {
  411. Buffer<4096> buf;
  412. com.serialize(buf);
  413. TRACE("replicating %s COM for %.16llx to all members",com.issuedTo().toString().c_str(),com.networkId());
  414. {
  415. Mutex::Lock _l(_memberIds_m);
  416. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  417. Mutex::Lock _l2(_members[*mid].lock);
  418. _send(*mid,STATE_MESSAGE_COM,buf.data(),buf.size());
  419. }
  420. }
  421. }
  422. struct _ClusterAnnouncePeers
  423. {
  424. _ClusterAnnouncePeers(const uint64_t now_,Cluster *parent_) : now(now_),parent(parent_) {}
  425. const uint64_t now;
  426. Cluster *const parent;
  427. inline void operator()(const Topology &t,const SharedPtr<Peer> &peer) const
  428. {
  429. Path *p = peer->getBestPath(now);
  430. if (p)
  431. parent->replicateHavePeer(peer->identity(),p->address());
  432. }
  433. };
  434. void Cluster::doPeriodicTasks()
  435. {
  436. const uint64_t now = RR->node->now();
  437. // Erase old peer affinity entries just to control table size
  438. if ((now - _lastCleanedPeerAffinities) >= (ZT_PEER_ACTIVITY_TIMEOUT * 5)) {
  439. _lastCleanedPeerAffinities = now;
  440. Address *k = (Address *)0;
  441. _PA *v = (_PA *)0;
  442. Mutex::Lock _l(_peerAffinities_m);
  443. Hashtable< Address,_PA >::Iterator i(_peerAffinities);
  444. while (i.next(k,v)) {
  445. if ((now - v->ts) >= (ZT_PEER_ACTIVITY_TIMEOUT * 5))
  446. _peerAffinities.erase(*k);
  447. }
  448. }
  449. // Announce peers that we have active direct paths to -- note that we forget paths
  450. // that other cluster members claim they have, which prevents us from fighting
  451. // with other cluster members (route flapping) over specific paths.
  452. if ((now - _lastCheckedPeersForAnnounce) >= (ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD / 4)) {
  453. _lastCheckedPeersForAnnounce = now;
  454. _ClusterAnnouncePeers func(now,this);
  455. RR->topology->eachPeer<_ClusterAnnouncePeers &>(func);
  456. }
  457. // Flush outgoing packet send queue every doPeriodicTasks()
  458. if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
  459. _lastFlushed = now;
  460. Mutex::Lock _l(_memberIds_m);
  461. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  462. Mutex::Lock _l2(_members[*mid].lock);
  463. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  464. Buffer<2048> alive;
  465. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  466. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  467. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  468. alive.append((uint8_t)ZT_PROTO_VERSION);
  469. if (_addressToLocationFunction) {
  470. alive.append((int32_t)_x);
  471. alive.append((int32_t)_y);
  472. alive.append((int32_t)_z);
  473. } else {
  474. alive.append((int32_t)0);
  475. alive.append((int32_t)0);
  476. alive.append((int32_t)0);
  477. }
  478. alive.append((uint64_t)now);
  479. alive.append((uint64_t)0); // TODO: compute and send load average
  480. alive.append((uint64_t)0); // unused/reserved flags
  481. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  482. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  483. pe->serialize(alive);
  484. _send(*mid,STATE_MESSAGE_ALIVE,alive.data(),alive.size());
  485. _members[*mid].lastAnnouncedAliveTo = now;
  486. }
  487. _flush(*mid); // does nothing if nothing to flush
  488. }
  489. }
  490. }
  491. void Cluster::addMember(uint16_t memberId)
  492. {
  493. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  494. return;
  495. Mutex::Lock _l2(_members[memberId].lock);
  496. {
  497. Mutex::Lock _l(_memberIds_m);
  498. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  499. return;
  500. _memberIds.push_back(memberId);
  501. std::sort(_memberIds.begin(),_memberIds.end());
  502. }
  503. _members[memberId].clear();
  504. // Generate this member's message key from the master and its ID
  505. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  506. memcpy(stmp,_masterSecret,sizeof(stmp));
  507. stmp[0] ^= Utils::hton(memberId);
  508. SHA512::hash(stmp,stmp,sizeof(stmp));
  509. SHA512::hash(stmp,stmp,sizeof(stmp));
  510. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  511. Utils::burn(stmp,sizeof(stmp));
  512. // Prepare q
  513. _members[memberId].q.clear();
  514. char iv[16];
  515. Utils::getSecureRandom(iv,16);
  516. _members[memberId].q.append(iv,16);
  517. _members[memberId].q.addSize(8); // room for MAC
  518. _members[memberId].q.append((uint16_t)_id);
  519. _members[memberId].q.append((uint16_t)memberId);
  520. }
  521. void Cluster::removeMember(uint16_t memberId)
  522. {
  523. Mutex::Lock _l(_memberIds_m);
  524. std::vector<uint16_t> newMemberIds;
  525. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  526. if (*mid != memberId)
  527. newMemberIds.push_back(*mid);
  528. }
  529. _memberIds = newMemberIds;
  530. }
  531. bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
  532. {
  533. if (_addressToLocationFunction) {
  534. // Pick based on location if it can be determined
  535. int px = 0,py = 0,pz = 0;
  536. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  537. TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
  538. return false;
  539. }
  540. // Find member closest to this peer
  541. const uint64_t now = RR->node->now();
  542. std::vector<InetAddress> best;
  543. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  544. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  545. unsigned int bestMember = _id;
  546. {
  547. Mutex::Lock _l(_memberIds_m);
  548. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  549. _Member &m = _members[*mid];
  550. Mutex::Lock _ml(m.lock);
  551. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  552. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  553. const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  554. if (mdist < bestDistance) {
  555. bestDistance = mdist;
  556. bestMember = *mid;
  557. best = m.zeroTierPhysicalEndpoints;
  558. }
  559. }
  560. }
  561. }
  562. // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
  563. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  564. if (a->ss_family == peerPhysicalAddress.ss_family) {
  565. TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
  566. redirectTo = *a;
  567. return true;
  568. }
  569. }
  570. TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
  571. return false;
  572. } else {
  573. // TODO: pick based on load if no location info?
  574. return false;
  575. }
  576. }
  577. void Cluster::status(ZT_ClusterStatus &status) const
  578. {
  579. const uint64_t now = RR->node->now();
  580. memset(&status,0,sizeof(ZT_ClusterStatus));
  581. ZT_ClusterMemberStatus *ms[ZT_CLUSTER_MAX_MEMBERS];
  582. memset(ms,0,sizeof(ms));
  583. status.myId = _id;
  584. ms[_id] = &(status.members[status.clusterSize++]);
  585. ms[_id]->id = _id;
  586. ms[_id]->alive = 1;
  587. ms[_id]->x = _x;
  588. ms[_id]->y = _y;
  589. ms[_id]->z = _z;
  590. ms[_id]->peers = RR->topology->countActive();
  591. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  592. if (ms[_id]->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  593. break;
  594. memcpy(&(ms[_id]->zeroTierPhysicalEndpoints[ms[_id]->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  595. }
  596. {
  597. Mutex::Lock _l1(_memberIds_m);
  598. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  599. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  600. break;
  601. ZT_ClusterMemberStatus *s = ms[*mid] = &(status.members[status.clusterSize++]);
  602. _Member &m = _members[*mid];
  603. Mutex::Lock ml(m.lock);
  604. s->id = *mid;
  605. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  606. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  607. s->x = m.x;
  608. s->y = m.y;
  609. s->z = m.z;
  610. s->load = m.load;
  611. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  612. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  613. break;
  614. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  615. }
  616. }
  617. }
  618. {
  619. Mutex::Lock _l2(_peerAffinities_m);
  620. Address *k = (Address *)0;
  621. _PA *v = (_PA *)0;
  622. Hashtable< Address,_PA >::Iterator i(const_cast<Cluster *>(this)->_peerAffinities);
  623. while (i.next(k,v)) {
  624. if ( (ms[v->mid]) && (v->mid != _id) && ((now - v->ts) < ZT_PEER_ACTIVITY_TIMEOUT) )
  625. ++ms[v->mid]->peers;
  626. }
  627. }
  628. }
  629. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  630. {
  631. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  632. return;
  633. _Member &m = _members[memberId];
  634. // assumes m.lock is locked!
  635. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  636. _flush(memberId);
  637. m.q.append((uint16_t)(len + 1));
  638. m.q.append((uint8_t)type);
  639. m.q.append(msg,len);
  640. }
  641. void Cluster::_flush(uint16_t memberId)
  642. {
  643. _Member &m = _members[memberId];
  644. // assumes m.lock is locked!
  645. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  646. // Create key from member's key and IV
  647. char keytmp[32];
  648. memcpy(keytmp,m.key,32);
  649. for(int i=0;i<8;++i)
  650. keytmp[i] ^= m.q[i];
  651. Salsa20 s20(keytmp,256,m.q.field(8,8));
  652. Utils::burn(keytmp,sizeof(keytmp));
  653. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  654. char polykey[ZT_POLY1305_KEY_LEN];
  655. memset(polykey,0,sizeof(polykey));
  656. s20.encrypt12(polykey,polykey,sizeof(polykey));
  657. // Encrypt m.q in place
  658. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  659. // Add MAC for authentication (encrypt-then-MAC)
  660. char mac[ZT_POLY1305_MAC_LEN];
  661. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  662. memcpy(m.q.field(16,8),mac,8);
  663. // Send!
  664. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  665. // Prepare for more
  666. m.q.clear();
  667. char iv[16];
  668. Utils::getSecureRandom(iv,16);
  669. m.q.append(iv,16);
  670. m.q.addSize(8); // room for MAC
  671. m.q.append((uint16_t)_id); // from member ID
  672. m.q.append((uint16_t)memberId); // to member ID
  673. }
  674. }
  675. } // namespace ZeroTier
  676. #endif // ZT_ENABLE_CLUSTER