Switch.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "../version.h"
  33. #include "../include/ZeroTierOne.h"
  34. #include "Constants.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "Switch.hpp"
  37. #include "Node.hpp"
  38. #include "InetAddress.hpp"
  39. #include "Topology.hpp"
  40. #include "Peer.hpp"
  41. #include "CMWC4096.hpp"
  42. #include "AntiRecursion.hpp"
  43. #include "Packet.hpp"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. RR(renv),
  47. _lastBeacon(0)
  48. {
  49. }
  50. Switch::~Switch()
  51. {
  52. }
  53. void Switch::onRemotePacket(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
  54. {
  55. try {
  56. if (len == ZT_PROTO_BEACON_LENGTH) {
  57. _handleBeacon(fromAddr,linkDesperation,Buffer<ZT_PROTO_BEACON_LENGTH>(data,len));
  58. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  59. if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  60. _handleRemotePacketFragment(fromAddr,linkDesperation,data,len);
  61. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) {
  62. _handleRemotePacketHead(fromAddr,linkDesperation,data,len);
  63. }
  64. }
  65. } catch (std::exception &ex) {
  66. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  67. } catch ( ... ) {
  68. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  69. }
  70. }
  71. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  72. {
  73. SharedPtr<NetworkConfig> nconf(network->config2());
  74. if (!nconf)
  75. return;
  76. // Sanity check -- bridge loop? OS problem?
  77. if (to == network->mac())
  78. return;
  79. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  80. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  81. * still happen because Windows likes to send broadcasts over interfaces that have little
  82. * to do with their intended target audience. :P */
  83. if (!RR->antiRec->checkEthernetFrame(data,len)) {
  84. TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len);
  85. return;
  86. }
  87. // Check to make sure this protocol is allowed on this network
  88. if (!nconf->permitsEtherType(etherType)) {
  89. TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  90. return;
  91. }
  92. // Check if this packet is from someone other than the tap -- i.e. bridged in
  93. bool fromBridged = false;
  94. if (from != network->mac()) {
  95. if (!network->permitsBridging(RR->identity.address())) {
  96. TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  97. return;
  98. }
  99. fromBridged = true;
  100. }
  101. if (to.isMulticast()) {
  102. // Destination is a multicast address (including broadcast)
  103. const uint64_t now = RR->node->now();
  104. MulticastGroup mg(to,0);
  105. if (to.isBroadcast()) {
  106. if (
  107. (etherType == ZT_ETHERTYPE_ARP)&&
  108. (len >= 28)&&
  109. (
  110. (((const unsigned char *)data)[2] == 0x08)&&
  111. (((const unsigned char *)data)[3] == 0x00)&&
  112. (((const unsigned char *)data)[4] == 6)&&
  113. (((const unsigned char *)data)[5] == 4)&&
  114. (((const unsigned char *)data)[7] == 0x01)
  115. )
  116. ) {
  117. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  118. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  119. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  120. } else if (!nconf->enableBroadcast()) {
  121. // Don't transmit broadcasts if this network doesn't want them
  122. TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
  123. return;
  124. }
  125. }
  126. /* Learn multicast groups for bridged-in hosts.
  127. * Note that some OSes, most notably Linux, do this for you by learning
  128. * multicast addresses on bridge interfaces and subscribing each slave.
  129. * But in that case this does no harm, as the sets are just merged. */
  130. if (fromBridged)
  131. network->learnBridgedMulticastGroup(mg,now);
  132. // Check multicast/broadcast bandwidth quotas and reject if quota exceeded
  133. if (!network->updateAndCheckMulticastBalance(mg,len)) {
  134. TRACE("%.16llx: didn't multicast %u bytes, quota exceeded for multicast group %s",network->id(),len,mg.toString().c_str());
  135. return;
  136. }
  137. TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
  138. RR->mc->send(
  139. ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
  140. nconf->multicastLimit(),
  141. now,
  142. network->id(),
  143. nconf->activeBridges(),
  144. mg,
  145. (fromBridged) ? from : MAC(),
  146. etherType,
  147. data,
  148. len);
  149. return;
  150. }
  151. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  152. // Destination is another ZeroTier peer on the same network
  153. Address toZT(to.toAddress(network->id()));
  154. if (network->isAllowed(toZT)) {
  155. if (network->peerNeedsOurMembershipCertificate(toZT,RR->node->now())) {
  156. // TODO: once there are no more <1.0.0 nodes around, we can
  157. // bundle this with EXT_FRAME instead of sending two packets.
  158. Packet outp(toZT,RR->identity.address(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE);
  159. nconf->com().serialize(outp);
  160. send(outp,true);
  161. }
  162. if (fromBridged) {
  163. // EXT_FRAME is used for bridging or if we want to include a COM
  164. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  165. outp.append(network->id());
  166. outp.append((unsigned char)0);
  167. to.appendTo(outp);
  168. from.appendTo(outp);
  169. outp.append((uint16_t)etherType);
  170. outp.append(data,len);
  171. outp.compress();
  172. send(outp,true);
  173. } else {
  174. // FRAME is a shorter version that can be used when there's no bridging and no COM
  175. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  176. outp.append(network->id());
  177. outp.append((uint16_t)etherType);
  178. outp.append(data,len);
  179. outp.compress();
  180. send(outp,true);
  181. }
  182. TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged);
  183. } else {
  184. TRACE("%.16llx: UNICAST: %s -> %s etherType==%s dropped, destination not a member of private network",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  185. }
  186. return;
  187. }
  188. {
  189. // Destination is bridged behind a remote peer
  190. Address bridges[ZT_MAX_BRIDGE_SPAM];
  191. unsigned int numBridges = 0;
  192. bridges[0] = network->findBridgeTo(to);
  193. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) {
  194. // We have a known bridge route for this MAC.
  195. ++numBridges;
  196. } else if (!nconf->activeBridges().empty()) {
  197. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  198. * bridges. This is similar to what many switches do -- if they do not
  199. * know which port corresponds to a MAC, they send it to all ports. If
  200. * there aren't any active bridges, numBridges will stay 0 and packet
  201. * is dropped. */
  202. std::vector<Address>::const_iterator ab(nconf->activeBridges().begin());
  203. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  204. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  205. while (ab != nconf->activeBridges().end()) {
  206. if (network->isAllowed(*ab)) // config sanity check
  207. bridges[numBridges++] = *ab;
  208. ++ab;
  209. }
  210. } else {
  211. // Otherwise pick a random set of them
  212. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  213. if (ab == nconf->activeBridges().end())
  214. ab = nconf->activeBridges().begin();
  215. if (((unsigned long)RR->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
  216. if (network->isAllowed(*ab)) // config sanity check
  217. bridges[numBridges++] = *ab;
  218. ++ab;
  219. } else ++ab;
  220. }
  221. }
  222. }
  223. for(unsigned int b=0;b<numBridges;++b) {
  224. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  225. outp.append(network->id());
  226. outp.append((unsigned char)0);
  227. to.appendTo(outp);
  228. from.appendTo(outp);
  229. outp.append((uint16_t)etherType);
  230. outp.append(data,len);
  231. outp.compress();
  232. send(outp,true);
  233. }
  234. }
  235. }
  236. void Switch::send(const Packet &packet,bool encrypt)
  237. {
  238. if (packet.destination() == RR->identity.address()) {
  239. TRACE("BUG: caught attempt to send() to self, ignored");
  240. return;
  241. }
  242. if (!_trySend(packet,encrypt)) {
  243. Mutex::Lock _l(_txQueue_m);
  244. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(RR->node->now(),packet,encrypt)));
  245. }
  246. }
  247. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  248. {
  249. if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
  250. return false;
  251. SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
  252. if (!p1p)
  253. return false;
  254. SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
  255. if (!p2p)
  256. return false;
  257. const uint64_t now = RR->node->now();
  258. // Right now we only unite desperation == 0 links, which will be direct
  259. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now,0));
  260. if (!(cg.first))
  261. return false;
  262. // Addresses are sorted in key for last unite attempt map for order
  263. // invariant lookup: (p1,p2) == (p2,p1)
  264. Array<Address,2> uniteKey;
  265. if (p1 >= p2) {
  266. uniteKey[0] = p2;
  267. uniteKey[1] = p1;
  268. } else {
  269. uniteKey[0] = p1;
  270. uniteKey[1] = p2;
  271. }
  272. {
  273. Mutex::Lock _l(_lastUniteAttempt_m);
  274. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  275. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  276. return false;
  277. else _lastUniteAttempt[uniteKey] = now;
  278. }
  279. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  280. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  281. * P2 in randomized order in terms of which gets sent first. This is done
  282. * since in a few cases NAT-t can be sensitive to slight timing differences
  283. * in terms of when the two peers initiate. Normally this is accounted for
  284. * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
  285. * given that supernodes are hosted on cloud providers this can in some
  286. * cases have a few ms of latency between packet departures. By randomizing
  287. * the order we make each attempted NAT-t favor one or the other going
  288. * first, meaning if it doesn't succeed the first time it might the second
  289. * and so forth. */
  290. unsigned int alt = RR->prng->next32() & 1;
  291. unsigned int completed = alt + 2;
  292. while (alt != completed) {
  293. if ((alt & 1) == 0) {
  294. // Tell p1 where to find p2.
  295. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  296. outp.append((unsigned char)0);
  297. p2.appendTo(outp);
  298. outp.append((uint16_t)cg.first.port());
  299. if (cg.first.isV6()) {
  300. outp.append((unsigned char)16);
  301. outp.append(cg.first.rawIpData(),16);
  302. } else {
  303. outp.append((unsigned char)4);
  304. outp.append(cg.first.rawIpData(),4);
  305. }
  306. outp.armor(p1p->key(),true);
  307. p1p->send(RR,outp.data(),outp.size(),now);
  308. } else {
  309. // Tell p2 where to find p1.
  310. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  311. outp.append((unsigned char)0);
  312. p1.appendTo(outp);
  313. outp.append((uint16_t)cg.second.port());
  314. if (cg.second.isV6()) {
  315. outp.append((unsigned char)16);
  316. outp.append(cg.second.rawIpData(),16);
  317. } else {
  318. outp.append((unsigned char)4);
  319. outp.append(cg.second.rawIpData(),4);
  320. }
  321. outp.armor(p2p->key(),true);
  322. p2p->send(RR,outp.data(),outp.size(),now);
  323. }
  324. ++alt; // counts up and also flips LSB
  325. }
  326. return true;
  327. }
  328. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr,unsigned int maxDesperation)
  329. {
  330. TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
  331. const uint64_t now = RR->node->now();
  332. // Attempt to contact at zero desperation first
  333. peer->attemptToContactAt(RR,atAddr,0,now);
  334. // If we have not punched through after this timeout, open refreshing can of whupass
  335. {
  336. Mutex::Lock _l(_contactQueue_m);
  337. _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,atAddr,maxDesperation));
  338. }
  339. }
  340. void Switch::requestWhois(const Address &addr)
  341. {
  342. bool inserted = false;
  343. {
  344. Mutex::Lock _l(_outstandingWhoisRequests_m);
  345. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  346. if ((inserted = entry.second))
  347. entry.first->second.lastSent = RR->node->now();
  348. entry.first->second.retries = 0; // reset retry count if entry already existed
  349. }
  350. if (inserted)
  351. _sendWhoisRequest(addr,(const Address *)0,0);
  352. }
  353. void Switch::cancelWhoisRequest(const Address &addr)
  354. {
  355. Mutex::Lock _l(_outstandingWhoisRequests_m);
  356. _outstandingWhoisRequests.erase(addr);
  357. }
  358. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  359. {
  360. { // cancel pending WHOIS since we now know this peer
  361. Mutex::Lock _l(_outstandingWhoisRequests_m);
  362. _outstandingWhoisRequests.erase(peer->address());
  363. }
  364. { // finish processing any packets waiting on peer's public key / identity
  365. Mutex::Lock _l(_rxQueue_m);
  366. for(std::list< SharedPtr<IncomingPacket> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  367. if ((*rxi)->tryDecode(RR))
  368. _rxQueue.erase(rxi++);
  369. else ++rxi;
  370. }
  371. }
  372. { // finish sending any packets waiting on peer's public key / identity
  373. Mutex::Lock _l(_txQueue_m);
  374. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  375. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  376. if (_trySend(txi->second.packet,txi->second.encrypt))
  377. _txQueue.erase(txi++);
  378. else ++txi;
  379. }
  380. }
  381. }
  382. unsigned long Switch::doTimerTasks(uint64_t now)
  383. {
  384. unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
  385. { // Aggressive NAT traversal time!
  386. Mutex::Lock _l(_contactQueue_m);
  387. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  388. if (now >= qi->fireAtTime) {
  389. if (qi->peer->hasActiveDirectPath(now)) {
  390. // We've successfully NAT-t'd, so cancel attempt
  391. _contactQueue.erase(qi++);
  392. continue;
  393. } else {
  394. // Nope, nothing yet. Time to kill some kittens.
  395. switch(qi->strategyIteration++) {
  396. case 0: {
  397. // First strategy: rifle method: direct packet to known port
  398. qi->peer->attemptToContactAt(RR,qi->inaddr,qi->currentDesperation,now);
  399. } break;
  400. case 1: {
  401. // Second strategy: shotgun method up: try a few ports above
  402. InetAddress tmpaddr(qi->inaddr);
  403. int p = (int)qi->inaddr.port();
  404. for(int i=0;i<9;++i) {
  405. if (++p > 0xffff) break;
  406. tmpaddr.setPort((unsigned int)p);
  407. qi->peer->attemptToContactAt(RR,tmpaddr,qi->currentDesperation,now);
  408. }
  409. } break;
  410. case 2: {
  411. // Third strategy: shotgun method down: try a few ports below
  412. InetAddress tmpaddr(qi->inaddr);
  413. int p = (int)qi->inaddr.port();
  414. for(int i=0;i<3;++i) {
  415. if (--p < 1024) break;
  416. tmpaddr.setPort((unsigned int)p);
  417. qi->peer->attemptToContactAt(RR,tmpaddr,qi->currentDesperation,now);
  418. }
  419. // Escalate link desperation after all strategies attempted
  420. ++qi->currentDesperation;
  421. if (qi->currentDesperation > qi->maxDesperation) {
  422. // We've tried all strategies at all levels of desperation, give up.
  423. _contactQueue.erase(qi++);
  424. continue;
  425. } else {
  426. // Otherwise restart at new link desperation level (e.g. try a tougher transport)
  427. qi->strategyIteration = 0;
  428. }
  429. } break;
  430. }
  431. qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
  432. nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
  433. }
  434. } else {
  435. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  436. }
  437. ++qi; // if qi was erased, loop will have continued before here
  438. }
  439. }
  440. { // Retry outstanding WHOIS requests
  441. Mutex::Lock _l(_outstandingWhoisRequests_m);
  442. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  443. unsigned long since = (unsigned long)(now - i->second.lastSent);
  444. if (since >= ZT_WHOIS_RETRY_DELAY) {
  445. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  446. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  447. _outstandingWhoisRequests.erase(i++);
  448. continue;
  449. } else {
  450. i->second.lastSent = now;
  451. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  452. ++i->second.retries;
  453. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  454. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  455. }
  456. } else {
  457. nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  458. }
  459. ++i;
  460. }
  461. }
  462. { // Time out TX queue packets that never got WHOIS lookups or other info.
  463. Mutex::Lock _l(_txQueue_m);
  464. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  465. if (_trySend(i->second.packet,i->second.encrypt))
  466. _txQueue.erase(i++);
  467. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  468. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  469. _txQueue.erase(i++);
  470. } else ++i;
  471. }
  472. }
  473. { // Time out RX queue packets that never got WHOIS lookups or other info.
  474. Mutex::Lock _l(_rxQueue_m);
  475. for(std::list< SharedPtr<IncomingPacket> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  476. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  477. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  478. _rxQueue.erase(i++);
  479. } else ++i;
  480. }
  481. }
  482. { // Time out packets that didn't get all their fragments.
  483. Mutex::Lock _l(_defragQueue_m);
  484. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  485. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  486. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  487. _defragQueue.erase(i++);
  488. } else ++i;
  489. }
  490. }
  491. return nextDelay;
  492. }
  493. const char *Switch::etherTypeName(const unsigned int etherType)
  494. throw()
  495. {
  496. switch(etherType) {
  497. case ZT_ETHERTYPE_IPV4: return "IPV4";
  498. case ZT_ETHERTYPE_ARP: return "ARP";
  499. case ZT_ETHERTYPE_RARP: return "RARP";
  500. case ZT_ETHERTYPE_ATALK: return "ATALK";
  501. case ZT_ETHERTYPE_AARP: return "AARP";
  502. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  503. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  504. case ZT_ETHERTYPE_IPV6: return "IPV6";
  505. }
  506. return "UNKNOWN";
  507. }
  508. void Switch::_handleRemotePacketFragment(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
  509. {
  510. Packet::Fragment fragment(data,len);
  511. Address destination(fragment.destination());
  512. if (destination != RR->identity.address()) {
  513. // Fragment is not for us, so try to relay it
  514. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  515. fragment.incrementHops();
  516. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  517. // It wouldn't hurt anything, just redundant and unnecessary.
  518. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  519. if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
  520. // Don't know peer or no direct path -- so relay via supernode
  521. relayTo = RR->topology->getBestSupernode();
  522. if (relayTo)
  523. relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
  524. }
  525. } else {
  526. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  527. }
  528. } else {
  529. // Fragment looks like ours
  530. uint64_t pid = fragment.packetId();
  531. unsigned int fno = fragment.fragmentNumber();
  532. unsigned int tf = fragment.totalFragments();
  533. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  534. // Fragment appears basically sane. Its fragment number must be
  535. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  536. // Total fragments must be more than 1, otherwise why are we
  537. // seeing a Packet::Fragment?
  538. Mutex::Lock _l(_defragQueue_m);
  539. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  540. if (dqe == _defragQueue.end()) {
  541. // We received a Packet::Fragment without its head, so queue it and wait
  542. DefragQueueEntry &dq = _defragQueue[pid];
  543. dq.creationTime = RR->node->now();
  544. dq.frags[fno - 1] = fragment;
  545. dq.totalFragments = tf; // total fragment count is known
  546. dq.haveFragments = 1 << fno; // we have only this fragment
  547. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  548. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  549. // We have other fragments and maybe the head, so add this one and check
  550. dqe->second.frags[fno - 1] = fragment;
  551. dqe->second.totalFragments = tf;
  552. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  553. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  554. // We have all fragments -- assemble and process full Packet
  555. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  556. SharedPtr<IncomingPacket> packet(dqe->second.frag0);
  557. for(unsigned int f=1;f<tf;++f)
  558. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  559. _defragQueue.erase(dqe);
  560. if (!packet->tryDecode(RR)) {
  561. Mutex::Lock _l(_rxQueue_m);
  562. _rxQueue.push_back(packet);
  563. }
  564. }
  565. } // else this is a duplicate fragment, ignore
  566. }
  567. }
  568. }
  569. void Switch::_handleRemotePacketHead(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
  570. {
  571. SharedPtr<IncomingPacket> packet(new IncomingPacket(data,len,fromAddr,linkDesperation,RR->node->now()));
  572. Address source(packet->source());
  573. Address destination(packet->destination());
  574. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  575. if (destination != RR->identity.address()) {
  576. // Packet is not for us, so try to relay it
  577. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  578. packet->incrementHops();
  579. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  580. if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
  581. unite(source,destination,false);
  582. } else {
  583. // Don't know peer or no direct path -- so relay via supernode
  584. relayTo = RR->topology->getBestSupernode(&source,1,true);
  585. if (relayTo)
  586. relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
  587. }
  588. } else {
  589. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  590. }
  591. } else if (packet->fragmented()) {
  592. // Packet is the head of a fragmented packet series
  593. uint64_t pid = packet->packetId();
  594. Mutex::Lock _l(_defragQueue_m);
  595. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  596. if (dqe == _defragQueue.end()) {
  597. // If we have no other fragments yet, create an entry and save the head
  598. DefragQueueEntry &dq = _defragQueue[pid];
  599. dq.creationTime = RR->node->now();
  600. dq.frag0 = packet;
  601. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  602. dq.haveFragments = 1; // head is first bit (left to right)
  603. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  604. } else if (!(dqe->second.haveFragments & 1)) {
  605. // If we have other fragments but no head, see if we are complete with the head
  606. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  607. // We have all fragments -- assemble and process full Packet
  608. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  609. // packet already contains head, so append fragments
  610. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  611. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  612. _defragQueue.erase(dqe);
  613. if (!packet->tryDecode(RR)) {
  614. Mutex::Lock _l(_rxQueue_m);
  615. _rxQueue.push_back(packet);
  616. }
  617. } else {
  618. // Still waiting on more fragments, so queue the head
  619. dqe->second.frag0 = packet;
  620. }
  621. } // else this is a duplicate head, ignore
  622. } else {
  623. // Packet is unfragmented, so just process it
  624. if (!packet->tryDecode(RR)) {
  625. Mutex::Lock _l(_rxQueue_m);
  626. _rxQueue.push_back(packet);
  627. }
  628. }
  629. }
  630. void Switch::_handleBeacon(const InetAddress &fromAddr,int linkDesperation,const Buffer<ZT_PROTO_BEACON_LENGTH> &data)
  631. {
  632. Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  633. if (beaconAddr == RR->identity.address())
  634. return;
  635. SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
  636. if (peer) {
  637. const uint64_t now = RR->node->now();
  638. if ((now - _lastBeacon) >= ZT_MIN_BEACON_RESPONSE_INTERVAL) {
  639. _lastBeacon = now;
  640. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  641. outp.armor(peer->key(),false);
  642. RR->node->putPacket(fromAddr,outp.data(),outp.size(),linkDesperation);
  643. }
  644. }
  645. }
  646. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  647. {
  648. SharedPtr<Peer> supernode(RR->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  649. if (supernode) {
  650. Packet outp(supernode->address(),RR->identity.address(),Packet::VERB_WHOIS);
  651. addr.appendTo(outp);
  652. outp.armor(supernode->key(),true);
  653. if (supernode->send(RR,outp.data(),outp.size(),RR->node->now()))
  654. return supernode->address();
  655. }
  656. return Address();
  657. }
  658. bool Switch::_trySend(const Packet &packet,bool encrypt)
  659. {
  660. SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
  661. if (peer) {
  662. const uint64_t now = RR->node->now();
  663. Path *viaPath = peer->getBestPath(now);
  664. if (!viaPath) {
  665. SharedPtr<Peer> sn(RR->topology->getBestSupernode());
  666. if (!(sn)||(!(viaPath = sn->getBestPath(now))))
  667. return false;
  668. }
  669. Packet tmp(packet);
  670. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  671. tmp.setFragmented(chunkSize < tmp.size());
  672. tmp.armor(peer->key(),encrypt);
  673. if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
  674. if (chunkSize < tmp.size()) {
  675. // Too big for one bite, fragment the rest
  676. unsigned int fragStart = chunkSize;
  677. unsigned int remaining = tmp.size() - chunkSize;
  678. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  679. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  680. ++fragsRemaining;
  681. unsigned int totalFragments = fragsRemaining + 1;
  682. for(unsigned int fno=1;fno<totalFragments;++fno) {
  683. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  684. Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
  685. viaPath->send(RR,frag.data(),frag.size(),now);
  686. fragStart += chunkSize;
  687. remaining -= chunkSize;
  688. }
  689. }
  690. return true;
  691. }
  692. } else {
  693. requestWhois(packet.destination());
  694. }
  695. return false;
  696. }
  697. } // namespace ZeroTier