AES.cpp 85 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2025-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Constants.hpp"
  14. #include "AES.hpp"
  15. #ifdef __GNUC__
  16. #pragma GCC diagnostic ignored "-Wstrict-aliasing"
  17. #endif
  18. #define Te1_r(x) ZT_ROR32(Te0[x], 8U)
  19. #define Te2_r(x) ZT_ROR32(Te0[x], 16U)
  20. #define Te3_r(x) ZT_ROR32(Te0[x], 24U)
  21. #define Td1_r(x) ZT_ROR32(Td0[x], 8U)
  22. #define Td2_r(x) ZT_ROR32(Td0[x], 16U)
  23. #define Td3_r(x) ZT_ROR32(Td0[x], 24U)
  24. namespace ZeroTier {
  25. // GMAC ---------------------------------------------------------------------------------------------------------------
  26. namespace {
  27. #ifdef ZT_AES_NEON
  28. ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
  29. {
  30. uint8x16_t r0, r1, t0, t1;
  31. r0 = vld1q_u8(b);
  32. const uint8x16_t z = veorq_u8(h, h);
  33. y = veorq_u8(r0, y);
  34. y = vrbitq_u8(y);
  35. const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
  36. t0 = vextq_u8(y, y, 8);
  37. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (r0) : "w" (h), "w" (y));
  38. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (r1) : "w" (h), "w" (y));
  39. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t1) : "w" (h), "w" (t0));
  40. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (h), "w" (t0));
  41. t0 = veorq_u8(t0, t1);
  42. t1 = vextq_u8(z, t0, 8);
  43. r0 = veorq_u8(r0, t1);
  44. t1 = vextq_u8(t0, z, 8);
  45. r1 = veorq_u8(r1, t1);
  46. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (r1), "w" (p));
  47. t1 = vextq_u8(t0, z, 8);
  48. r1 = veorq_u8(r1, t1);
  49. t1 = vextq_u8(z, t0, 8);
  50. r0 = veorq_u8(r0, t1);
  51. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t0) : "w" (r1), "w" (p));
  52. return vrbitq_u8(veorq_u8(r0, t0));
  53. }
  54. #endif // ZT_AES_NEON
  55. #define s_bmul32(N, x, y, rh, rl) \
  56. uint32_t x0t_##N = (x) & 0x11111111U; \
  57. uint32_t x1t_##N = (x) & 0x22222222U; \
  58. uint32_t x2t_##N = (x) & 0x44444444U; \
  59. uint32_t x3t_##N = (x) & 0x88888888U; \
  60. uint32_t y0t_##N = (y) & 0x11111111U; \
  61. uint32_t y1t_##N = (y) & 0x22222222U; \
  62. uint32_t y2t_##N = (y) & 0x44444444U; \
  63. uint32_t y3t_##N = (y) & 0x88888888U; \
  64. uint64_t z0t_##N = (((uint64_t)x0t_##N * y0t_##N) ^ ((uint64_t)x1t_##N * y3t_##N) ^ ((uint64_t)x2t_##N * y2t_##N) ^ ((uint64_t)x3t_##N * y1t_##N)) & 0x1111111111111111ULL; \
  65. uint64_t z1t_##N = (((uint64_t)x0t_##N * y1t_##N) ^ ((uint64_t)x1t_##N * y0t_##N) ^ ((uint64_t)x2t_##N * y3t_##N) ^ ((uint64_t)x3t_##N * y2t_##N)) & 0x2222222222222222ULL; \
  66. uint64_t z2t_##N = (((uint64_t)x0t_##N * y2t_##N) ^ ((uint64_t)x1t_##N * y1t_##N) ^ ((uint64_t)x2t_##N * y0t_##N) ^ ((uint64_t)x3t_##N * y3t_##N)) & 0x4444444444444444ULL; \
  67. z0t_##N |= z1t_##N; \
  68. z2t_##N |= z0t_##N; \
  69. uint64_t zt_##N = z2t_##N | ((((uint64_t)x0t_##N * y3t_##N) ^ ((uint64_t)x1t_##N * y2t_##N) ^ ((uint64_t)x2t_##N * y1t_##N) ^ ((uint64_t)x3t_##N * y0t_##N)) & 0x8888888888888888ULL); \
  70. (rh) = (uint32_t)(zt_##N >> 32U); \
  71. (rl) = (uint32_t)zt_##N;
  72. void s_gfmul(const uint64_t hh, const uint64_t hl, uint64_t &y0, uint64_t &y1) noexcept
  73. {
  74. uint32_t hhh = (uint32_t)(hh >> 32U);
  75. uint32_t hhl = (uint32_t)hh;
  76. uint32_t hlh = (uint32_t)(hl >> 32U);
  77. uint32_t hll = (uint32_t)hl;
  78. uint32_t hhXlh = hhh ^hlh;
  79. uint32_t hhXll = hhl ^hll;
  80. uint64_t yl = Utils::ntoh(y0);
  81. uint64_t yh = Utils::ntoh(y1);
  82. uint32_t cilh = (uint32_t)(yh >> 32U);
  83. uint32_t cill = (uint32_t)yh;
  84. uint32_t cihh = (uint32_t)(yl >> 32U);
  85. uint32_t cihl = (uint32_t)yl;
  86. uint32_t cihXlh = cihh ^cilh;
  87. uint32_t cihXll = cihl ^cill;
  88. uint32_t aah, aal, abh, abl, ach, acl;
  89. s_bmul32(M0, cihh, hhh, aah, aal);
  90. s_bmul32(M1, cihl, hhl, abh, abl);
  91. s_bmul32(M2, cihh ^ cihl, hhh ^ hhl, ach, acl);
  92. ach ^= aah ^ abh;
  93. acl ^= aal ^ abl;
  94. aal ^= ach;
  95. abh ^= acl;
  96. uint32_t bah, bal, bbh, bbl, bch, bcl;
  97. s_bmul32(M3, cilh, hlh, bah, bal);
  98. s_bmul32(M4, cill, hll, bbh, bbl);
  99. s_bmul32(M5, cilh ^ cill, hlh ^ hll, bch, bcl);
  100. bch ^= bah ^ bbh;
  101. bcl ^= bal ^ bbl;
  102. bal ^= bch;
  103. bbh ^= bcl;
  104. uint32_t cah, cal, cbh, cbl, cch, ccl;
  105. s_bmul32(M6, cihXlh, hhXlh, cah, cal);
  106. s_bmul32(M7, cihXll, hhXll, cbh, cbl);
  107. s_bmul32(M8, cihXlh ^ cihXll, hhXlh ^ hhXll, cch, ccl);
  108. cch ^= cah ^ cbh;
  109. ccl ^= cal ^ cbl;
  110. cal ^= cch;
  111. cbh ^= ccl;
  112. cah ^= bah ^ aah;
  113. cal ^= bal ^ aal;
  114. cbh ^= bbh ^ abh;
  115. cbl ^= bbl ^ abl;
  116. uint64_t zhh = ((uint64_t)aah << 32U) | aal;
  117. uint64_t zhl = (((uint64_t)abh << 32U) | abl) ^(((uint64_t)cah << 32U) | cal);
  118. uint64_t zlh = (((uint64_t)bah << 32U) | bal) ^(((uint64_t)cbh << 32U) | cbl);
  119. uint64_t zll = ((uint64_t)bbh << 32U) | bbl;
  120. zhh = zhh << 1U | zhl >> 63U;
  121. zhl = zhl << 1U | zlh >> 63U;
  122. zlh = zlh << 1U | zll >> 63U;
  123. zll <<= 1U;
  124. zlh ^= (zll << 63U) ^ (zll << 62U) ^ (zll << 57U);
  125. zhh ^= zlh ^ (zlh >> 1U) ^ (zlh >> 2U) ^ (zlh >> 7U);
  126. zhl ^= zll ^ (zll >> 1U) ^ (zll >> 2U) ^ (zll >> 7U) ^ (zlh << 63U) ^ (zlh << 62U) ^ (zlh << 57U);
  127. y0 = Utils::hton(zhh);
  128. y1 = Utils::hton(zhl);
  129. }
  130. } // anonymous namespace
  131. #ifdef ZT_AES_AESNI
  132. // SSE shuffle parameter to reverse bytes in a 128-bit vector.
  133. static const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  134. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
  135. static __m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
  136. {
  137. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  138. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  139. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  140. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  141. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  142. t2 = _mm_xor_si128(t2, t3);
  143. t3 = _mm_slli_si128(t2, 8);
  144. t2 = _mm_srli_si128(t2, 8);
  145. t1 = _mm_xor_si128(t1, t3);
  146. t4 = _mm_xor_si128(t4, t2);
  147. __m128i t5 = _mm_srli_epi32(t1, 31);
  148. t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
  149. t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
  150. t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
  151. t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
  152. t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
  153. return _mm_shuffle_epi8(t4, s_sseSwapBytes);
  154. }
  155. #endif
  156. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
  157. void AES::GMAC::update(const void *const data, unsigned int len) noexcept
  158. {
  159. const uint8_t *in = reinterpret_cast<const uint8_t *>(data);
  160. _len += len;
  161. #ifdef ZT_AES_AESNI
  162. if (likely(Utils::CPUID.aes)) {
  163. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
  164. // Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
  165. if (_rp) {
  166. for (;;) {
  167. if (!len)
  168. return;
  169. --len;
  170. _r[_rp++] = *(in++);
  171. if (_rp == 16) {
  172. y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
  173. break;
  174. }
  175. }
  176. }
  177. if (likely(len >= 64)) {
  178. const __m128i sb = s_sseSwapBytes;
  179. const __m128i h = _aes._k.ni.h[0];
  180. const __m128i hh = _aes._k.ni.h[1];
  181. const __m128i hhh = _aes._k.ni.h[2];
  182. const __m128i hhhh = _aes._k.ni.h[3];
  183. const __m128i h2 = _aes._k.ni.h2[0];
  184. const __m128i hh2 = _aes._k.ni.h2[1];
  185. const __m128i hhh2 = _aes._k.ni.h2[2];
  186. const __m128i hhhh2 = _aes._k.ni.h2[3];
  187. const uint8_t *const end64 = in + (len & ~((unsigned int)63));
  188. len &= 63;
  189. do {
  190. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
  191. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
  192. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
  193. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
  194. in += 64;
  195. __m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
  196. __m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
  197. __m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
  198. a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
  199. b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
  200. c = _mm_srli_epi32(a, 31);
  201. a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
  202. b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
  203. c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
  204. a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
  205. b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
  206. y = _mm_shuffle_epi8(b, sb);
  207. } while (likely(in != end64));
  208. }
  209. while (len >= 16) {
  210. y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
  211. in += 16;
  212. len -= 16;
  213. }
  214. _mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
  215. // Any overflow is cached for a later run or finish().
  216. for (unsigned int i = 0; i < len; ++i)
  217. _r[i] = in[i];
  218. _rp = len; // len is always less than 16 here
  219. return;
  220. }
  221. #endif // ZT_AES_AESNI
  222. #ifdef ZT_AES_NEON
  223. if (Utils::ARMCAP.pmull) {
  224. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
  225. const uint8x16_t h = _aes._k.neon.h;
  226. if (_rp) {
  227. for(;;) {
  228. if (!len)
  229. return;
  230. --len;
  231. _r[_rp++] = *(in++);
  232. if (_rp == 16) {
  233. y = s_clmul_armneon_crypto(h, y, _r);
  234. break;
  235. }
  236. }
  237. }
  238. while (len >= 16) {
  239. y = s_clmul_armneon_crypto(h, y, in);
  240. in += 16;
  241. len -= 16;
  242. }
  243. vst1q_u8(reinterpret_cast<uint8_t *>(_y), y);
  244. for (unsigned int i = 0; i < len; ++i)
  245. _r[i] = in[i];
  246. _rp = len; // len is always less than 16 here
  247. return;
  248. }
  249. #endif // ZT_AES_NEON
  250. const uint64_t h0 = _aes._k.sw.h[0];
  251. const uint64_t h1 = _aes._k.sw.h[1];
  252. uint64_t y0 = _y[0];
  253. uint64_t y1 = _y[1];
  254. if (_rp) {
  255. for (;;) {
  256. if (!len)
  257. return;
  258. --len;
  259. _r[_rp++] = *(in++);
  260. if (_rp == 16) {
  261. y0 ^= Utils::loadMachineEndian< uint64_t >(_r);
  262. y1 ^= Utils::loadMachineEndian< uint64_t >(_r + 8);
  263. s_gfmul(h0, h1, y0, y1);
  264. break;
  265. }
  266. }
  267. }
  268. if (likely(((uintptr_t)in & 7U) == 0U)) {
  269. while (len >= 16) {
  270. y0 ^= *reinterpret_cast<const uint64_t *>(in);
  271. y1 ^= *reinterpret_cast<const uint64_t *>(in + 8);
  272. in += 16;
  273. s_gfmul(h0, h1, y0, y1);
  274. len -= 16;
  275. }
  276. } else {
  277. while (len >= 16) {
  278. y0 ^= Utils::loadMachineEndian< uint64_t >(in);
  279. y1 ^= Utils::loadMachineEndian< uint64_t >(in + 8);
  280. in += 16;
  281. s_gfmul(h0, h1, y0, y1);
  282. len -= 16;
  283. }
  284. }
  285. _y[0] = y0;
  286. _y[1] = y1;
  287. for (unsigned int i = 0; i < len; ++i)
  288. _r[i] = in[i];
  289. _rp = len; // len is always less than 16 here
  290. }
  291. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
  292. void AES::GMAC::finish(uint8_t tag[16]) noexcept
  293. {
  294. #ifdef ZT_AES_AESNI
  295. if (likely(Utils::CPUID.aes)) {
  296. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
  297. // Handle any remaining bytes, padding the last block with zeroes.
  298. if (_rp) {
  299. while (_rp < 16)
  300. _r[_rp++] = 0;
  301. y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
  302. }
  303. // Interleave encryption of IV with the final GHASH of y XOR (length * 8).
  304. // Then XOR these together to get the final tag.
  305. const __m128i *const k = _aes._k.ni.k;
  306. const __m128i h = _aes._k.ni.h[0];
  307. y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
  308. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  309. __m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
  310. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  311. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  312. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  313. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  314. encIV = _mm_aesenc_si128(encIV, k[1]);
  315. t2 = _mm_xor_si128(t2, t3);
  316. t3 = _mm_slli_si128(t2, 8);
  317. encIV = _mm_aesenc_si128(encIV, k[2]);
  318. t2 = _mm_srli_si128(t2, 8);
  319. t1 = _mm_xor_si128(t1, t3);
  320. encIV = _mm_aesenc_si128(encIV, k[3]);
  321. t4 = _mm_xor_si128(t4, t2);
  322. __m128i t5 = _mm_srli_epi32(t1, 31);
  323. t1 = _mm_slli_epi32(t1, 1);
  324. __m128i t6 = _mm_srli_epi32(t4, 31);
  325. encIV = _mm_aesenc_si128(encIV, k[4]);
  326. t4 = _mm_slli_epi32(t4, 1);
  327. t3 = _mm_srli_si128(t5, 12);
  328. encIV = _mm_aesenc_si128(encIV, k[5]);
  329. t6 = _mm_slli_si128(t6, 4);
  330. t5 = _mm_slli_si128(t5, 4);
  331. encIV = _mm_aesenc_si128(encIV, k[6]);
  332. t1 = _mm_or_si128(t1, t5);
  333. t4 = _mm_or_si128(t4, t6);
  334. encIV = _mm_aesenc_si128(encIV, k[7]);
  335. t4 = _mm_or_si128(t4, t3);
  336. t5 = _mm_slli_epi32(t1, 31);
  337. encIV = _mm_aesenc_si128(encIV, k[8]);
  338. t6 = _mm_slli_epi32(t1, 30);
  339. t3 = _mm_slli_epi32(t1, 25);
  340. encIV = _mm_aesenc_si128(encIV, k[9]);
  341. t5 = _mm_xor_si128(t5, t6);
  342. t5 = _mm_xor_si128(t5, t3);
  343. encIV = _mm_aesenc_si128(encIV, k[10]);
  344. t6 = _mm_srli_si128(t5, 4);
  345. t4 = _mm_xor_si128(t4, t6);
  346. encIV = _mm_aesenc_si128(encIV, k[11]);
  347. t5 = _mm_slli_si128(t5, 12);
  348. t1 = _mm_xor_si128(t1, t5);
  349. t4 = _mm_xor_si128(t4, t1);
  350. t5 = _mm_srli_epi32(t1, 1);
  351. encIV = _mm_aesenc_si128(encIV, k[12]);
  352. t2 = _mm_srli_epi32(t1, 2);
  353. t3 = _mm_srli_epi32(t1, 7);
  354. encIV = _mm_aesenc_si128(encIV, k[13]);
  355. t4 = _mm_xor_si128(t4, t2);
  356. t4 = _mm_xor_si128(t4, t3);
  357. encIV = _mm_aesenclast_si128(encIV, k[14]);
  358. t4 = _mm_xor_si128(t4, t5);
  359. _mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
  360. return;
  361. }
  362. #endif // ZT_AES_AESNI
  363. #ifdef ZT_AES_NEON
  364. if (Utils::ARMCAP.pmull) {
  365. uint64_t tmp[2];
  366. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
  367. const uint8x16_t h = _aes._k.neon.h;
  368. if (_rp) {
  369. while (_rp < 16)
  370. _r[_rp++] = 0;
  371. y = s_clmul_armneon_crypto(h, y, _r);
  372. }
  373. tmp[0] = Utils::hton((uint64_t)_len << 3U);
  374. tmp[1] = 0;
  375. y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t *>(tmp));
  376. Utils::copy< 12 >(tmp, _iv);
  377. #if __BYTE_ORDER == __BIG_ENDIAN
  378. reinterpret_cast<uint32_t *>(tmp)[3] = 0x00000001;
  379. #else
  380. reinterpret_cast<uint32_t *>(tmp)[3] = 0x01000000;
  381. #endif
  382. _aes.encrypt(tmp, tmp);
  383. uint8x16_t yy = y;
  384. Utils::storeMachineEndian< uint64_t >(tag, tmp[0] ^ reinterpret_cast<const uint64_t *>(&yy)[0]);
  385. Utils::storeMachineEndian< uint64_t >(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t *>(&yy)[1]);
  386. return;
  387. }
  388. #endif // ZT_AES_NEON
  389. const uint64_t h0 = _aes._k.sw.h[0];
  390. const uint64_t h1 = _aes._k.sw.h[1];
  391. uint64_t y0 = _y[0];
  392. uint64_t y1 = _y[1];
  393. if (_rp) {
  394. while (_rp < 16)
  395. _r[_rp++] = 0;
  396. y0 ^= Utils::loadMachineEndian< uint64_t >(_r);
  397. y1 ^= Utils::loadMachineEndian< uint64_t >(_r + 8);
  398. s_gfmul(h0, h1, y0, y1);
  399. }
  400. y0 ^= Utils::hton((uint64_t)_len << 3U);
  401. s_gfmul(h0, h1, y0, y1);
  402. uint64_t iv2[2];
  403. Utils::copy< 12 >(iv2, _iv);
  404. #if __BYTE_ORDER == __BIG_ENDIAN
  405. reinterpret_cast<uint32_t *>(iv2)[3] = 0x00000001;
  406. #else
  407. reinterpret_cast<uint32_t *>(iv2)[3] = 0x01000000;
  408. #endif
  409. _aes.encrypt(iv2, iv2);
  410. Utils::storeMachineEndian< uint64_t >(tag, iv2[0] ^ y0);
  411. Utils::storeMachineEndian< uint64_t >(tag + 8, iv2[1] ^ y1);
  412. }
  413. // AES-CTR ------------------------------------------------------------------------------------------------------------
  414. #ifdef ZT_AES_AESNI
  415. /* Disable VAES stuff on compilers too old to compile these intrinsics,
  416. * and MinGW64 also seems not to support them so disable on Windows.
  417. * The performance gain can be significant but regular SSE is already so
  418. * fast it's highly unlikely to be a rate limiting factor except on massive
  419. * servers and network infrastructure stuff. */
  420. #if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
  421. #define ZT_AES_VAES512 1
  422. static
  423. __attribute__((__target__("sse4,avx,avx2,vaes,avx512f,avx512bw")))
  424. void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  425. {
  426. const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
  427. const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
  428. const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
  429. const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
  430. const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
  431. const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
  432. const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
  433. const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
  434. const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
  435. const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
  436. const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
  437. const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
  438. const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
  439. const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
  440. const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
  441. do {
  442. __m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
  443. __m512i d0 = _mm512_set_epi64(
  444. (long long)Utils::hton(c1 + 3ULL), (long long)c0,
  445. (long long)Utils::hton(c1 + 2ULL), (long long)c0,
  446. (long long)Utils::hton(c1 + 1ULL), (long long)c0,
  447. (long long)Utils::hton(c1), (long long)c0);
  448. c1 += 4;
  449. in += 64;
  450. len -= 64;
  451. d0 = _mm512_xor_si512(d0, kk0);
  452. d0 = _mm512_aesenc_epi128(d0, kk1);
  453. d0 = _mm512_aesenc_epi128(d0, kk2);
  454. d0 = _mm512_aesenc_epi128(d0, kk3);
  455. d0 = _mm512_aesenc_epi128(d0, kk4);
  456. d0 = _mm512_aesenc_epi128(d0, kk5);
  457. d0 = _mm512_aesenc_epi128(d0, kk6);
  458. d0 = _mm512_aesenc_epi128(d0, kk7);
  459. d0 = _mm512_aesenc_epi128(d0, kk8);
  460. d0 = _mm512_aesenc_epi128(d0, kk9);
  461. d0 = _mm512_aesenc_epi128(d0, kk10);
  462. d0 = _mm512_aesenc_epi128(d0, kk11);
  463. d0 = _mm512_aesenc_epi128(d0, kk12);
  464. d0 = _mm512_aesenc_epi128(d0, kk13);
  465. d0 = _mm512_aesenclast_epi128(d0, kk14);
  466. _mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
  467. out += 64;
  468. } while (likely(len >= 64));
  469. }
  470. #define ZT_AES_VAES256 1
  471. static
  472. __attribute__((__target__("sse4,avx,avx2,vaes")))
  473. void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  474. {
  475. const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
  476. const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
  477. const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
  478. const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
  479. const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
  480. const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
  481. const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
  482. const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
  483. const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
  484. const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
  485. const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
  486. const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
  487. const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
  488. const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
  489. const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
  490. do {
  491. __m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
  492. __m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
  493. __m256i d0 = _mm256_set_epi64x(
  494. (long long)Utils::hton(c1 + 1ULL), (long long)c0,
  495. (long long)Utils::hton(c1), (long long)c0);
  496. __m256i d1 = _mm256_set_epi64x(
  497. (long long)Utils::hton(c1 + 3ULL), (long long)c0,
  498. (long long)Utils::hton(c1 + 2ULL), (long long)c0);
  499. c1 += 4;
  500. in += 64;
  501. len -= 64;
  502. d0 = _mm256_xor_si256(d0, kk0);
  503. d1 = _mm256_xor_si256(d1, kk0);
  504. d0 = _mm256_aesenc_epi128(d0, kk1);
  505. d1 = _mm256_aesenc_epi128(d1, kk1);
  506. d0 = _mm256_aesenc_epi128(d0, kk2);
  507. d1 = _mm256_aesenc_epi128(d1, kk2);
  508. d0 = _mm256_aesenc_epi128(d0, kk3);
  509. d1 = _mm256_aesenc_epi128(d1, kk3);
  510. d0 = _mm256_aesenc_epi128(d0, kk4);
  511. d1 = _mm256_aesenc_epi128(d1, kk4);
  512. d0 = _mm256_aesenc_epi128(d0, kk5);
  513. d1 = _mm256_aesenc_epi128(d1, kk5);
  514. d0 = _mm256_aesenc_epi128(d0, kk6);
  515. d1 = _mm256_aesenc_epi128(d1, kk6);
  516. d0 = _mm256_aesenc_epi128(d0, kk7);
  517. d1 = _mm256_aesenc_epi128(d1, kk7);
  518. d0 = _mm256_aesenc_epi128(d0, kk8);
  519. d1 = _mm256_aesenc_epi128(d1, kk8);
  520. d0 = _mm256_aesenc_epi128(d0, kk9);
  521. d1 = _mm256_aesenc_epi128(d1, kk9);
  522. d0 = _mm256_aesenc_epi128(d0, kk10);
  523. d1 = _mm256_aesenc_epi128(d1, kk10);
  524. d0 = _mm256_aesenc_epi128(d0, kk11);
  525. d1 = _mm256_aesenc_epi128(d1, kk11);
  526. d0 = _mm256_aesenc_epi128(d0, kk12);
  527. d1 = _mm256_aesenc_epi128(d1, kk12);
  528. d0 = _mm256_aesenc_epi128(d0, kk13);
  529. d1 = _mm256_aesenc_epi128(d1, kk13);
  530. d0 = _mm256_aesenclast_epi128(d0, kk14);
  531. d1 = _mm256_aesenclast_epi128(d1, kk14);
  532. _mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
  533. _mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
  534. out += 64;
  535. } while (likely(len >= 64));
  536. }
  537. #endif // does compiler support AVX2 and AVX512 AES intrinsics?
  538. #endif // ZT_AES_AESNI
  539. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
  540. void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
  541. {
  542. const uint8_t *in = reinterpret_cast<const uint8_t *>(input);
  543. uint8_t *out = _out;
  544. #ifdef ZT_AES_AESNI
  545. if (likely(Utils::CPUID.aes)) {
  546. const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
  547. uint64_t c1 = Utils::ntoh(_ctr[1]);
  548. const __m128i *const k = _aes._k.ni.k;
  549. const __m128i k0 = k[0];
  550. const __m128i k1 = k[1];
  551. const __m128i k2 = k[2];
  552. const __m128i k3 = k[3];
  553. const __m128i k4 = k[4];
  554. const __m128i k5 = k[5];
  555. const __m128i k6 = k[6];
  556. const __m128i k7 = k[7];
  557. const __m128i k8 = k[8];
  558. const __m128i k9 = k[9];
  559. const __m128i k10 = k[10];
  560. const __m128i k11 = k[11];
  561. const __m128i k12 = k[12];
  562. const __m128i k13 = k[13];
  563. const __m128i k14 = k[14];
  564. // Complete any unfinished blocks from previous calls to crypt().
  565. unsigned int totalLen = _len;
  566. if ((totalLen & 15U)) {
  567. for (;;) {
  568. if (unlikely(!len)) {
  569. _ctr[1] = Utils::hton(c1);
  570. _len = totalLen;
  571. return;
  572. }
  573. --len;
  574. out[totalLen++] = *(in++);
  575. if (!(totalLen & 15U)) {
  576. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  577. d0 = _mm_xor_si128(d0, k0);
  578. d0 = _mm_aesenc_si128(d0, k1);
  579. d0 = _mm_aesenc_si128(d0, k2);
  580. d0 = _mm_aesenc_si128(d0, k3);
  581. d0 = _mm_aesenc_si128(d0, k4);
  582. d0 = _mm_aesenc_si128(d0, k5);
  583. d0 = _mm_aesenc_si128(d0, k6);
  584. d0 = _mm_aesenc_si128(d0, k7);
  585. d0 = _mm_aesenc_si128(d0, k8);
  586. d0 = _mm_aesenc_si128(d0, k9);
  587. d0 = _mm_aesenc_si128(d0, k10);
  588. __m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
  589. d0 = _mm_aesenc_si128(d0, k11);
  590. const __m128i p0 = _mm_loadu_si128(outblk);
  591. d0 = _mm_aesenc_si128(d0, k12);
  592. d0 = _mm_aesenc_si128(d0, k13);
  593. d0 = _mm_aesenclast_si128(d0, k14);
  594. _mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
  595. break;
  596. }
  597. }
  598. }
  599. out += totalLen;
  600. _len = totalLen + len;
  601. if (likely(len >= 64)) {
  602. #if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  603. if (Utils::CPUID.vaes && (len >= 256)) {
  604. if (Utils::CPUID.avx512f) {
  605. p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
  606. } else {
  607. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  608. }
  609. goto skip_conventional_aesni_64;
  610. }
  611. #endif
  612. #if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  613. if (Utils::CPUID.vaes && (len >= 256)) {
  614. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  615. goto skip_conventional_aesni_64;
  616. }
  617. #endif
  618. const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
  619. len &= 63;
  620. __m128i d0, d1, d2, d3;
  621. do {
  622. const uint64_t c10 = Utils::hton(c1);
  623. const uint64_t c11 = Utils::hton(c1 + 1ULL);
  624. const uint64_t c12 = Utils::hton(c1 + 2ULL);
  625. const uint64_t c13 = Utils::hton(c1 + 3ULL);
  626. d0 = _mm_insert_epi64(dd, (long long)c10, 1);
  627. d1 = _mm_insert_epi64(dd, (long long)c11, 1);
  628. d2 = _mm_insert_epi64(dd, (long long)c12, 1);
  629. d3 = _mm_insert_epi64(dd, (long long)c13, 1);
  630. c1 += 4;
  631. d0 = _mm_xor_si128(d0, k0);
  632. d1 = _mm_xor_si128(d1, k0);
  633. d2 = _mm_xor_si128(d2, k0);
  634. d3 = _mm_xor_si128(d3, k0);
  635. d0 = _mm_aesenc_si128(d0, k1);
  636. d1 = _mm_aesenc_si128(d1, k1);
  637. d2 = _mm_aesenc_si128(d2, k1);
  638. d3 = _mm_aesenc_si128(d3, k1);
  639. d0 = _mm_aesenc_si128(d0, k2);
  640. d1 = _mm_aesenc_si128(d1, k2);
  641. d2 = _mm_aesenc_si128(d2, k2);
  642. d3 = _mm_aesenc_si128(d3, k2);
  643. d0 = _mm_aesenc_si128(d0, k3);
  644. d1 = _mm_aesenc_si128(d1, k3);
  645. d2 = _mm_aesenc_si128(d2, k3);
  646. d3 = _mm_aesenc_si128(d3, k3);
  647. d0 = _mm_aesenc_si128(d0, k4);
  648. d1 = _mm_aesenc_si128(d1, k4);
  649. d2 = _mm_aesenc_si128(d2, k4);
  650. d3 = _mm_aesenc_si128(d3, k4);
  651. d0 = _mm_aesenc_si128(d0, k5);
  652. d1 = _mm_aesenc_si128(d1, k5);
  653. d2 = _mm_aesenc_si128(d2, k5);
  654. d3 = _mm_aesenc_si128(d3, k5);
  655. d0 = _mm_aesenc_si128(d0, k6);
  656. d1 = _mm_aesenc_si128(d1, k6);
  657. d2 = _mm_aesenc_si128(d2, k6);
  658. d3 = _mm_aesenc_si128(d3, k6);
  659. d0 = _mm_aesenc_si128(d0, k7);
  660. d1 = _mm_aesenc_si128(d1, k7);
  661. d2 = _mm_aesenc_si128(d2, k7);
  662. d3 = _mm_aesenc_si128(d3, k7);
  663. d0 = _mm_aesenc_si128(d0, k8);
  664. d1 = _mm_aesenc_si128(d1, k8);
  665. d2 = _mm_aesenc_si128(d2, k8);
  666. d3 = _mm_aesenc_si128(d3, k8);
  667. d0 = _mm_aesenc_si128(d0, k9);
  668. d1 = _mm_aesenc_si128(d1, k9);
  669. d2 = _mm_aesenc_si128(d2, k9);
  670. d3 = _mm_aesenc_si128(d3, k9);
  671. d0 = _mm_aesenc_si128(d0, k10);
  672. d1 = _mm_aesenc_si128(d1, k10);
  673. d2 = _mm_aesenc_si128(d2, k10);
  674. d3 = _mm_aesenc_si128(d3, k10);
  675. d0 = _mm_aesenc_si128(d0, k11);
  676. d1 = _mm_aesenc_si128(d1, k11);
  677. d2 = _mm_aesenc_si128(d2, k11);
  678. d3 = _mm_aesenc_si128(d3, k11);
  679. d0 = _mm_aesenc_si128(d0, k12);
  680. d1 = _mm_aesenc_si128(d1, k12);
  681. d2 = _mm_aesenc_si128(d2, k12);
  682. d3 = _mm_aesenc_si128(d3, k12);
  683. d0 = _mm_aesenc_si128(d0, k13);
  684. d1 = _mm_aesenc_si128(d1, k13);
  685. d2 = _mm_aesenc_si128(d2, k13);
  686. d3 = _mm_aesenc_si128(d3, k13);
  687. d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
  688. d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
  689. d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
  690. d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
  691. in += 64;
  692. _mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
  693. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
  694. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
  695. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
  696. out += 64;
  697. } while (likely(in != eof64));
  698. }
  699. skip_conventional_aesni_64:
  700. while (len >= 16) {
  701. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  702. d0 = _mm_xor_si128(d0, k0);
  703. d0 = _mm_aesenc_si128(d0, k1);
  704. d0 = _mm_aesenc_si128(d0, k2);
  705. d0 = _mm_aesenc_si128(d0, k3);
  706. d0 = _mm_aesenc_si128(d0, k4);
  707. d0 = _mm_aesenc_si128(d0, k5);
  708. d0 = _mm_aesenc_si128(d0, k6);
  709. d0 = _mm_aesenc_si128(d0, k7);
  710. d0 = _mm_aesenc_si128(d0, k8);
  711. d0 = _mm_aesenc_si128(d0, k9);
  712. d0 = _mm_aesenc_si128(d0, k10);
  713. d0 = _mm_aesenc_si128(d0, k11);
  714. d0 = _mm_aesenc_si128(d0, k12);
  715. d0 = _mm_aesenc_si128(d0, k13);
  716. _mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
  717. in += 16;
  718. len -= 16;
  719. out += 16;
  720. }
  721. // Any remaining input is placed in _out. This will be picked up and crypted
  722. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  723. // an even multiple of 16.
  724. for (unsigned int i = 0; i < len; ++i)
  725. out[i] = in[i];
  726. _ctr[1] = Utils::hton(c1);
  727. return;
  728. }
  729. #endif // ZT_AES_AESNI
  730. #ifdef ZT_AES_NEON
  731. if (Utils::ARMCAP.aes) {
  732. uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t *>(_ctr)));
  733. const uint32x4_t one = {0,0,0,1};
  734. uint8x16_t k0 = _aes._k.neon.ek[0];
  735. uint8x16_t k1 = _aes._k.neon.ek[1];
  736. uint8x16_t k2 = _aes._k.neon.ek[2];
  737. uint8x16_t k3 = _aes._k.neon.ek[3];
  738. uint8x16_t k4 = _aes._k.neon.ek[4];
  739. uint8x16_t k5 = _aes._k.neon.ek[5];
  740. uint8x16_t k6 = _aes._k.neon.ek[6];
  741. uint8x16_t k7 = _aes._k.neon.ek[7];
  742. uint8x16_t k8 = _aes._k.neon.ek[8];
  743. uint8x16_t k9 = _aes._k.neon.ek[9];
  744. uint8x16_t k10 = _aes._k.neon.ek[10];
  745. uint8x16_t k11 = _aes._k.neon.ek[11];
  746. uint8x16_t k12 = _aes._k.neon.ek[12];
  747. uint8x16_t k13 = _aes._k.neon.ek[13];
  748. uint8x16_t k14 = _aes._k.neon.ek[14];
  749. unsigned int totalLen = _len;
  750. if ((totalLen & 15U)) {
  751. for (;;) {
  752. if (unlikely(!len)) {
  753. vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
  754. _len = totalLen;
  755. return;
  756. }
  757. --len;
  758. out[totalLen++] = *(in++);
  759. if (!(totalLen & 15U)) {
  760. uint8_t *const otmp = out + (totalLen - 16);
  761. uint8x16_t d0 = vrev32q_u8(dd);
  762. uint8x16_t pt = vld1q_u8(otmp);
  763. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  764. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  765. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  766. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  767. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  768. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  769. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  770. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  771. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  772. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  773. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  774. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  775. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  776. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  777. vst1q_u8(otmp, veorq_u8(pt, d0));
  778. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  779. break;
  780. }
  781. }
  782. }
  783. out += totalLen;
  784. _len = totalLen + len;
  785. if (likely(len >= 64)) {
  786. const uint32x4_t four = vshlq_n_u32(one, 2);
  787. uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  788. uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
  789. uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
  790. for (;;) {
  791. len -= 64;
  792. uint8x16_t d0 = vrev32q_u8(dd);
  793. uint8x16_t d1 = vrev32q_u8(dd1);
  794. uint8x16_t d2 = vrev32q_u8(dd2);
  795. uint8x16_t d3 = vrev32q_u8(dd3);
  796. uint8x16_t pt0 = vld1q_u8(in);
  797. in += 16;
  798. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  799. d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
  800. d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
  801. d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
  802. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  803. d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
  804. d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
  805. d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
  806. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  807. d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
  808. d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
  809. d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
  810. uint8x16_t pt1 = vld1q_u8(in);
  811. in += 16;
  812. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  813. d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
  814. d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
  815. d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
  816. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  817. d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
  818. d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
  819. d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
  820. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  821. d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
  822. d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
  823. d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
  824. uint8x16_t pt2 = vld1q_u8(in);
  825. in += 16;
  826. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  827. d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
  828. d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
  829. d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
  830. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  831. d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
  832. d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
  833. d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
  834. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  835. d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
  836. d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
  837. d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
  838. uint8x16_t pt3 = vld1q_u8(in);
  839. in += 16;
  840. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  841. d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
  842. d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
  843. d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
  844. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  845. d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
  846. d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
  847. d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
  848. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  849. d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
  850. d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
  851. d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
  852. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  853. d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
  854. d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
  855. d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
  856. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  857. d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
  858. d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
  859. d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
  860. d0 = veorq_u8(pt0, d0);
  861. d1 = veorq_u8(pt1, d1);
  862. d2 = veorq_u8(pt2, d2);
  863. d3 = veorq_u8(pt3, d3);
  864. vst1q_u8(out, d0);
  865. vst1q_u8(out + 16, d1);
  866. vst1q_u8(out + 32, d2);
  867. vst1q_u8(out + 48, d3);
  868. out += 64;
  869. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
  870. if (unlikely(len < 64))
  871. break;
  872. dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
  873. dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
  874. dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
  875. }
  876. }
  877. while (len >= 16) {
  878. len -= 16;
  879. uint8x16_t d0 = vrev32q_u8(dd);
  880. uint8x16_t pt = vld1q_u8(in);
  881. in += 16;
  882. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  883. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  884. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  885. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  886. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  887. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  888. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  889. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  890. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  891. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  892. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  893. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  894. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  895. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  896. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  897. vst1q_u8(out, veorq_u8(pt, d0));
  898. out += 16;
  899. }
  900. // Any remaining input is placed in _out. This will be picked up and crypted
  901. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  902. // an even multiple of 16.
  903. for (unsigned int i = 0; i < len; ++i)
  904. out[i] = in[i];
  905. vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
  906. return;
  907. }
  908. #endif // ZT_AES_NEON
  909. uint64_t keyStream[2];
  910. uint32_t ctr = Utils::ntoh(reinterpret_cast<uint32_t *>(_ctr)[3]);
  911. unsigned int totalLen = _len;
  912. if ((totalLen & 15U)) {
  913. for (;;) {
  914. if (!len) {
  915. _len = (totalLen + len);
  916. return;
  917. }
  918. --len;
  919. out[totalLen++] = *(in++);
  920. if (!(totalLen & 15U)) {
  921. _aes._encryptSW(reinterpret_cast<const uint8_t *>(_ctr), reinterpret_cast<uint8_t *>(keyStream));
  922. reinterpret_cast<uint32_t *>(_ctr)[3] = Utils::hton(++ctr);
  923. uint8_t *outblk = out + (totalLen - 16);
  924. for (int i = 0; i < 16; ++i)
  925. outblk[i] ^= reinterpret_cast<uint8_t *>(keyStream)[i];
  926. break;
  927. }
  928. }
  929. }
  930. out += totalLen;
  931. _len = (totalLen + len);
  932. if (likely(len >= 16)) {
  933. const uint32_t *const restrict rk = _aes._k.sw.ek;
  934. const uint32_t ctr0rk0 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[0]) ^rk[0];
  935. const uint32_t ctr1rk1 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[1]) ^rk[1];
  936. const uint32_t ctr2rk2 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[2]) ^rk[2];
  937. const uint32_t m8 = 0x000000ff;
  938. const uint32_t m8_8 = 0x0000ff00;
  939. const uint32_t m8_16 = 0x00ff0000;
  940. const uint32_t m8_24 = 0xff000000;
  941. if (likely((((uintptr_t)out & 7U) == 0U) && (((uintptr_t)in & 7U) == 0U))) {
  942. do {
  943. uint32_t s0, s1, s2, s3, t0, t1, t2, t3;
  944. s0 = ctr0rk0;
  945. s1 = ctr1rk1;
  946. s2 = ctr2rk2;
  947. s3 = ctr++ ^ rk[3];
  948. const uint64_t in0 = *reinterpret_cast<const uint64_t *>(in);
  949. const uint64_t in1 = *reinterpret_cast<const uint64_t *>(in + 8);
  950. in += 16;
  951. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[4];
  952. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[5];
  953. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[6];
  954. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[7];
  955. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[8];
  956. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[9];
  957. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[10];
  958. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[11];
  959. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[12];
  960. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[13];
  961. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[14];
  962. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[15];
  963. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[16];
  964. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[17];
  965. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[18];
  966. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[19];
  967. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[20];
  968. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[21];
  969. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[22];
  970. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[23];
  971. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[24];
  972. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[25];
  973. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[26];
  974. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[27];
  975. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[28];
  976. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[29];
  977. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[30];
  978. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[31];
  979. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[32];
  980. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[33];
  981. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[34];
  982. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[35];
  983. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[36];
  984. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[37];
  985. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[38];
  986. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[39];
  987. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[40];
  988. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[41];
  989. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[42];
  990. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[43];
  991. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[44];
  992. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[45];
  993. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[46];
  994. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[47];
  995. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[48];
  996. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[49];
  997. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[50];
  998. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[51];
  999. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[52];
  1000. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[53];
  1001. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[54];
  1002. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[55];
  1003. s0 = (Te2_r(t0 >> 24U) & m8_24) ^ (Te3_r((t1 >> 16U) & m8) & m8_16) ^ (Te0[(t2 >> 8U) & m8] & m8_8) ^ (Te1_r(t3 & m8) & m8) ^ rk[56];
  1004. s1 = (Te2_r(t1 >> 24U) & m8_24) ^ (Te3_r((t2 >> 16U) & m8) & m8_16) ^ (Te0[(t3 >> 8U) & m8] & m8_8) ^ (Te1_r(t0 & m8) & m8) ^ rk[57];
  1005. s2 = (Te2_r(t2 >> 24U) & m8_24) ^ (Te3_r((t3 >> 16U) & m8) & m8_16) ^ (Te0[(t0 >> 8U) & m8] & m8_8) ^ (Te1_r(t1 & m8) & m8) ^ rk[58];
  1006. s3 = (Te2_r(t3 >> 24U) & m8_24) ^ (Te3_r((t0 >> 16U) & m8) & m8_16) ^ (Te0[(t1 >> 8U) & m8] & m8_8) ^ (Te1_r(t2 & m8) & m8) ^ rk[59];
  1007. *reinterpret_cast<uint64_t *>(out) = in0 ^ Utils::hton(((uint64_t)s0 << 32U) | (uint64_t)s1);
  1008. *reinterpret_cast<uint64_t *>(out + 8) = in1 ^ Utils::hton(((uint64_t)s2 << 32U) | (uint64_t)s3);
  1009. out += 16;
  1010. } while ((len -= 16) >= 16);
  1011. } else {
  1012. do {
  1013. uint32_t s0, s1, s2, s3, t0, t1, t2, t3;
  1014. s0 = ctr0rk0;
  1015. s1 = ctr1rk1;
  1016. s2 = ctr2rk2;
  1017. s3 = ctr++ ^ rk[3];
  1018. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[4];
  1019. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[5];
  1020. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[6];
  1021. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[7];
  1022. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[8];
  1023. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[9];
  1024. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[10];
  1025. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[11];
  1026. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[12];
  1027. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[13];
  1028. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[14];
  1029. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[15];
  1030. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[16];
  1031. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[17];
  1032. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[18];
  1033. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[19];
  1034. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[20];
  1035. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[21];
  1036. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[22];
  1037. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[23];
  1038. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[24];
  1039. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[25];
  1040. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[26];
  1041. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[27];
  1042. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[28];
  1043. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[29];
  1044. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[30];
  1045. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[31];
  1046. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[32];
  1047. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[33];
  1048. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[34];
  1049. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[35];
  1050. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[36];
  1051. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[37];
  1052. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[38];
  1053. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[39];
  1054. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[40];
  1055. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[41];
  1056. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[42];
  1057. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[43];
  1058. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[44];
  1059. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[45];
  1060. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[46];
  1061. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[47];
  1062. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[48];
  1063. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[49];
  1064. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[50];
  1065. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[51];
  1066. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[52];
  1067. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[53];
  1068. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[54];
  1069. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[55];
  1070. s0 = (Te2_r(t0 >> 24U) & m8_24) ^ (Te3_r((t1 >> 16U) & m8) & m8_16) ^ (Te0[(t2 >> 8U) & m8] & m8_8) ^ (Te1_r(t3 & m8) & m8) ^ rk[56];
  1071. s1 = (Te2_r(t1 >> 24U) & m8_24) ^ (Te3_r((t2 >> 16U) & m8) & m8_16) ^ (Te0[(t3 >> 8U) & m8] & m8_8) ^ (Te1_r(t0 & m8) & m8) ^ rk[57];
  1072. s2 = (Te2_r(t2 >> 24U) & m8_24) ^ (Te3_r((t3 >> 16U) & m8) & m8_16) ^ (Te0[(t0 >> 8U) & m8] & m8_8) ^ (Te1_r(t1 & m8) & m8) ^ rk[58];
  1073. s3 = (Te2_r(t3 >> 24U) & m8_24) ^ (Te3_r((t0 >> 16U) & m8) & m8_16) ^ (Te0[(t1 >> 8U) & m8] & m8_8) ^ (Te1_r(t2 & m8) & m8) ^ rk[59];
  1074. out[0] = in[0] ^ (uint8_t)(s0 >> 24U);
  1075. out[1] = in[1] ^ (uint8_t)(s0 >> 16U);
  1076. out[2] = in[2] ^ (uint8_t)(s0 >> 8U);
  1077. out[3] = in[3] ^ (uint8_t)s0;
  1078. out[4] = in[4] ^ (uint8_t)(s1 >> 24U);
  1079. out[5] = in[5] ^ (uint8_t)(s1 >> 16U);
  1080. out[6] = in[6] ^ (uint8_t)(s1 >> 8U);
  1081. out[7] = in[7] ^ (uint8_t)s1;
  1082. out[8] = in[8] ^ (uint8_t)(s2 >> 24U);
  1083. out[9] = in[9] ^ (uint8_t)(s2 >> 16U);
  1084. out[10] = in[10] ^ (uint8_t)(s2 >> 8U);
  1085. out[11] = in[11] ^ (uint8_t)s2;
  1086. out[12] = in[12] ^ (uint8_t)(s3 >> 24U);
  1087. out[13] = in[13] ^ (uint8_t)(s3 >> 16U);
  1088. out[14] = in[14] ^ (uint8_t)(s3 >> 8U);
  1089. out[15] = in[15] ^ (uint8_t)s3;
  1090. out += 16;
  1091. in += 16;
  1092. } while ((len -= 16) >= 16);
  1093. }
  1094. reinterpret_cast<uint32_t *>(_ctr)[3] = Utils::hton(ctr);
  1095. }
  1096. // Any remaining input is placed in _out. This will be picked up and crypted
  1097. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  1098. // an even multiple of 16.
  1099. while (len) {
  1100. --len;
  1101. *(out++) = *(in++);
  1102. }
  1103. }
  1104. void AES::CTR::finish() noexcept
  1105. {
  1106. uint8_t tmp[16];
  1107. const unsigned int rem = _len & 15U;
  1108. if (rem) {
  1109. _aes.encrypt(_ctr, tmp);
  1110. for (unsigned int i = 0, j = _len - rem; i < rem; ++i)
  1111. _out[j + i] ^= tmp[i];
  1112. }
  1113. }
  1114. // Software AES and AES key expansion ---------------------------------------------------------------------------------
  1115. const uint32_t AES::Te0[256] = {0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d, 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b, 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a, 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153,
  1116. 0x2a15153f, 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d, 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f,
  1117. 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb, 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c, 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a, 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81, 0xa05050f0, 0x783c3c44, 0x259f9fba,
  1118. 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504, 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d,
  1119. 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f, 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395, 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c, 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4, 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4, 0xd3e4e437,
  1120. 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7, 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
  1121. 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21, 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12, 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133, 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878,
  1122. 0xa5dfdf7a, 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11, 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a};
  1123. const uint32_t AES::Te4[256] = {0x63636363, 0x7c7c7c7c, 0x77777777, 0x7b7b7b7b, 0xf2f2f2f2, 0x6b6b6b6b, 0x6f6f6f6f, 0xc5c5c5c5, 0x30303030, 0x01010101, 0x67676767, 0x2b2b2b2b, 0xfefefefe, 0xd7d7d7d7, 0xabababab, 0x76767676, 0xcacacaca, 0x82828282, 0xc9c9c9c9, 0x7d7d7d7d, 0xfafafafa, 0x59595959, 0x47474747, 0xf0f0f0f0, 0xadadadad, 0xd4d4d4d4, 0xa2a2a2a2, 0xafafafaf, 0x9c9c9c9c, 0xa4a4a4a4, 0x72727272, 0xc0c0c0c0, 0xb7b7b7b7, 0xfdfdfdfd, 0x93939393, 0x26262626, 0x36363636, 0x3f3f3f3f, 0xf7f7f7f7, 0xcccccccc, 0x34343434, 0xa5a5a5a5, 0xe5e5e5e5, 0xf1f1f1f1, 0x71717171, 0xd8d8d8d8, 0x31313131,
  1124. 0x15151515, 0x04040404, 0xc7c7c7c7, 0x23232323, 0xc3c3c3c3, 0x18181818, 0x96969696, 0x05050505, 0x9a9a9a9a, 0x07070707, 0x12121212, 0x80808080, 0xe2e2e2e2, 0xebebebeb, 0x27272727, 0xb2b2b2b2, 0x75757575,
  1125. 0x09090909, 0x83838383, 0x2c2c2c2c, 0x1a1a1a1a, 0x1b1b1b1b, 0x6e6e6e6e, 0x5a5a5a5a, 0xa0a0a0a0, 0x52525252, 0x3b3b3b3b, 0xd6d6d6d6, 0xb3b3b3b3, 0x29292929, 0xe3e3e3e3, 0x2f2f2f2f, 0x84848484, 0x53535353, 0xd1d1d1d1, 0x00000000, 0xedededed, 0x20202020, 0xfcfcfcfc, 0xb1b1b1b1, 0x5b5b5b5b, 0x6a6a6a6a, 0xcbcbcbcb, 0xbebebebe, 0x39393939, 0x4a4a4a4a, 0x4c4c4c4c, 0x58585858, 0xcfcfcfcf, 0xd0d0d0d0, 0xefefefef, 0xaaaaaaaa, 0xfbfbfbfb, 0x43434343, 0x4d4d4d4d, 0x33333333, 0x85858585, 0x45454545, 0xf9f9f9f9, 0x02020202, 0x7f7f7f7f, 0x50505050, 0x3c3c3c3c, 0x9f9f9f9f,
  1126. 0xa8a8a8a8, 0x51515151, 0xa3a3a3a3, 0x40404040, 0x8f8f8f8f, 0x92929292, 0x9d9d9d9d, 0x38383838, 0xf5f5f5f5, 0xbcbcbcbc, 0xb6b6b6b6, 0xdadadada, 0x21212121, 0x10101010, 0xffffffff, 0xf3f3f3f3, 0xd2d2d2d2,
  1127. 0xcdcdcdcd, 0x0c0c0c0c, 0x13131313, 0xecececec, 0x5f5f5f5f, 0x97979797, 0x44444444, 0x17171717, 0xc4c4c4c4, 0xa7a7a7a7, 0x7e7e7e7e, 0x3d3d3d3d, 0x64646464, 0x5d5d5d5d, 0x19191919, 0x73737373, 0x60606060, 0x81818181, 0x4f4f4f4f, 0xdcdcdcdc, 0x22222222, 0x2a2a2a2a, 0x90909090, 0x88888888, 0x46464646, 0xeeeeeeee, 0xb8b8b8b8, 0x14141414, 0xdededede, 0x5e5e5e5e, 0x0b0b0b0b, 0xdbdbdbdb, 0xe0e0e0e0, 0x32323232, 0x3a3a3a3a, 0x0a0a0a0a, 0x49494949, 0x06060606, 0x24242424, 0x5c5c5c5c, 0xc2c2c2c2, 0xd3d3d3d3, 0xacacacac, 0x62626262, 0x91919191, 0x95959595, 0xe4e4e4e4,
  1128. 0x79797979, 0xe7e7e7e7, 0xc8c8c8c8, 0x37373737, 0x6d6d6d6d, 0x8d8d8d8d, 0xd5d5d5d5, 0x4e4e4e4e, 0xa9a9a9a9, 0x6c6c6c6c, 0x56565656, 0xf4f4f4f4, 0xeaeaeaea, 0x65656565, 0x7a7a7a7a, 0xaeaeaeae, 0x08080808,
  1129. 0xbabababa, 0x78787878, 0x25252525, 0x2e2e2e2e, 0x1c1c1c1c, 0xa6a6a6a6, 0xb4b4b4b4, 0xc6c6c6c6, 0xe8e8e8e8, 0xdddddddd, 0x74747474, 0x1f1f1f1f, 0x4b4b4b4b, 0xbdbdbdbd, 0x8b8b8b8b, 0x8a8a8a8a, 0x70707070, 0x3e3e3e3e, 0xb5b5b5b5, 0x66666666, 0x48484848, 0x03030303, 0xf6f6f6f6, 0x0e0e0e0e, 0x61616161, 0x35353535, 0x57575757, 0xb9b9b9b9, 0x86868686, 0xc1c1c1c1, 0x1d1d1d1d, 0x9e9e9e9e, 0xe1e1e1e1, 0xf8f8f8f8, 0x98989898, 0x11111111, 0x69696969, 0xd9d9d9d9, 0x8e8e8e8e, 0x94949494, 0x9b9b9b9b, 0x1e1e1e1e, 0x87878787, 0xe9e9e9e9, 0xcececece, 0x55555555, 0x28282828,
  1130. 0xdfdfdfdf, 0x8c8c8c8c, 0xa1a1a1a1, 0x89898989, 0x0d0d0d0d, 0xbfbfbfbf, 0xe6e6e6e6, 0x42424242, 0x68686868, 0x41414141, 0x99999999, 0x2d2d2d2d, 0x0f0f0f0f, 0xb0b0b0b0, 0x54545454, 0xbbbbbbbb, 0x16161616};
  1131. const uint32_t AES::Td0[256] = {0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96, 0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393, 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25, 0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f, 0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1, 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6, 0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da, 0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844, 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd, 0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4, 0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45, 0xb16477e0, 0xbb6bae84, 0xfe81a01c,
  1132. 0xf9082b94, 0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7, 0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a, 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5, 0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c,
  1133. 0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1, 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a, 0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75, 0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051, 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46, 0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff, 0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77, 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb, 0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000, 0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e, 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927, 0x0a0fd964, 0x685ca621, 0x9b5b54d1,
  1134. 0x24362e3a, 0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e, 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16, 0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d, 0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8,
  1135. 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd, 0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34, 0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163, 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120, 0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d, 0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0, 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422, 0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef, 0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36, 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4, 0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662, 0xf68d13c2, 0x90d8b8e8, 0x2e39f75e,
  1136. 0x82c3aff5, 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3, 0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b, 0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8, 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6,
  1137. 0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6, 0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0, 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815, 0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f, 0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df, 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f, 0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e, 0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713, 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89, 0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c, 0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf, 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14,
  1138. 0x7844db86, 0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f, 0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541, 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190, 0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742};
  1139. const uint8_t AES::Td4[256] = {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d,
  1140. 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  1141. 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c,
  1142. 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
  1143. const uint32_t AES::rcon[15] = {0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, 0x6c000000, 0xd8000000, 0xab000000, 0x4d000000, 0x9a000000};
  1144. void AES::_initSW(const uint8_t key[32]) noexcept
  1145. {
  1146. uint32_t *rk = _k.sw.ek;
  1147. rk[0] = Utils::loadBigEndian< uint32_t >(key);
  1148. rk[1] = Utils::loadBigEndian< uint32_t >(key + 4);
  1149. rk[2] = Utils::loadBigEndian< uint32_t >(key + 8);
  1150. rk[3] = Utils::loadBigEndian< uint32_t >(key + 12);
  1151. rk[4] = Utils::loadBigEndian< uint32_t >(key + 16);
  1152. rk[5] = Utils::loadBigEndian< uint32_t >(key + 20);
  1153. rk[6] = Utils::loadBigEndian< uint32_t >(key + 24);
  1154. rk[7] = Utils::loadBigEndian< uint32_t >(key + 28);
  1155. for (int i = 0;;) {
  1156. uint32_t temp = rk[7];
  1157. rk[8] = rk[0] ^ (Te2_r((temp >> 16U) & 0xffU) & 0xff000000U) ^ (Te3_r((temp >> 8U) & 0xffU) & 0x00ff0000U) ^ (Te0[(temp) & 0xffU] & 0x0000ff00U) ^ (Te1_r(temp >> 24U) & 0x000000ffU) ^ rcon[i];
  1158. rk[9] = rk[1] ^ rk[8];
  1159. rk[10] = rk[2] ^ rk[9];
  1160. rk[11] = rk[3] ^ rk[10];
  1161. if (++i == 7)
  1162. break;
  1163. temp = rk[11];
  1164. rk[12] = rk[4] ^ (Te2_r(temp >> 24U) & 0xff000000U) ^ (Te3_r((temp >> 16U) & 0xffU) & 0x00ff0000U) ^ (Te0[(temp >> 8U) & 0xffU] & 0x0000ff00U) ^ (Te1_r((temp) & 0xffU) & 0x000000ffU);
  1165. rk[13] = rk[5] ^ rk[12];
  1166. rk[14] = rk[6] ^ rk[13];
  1167. rk[15] = rk[7] ^ rk[14];
  1168. rk += 8;
  1169. }
  1170. _encryptSW((const uint8_t *)Utils::ZERO256, (uint8_t *)_k.sw.h);
  1171. _k.sw.h[0] = Utils::ntoh(_k.sw.h[0]);
  1172. _k.sw.h[1] = Utils::ntoh(_k.sw.h[1]);
  1173. for (int i = 0; i < 60; ++i)
  1174. _k.sw.dk[i] = _k.sw.ek[i];
  1175. rk = _k.sw.dk;
  1176. for (int i = 0, j = 56; i < j; i += 4, j -= 4) {
  1177. uint32_t temp = rk[i];
  1178. rk[i] = rk[j];
  1179. rk[j] = temp;
  1180. temp = rk[i + 1];
  1181. rk[i + 1] = rk[j + 1];
  1182. rk[j + 1] = temp;
  1183. temp = rk[i + 2];
  1184. rk[i + 2] = rk[j + 2];
  1185. rk[j + 2] = temp;
  1186. temp = rk[i + 3];
  1187. rk[i + 3] = rk[j + 3];
  1188. rk[j + 3] = temp;
  1189. }
  1190. for (int i = 1; i < 14; ++i) {
  1191. rk += 4;
  1192. rk[0] = Td0[Te4[(rk[0] >> 24U)] & 0xffU] ^ Td1_r(Te4[(rk[0] >> 16U) & 0xffU] & 0xffU) ^ Td2_r(Te4[(rk[0] >> 8U) & 0xffU] & 0xffU) ^ Td3_r(Te4[(rk[0]) & 0xffU] & 0xffU);
  1193. rk[1] = Td0[Te4[(rk[1] >> 24U)] & 0xffU] ^ Td1_r(Te4[(rk[1] >> 16U) & 0xffU] & 0xffU) ^ Td2_r(Te4[(rk[1] >> 8U) & 0xffU] & 0xffU) ^ Td3_r(Te4[(rk[1]) & 0xffU] & 0xffU);
  1194. rk[2] = Td0[Te4[(rk[2] >> 24U)] & 0xffU] ^ Td1_r(Te4[(rk[2] >> 16U) & 0xffU] & 0xffU) ^ Td2_r(Te4[(rk[2] >> 8U) & 0xffU] & 0xffU) ^ Td3_r(Te4[(rk[2]) & 0xffU] & 0xffU);
  1195. rk[3] = Td0[Te4[(rk[3] >> 24U)] & 0xffU] ^ Td1_r(Te4[(rk[3] >> 16U) & 0xffU] & 0xffU) ^ Td2_r(Te4[(rk[3] >> 8U) & 0xffU] & 0xffU) ^ Td3_r(Te4[(rk[3]) & 0xffU] & 0xffU);
  1196. }
  1197. }
  1198. void AES::_encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
  1199. {
  1200. const uint32_t *const restrict rk = _k.sw.ek;
  1201. const uint32_t m8 = 0x000000ff;
  1202. const uint32_t m8_8 = 0x0000ff00;
  1203. const uint32_t m8_16 = 0x00ff0000;
  1204. const uint32_t m8_24 = 0xff000000;
  1205. uint32_t s0 = Utils::loadBigEndian< uint32_t >(in) ^rk[0];
  1206. uint32_t s1 = Utils::loadBigEndian< uint32_t >(in + 4) ^rk[1];
  1207. uint32_t s2 = Utils::loadBigEndian< uint32_t >(in + 8) ^rk[2];
  1208. uint32_t s3 = Utils::loadBigEndian< uint32_t >(in + 12) ^rk[3];
  1209. uint32_t t0, t1, t2, t3;
  1210. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[4];
  1211. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[5];
  1212. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[6];
  1213. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[7];
  1214. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[8];
  1215. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[9];
  1216. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[10];
  1217. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[11];
  1218. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[12];
  1219. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[13];
  1220. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[14];
  1221. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[15];
  1222. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[16];
  1223. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[17];
  1224. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[18];
  1225. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[19];
  1226. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[20];
  1227. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[21];
  1228. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[22];
  1229. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[23];
  1230. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[24];
  1231. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[25];
  1232. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[26];
  1233. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[27];
  1234. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[28];
  1235. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[29];
  1236. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[30];
  1237. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[31];
  1238. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[32];
  1239. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[33];
  1240. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[34];
  1241. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[35];
  1242. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[36];
  1243. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[37];
  1244. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[38];
  1245. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[39];
  1246. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[40];
  1247. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[41];
  1248. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[42];
  1249. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[43];
  1250. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[44];
  1251. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[45];
  1252. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[46];
  1253. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[47];
  1254. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[48];
  1255. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[49];
  1256. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[50];
  1257. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[51];
  1258. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[52];
  1259. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[53];
  1260. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[54];
  1261. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[55];
  1262. s0 = (Te2_r(t0 >> 24U) & m8_24) ^ (Te3_r((t1 >> 16U) & m8) & m8_16) ^ (Te0[(t2 >> 8U) & m8] & m8_8) ^ (Te1_r(t3 & m8) & m8) ^ rk[56];
  1263. s1 = (Te2_r(t1 >> 24U) & m8_24) ^ (Te3_r((t2 >> 16U) & m8) & m8_16) ^ (Te0[(t3 >> 8U) & m8] & m8_8) ^ (Te1_r(t0 & m8) & m8) ^ rk[57];
  1264. s2 = (Te2_r(t2 >> 24U) & m8_24) ^ (Te3_r((t3 >> 16U) & m8) & m8_16) ^ (Te0[(t0 >> 8U) & m8] & m8_8) ^ (Te1_r(t1 & m8) & m8) ^ rk[58];
  1265. s3 = (Te2_r(t3 >> 24U) & m8_24) ^ (Te3_r((t0 >> 16U) & m8) & m8_16) ^ (Te0[(t1 >> 8U) & m8] & m8_8) ^ (Te1_r(t2 & m8) & m8) ^ rk[59];
  1266. Utils::storeBigEndian< uint32_t >(out, s0);
  1267. Utils::storeBigEndian< uint32_t >(out + 4, s1);
  1268. Utils::storeBigEndian< uint32_t >(out + 8, s2);
  1269. Utils::storeBigEndian< uint32_t >(out + 12, s3);
  1270. }
  1271. void AES::_decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
  1272. {
  1273. const uint32_t *restrict rk = _k.sw.dk;
  1274. const uint32_t m8 = 0x000000ff;
  1275. uint32_t s0 = Utils::loadBigEndian< uint32_t >(in) ^rk[0];
  1276. uint32_t s1 = Utils::loadBigEndian< uint32_t >(in + 4) ^rk[1];
  1277. uint32_t s2 = Utils::loadBigEndian< uint32_t >(in + 8) ^rk[2];
  1278. uint32_t s3 = Utils::loadBigEndian< uint32_t >(in + 12) ^rk[3];
  1279. uint32_t t0, t1, t2, t3;
  1280. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[4];
  1281. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[5];
  1282. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[6];
  1283. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[7];
  1284. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[8];
  1285. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[9];
  1286. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[10];
  1287. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[11];
  1288. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[12];
  1289. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[13];
  1290. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[14];
  1291. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[15];
  1292. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[16];
  1293. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[17];
  1294. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[18];
  1295. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[19];
  1296. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[20];
  1297. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[21];
  1298. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[22];
  1299. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[23];
  1300. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[24];
  1301. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[25];
  1302. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[26];
  1303. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[27];
  1304. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[28];
  1305. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[29];
  1306. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[30];
  1307. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[31];
  1308. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[32];
  1309. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[33];
  1310. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[34];
  1311. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[35];
  1312. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[36];
  1313. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[37];
  1314. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[38];
  1315. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[39];
  1316. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[40];
  1317. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[41];
  1318. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[42];
  1319. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[43];
  1320. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[44];
  1321. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[45];
  1322. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[46];
  1323. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[47];
  1324. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[48];
  1325. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[49];
  1326. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[50];
  1327. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[51];
  1328. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[52];
  1329. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[53];
  1330. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[54];
  1331. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[55];
  1332. s0 = (Td4[t0 >> 24U] << 24U) ^ (Td4[(t3 >> 16U) & m8] << 16U) ^ (Td4[(t2 >> 8U) & m8] << 8U) ^ (Td4[(t1) & m8]) ^ rk[56];
  1333. s1 = (Td4[t1 >> 24U] << 24U) ^ (Td4[(t0 >> 16U) & m8] << 16U) ^ (Td4[(t3 >> 8U) & m8] << 8U) ^ (Td4[(t2) & m8]) ^ rk[57];
  1334. s2 = (Td4[t2 >> 24U] << 24U) ^ (Td4[(t1 >> 16U) & m8] << 16U) ^ (Td4[(t0 >> 8U) & m8] << 8U) ^ (Td4[(t3) & m8]) ^ rk[58];
  1335. s3 = (Td4[t3 >> 24U] << 24U) ^ (Td4[(t2 >> 16U) & m8] << 16U) ^ (Td4[(t1 >> 8U) & m8] << 8U) ^ (Td4[(t0) & m8]) ^ rk[59];
  1336. Utils::storeBigEndian< uint32_t >(out, s0);
  1337. Utils::storeBigEndian< uint32_t >(out + 4, s1);
  1338. Utils::storeBigEndian< uint32_t >(out + 8, s2);
  1339. Utils::storeBigEndian< uint32_t >(out + 12, s3);
  1340. }
  1341. #ifdef ZT_AES_AESNI
  1342. static __m128i _init256_1_aesni(__m128i a, __m128i b) noexcept
  1343. {
  1344. __m128i x, y;
  1345. b = _mm_shuffle_epi32(b, 0xff);
  1346. y = _mm_slli_si128(a, 0x04);
  1347. x = _mm_xor_si128(a, y);
  1348. y = _mm_slli_si128(y, 0x04);
  1349. x = _mm_xor_si128(x, y);
  1350. y = _mm_slli_si128(y, 0x04);
  1351. x = _mm_xor_si128(x, y);
  1352. x = _mm_xor_si128(x, b);
  1353. return x;
  1354. }
  1355. static __m128i _init256_2_aesni(__m128i a, __m128i b) noexcept
  1356. {
  1357. __m128i x, y, z;
  1358. y = _mm_aeskeygenassist_si128(a, 0x00);
  1359. z = _mm_shuffle_epi32(y, 0xaa);
  1360. y = _mm_slli_si128(b, 0x04);
  1361. x = _mm_xor_si128(b, y);
  1362. y = _mm_slli_si128(y, 0x04);
  1363. x = _mm_xor_si128(x, y);
  1364. y = _mm_slli_si128(y, 0x04);
  1365. x = _mm_xor_si128(x, y);
  1366. x = _mm_xor_si128(x, z);
  1367. return x;
  1368. }
  1369. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
  1370. void AES::_init_aesni(const uint8_t key[32]) noexcept
  1371. {
  1372. __m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
  1373. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  1374. _k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
  1375. _k.ni.k[2] = k2 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
  1376. _k.ni.k[3] = k3 = t2 = _init256_2_aesni(t1, t2);
  1377. _k.ni.k[4] = k4 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
  1378. _k.ni.k[5] = k5 = t2 = _init256_2_aesni(t1, t2);
  1379. _k.ni.k[6] = k6 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
  1380. _k.ni.k[7] = k7 = t2 = _init256_2_aesni(t1, t2);
  1381. _k.ni.k[8] = k8 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
  1382. _k.ni.k[9] = k9 = t2 = _init256_2_aesni(t1, t2);
  1383. _k.ni.k[10] = k10 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
  1384. _k.ni.k[11] = k11 = t2 = _init256_2_aesni(t1, t2);
  1385. _k.ni.k[12] = k12 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
  1386. _k.ni.k[13] = k13 = t2 = _init256_2_aesni(t1, t2);
  1387. _k.ni.k[14] = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
  1388. _k.ni.k[15] = _mm_aesimc_si128(k13);
  1389. _k.ni.k[16] = _mm_aesimc_si128(k12);
  1390. _k.ni.k[17] = _mm_aesimc_si128(k11);
  1391. _k.ni.k[18] = _mm_aesimc_si128(k10);
  1392. _k.ni.k[19] = _mm_aesimc_si128(k9);
  1393. _k.ni.k[20] = _mm_aesimc_si128(k8);
  1394. _k.ni.k[21] = _mm_aesimc_si128(k7);
  1395. _k.ni.k[22] = _mm_aesimc_si128(k6);
  1396. _k.ni.k[23] = _mm_aesimc_si128(k5);
  1397. _k.ni.k[24] = _mm_aesimc_si128(k4);
  1398. _k.ni.k[25] = _mm_aesimc_si128(k3);
  1399. _k.ni.k[26] = _mm_aesimc_si128(k2);
  1400. _k.ni.k[27] = _mm_aesimc_si128(k1);
  1401. __m128i h = _k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  1402. h = _mm_aesenc_si128(h, k1);
  1403. h = _mm_aesenc_si128(h, k2);
  1404. h = _mm_aesenc_si128(h, k3);
  1405. h = _mm_aesenc_si128(h, k4);
  1406. h = _mm_aesenc_si128(h, k5);
  1407. h = _mm_aesenc_si128(h, k6);
  1408. h = _mm_aesenc_si128(h, k7);
  1409. h = _mm_aesenc_si128(h, k8);
  1410. h = _mm_aesenc_si128(h, k9);
  1411. h = _mm_aesenc_si128(h, k10);
  1412. h = _mm_aesenc_si128(h, k11);
  1413. h = _mm_aesenc_si128(h, k12);
  1414. h = _mm_aesenc_si128(h, k13);
  1415. h = _mm_aesenclast_si128(h, _k.ni.k[14]);
  1416. __m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
  1417. __m128i hh = p_gmacPCLMUL128(hswap, h);
  1418. __m128i hhh = p_gmacPCLMUL128(hswap, hh);
  1419. __m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
  1420. _k.ni.h[0] = hswap;
  1421. _k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
  1422. _k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
  1423. _k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
  1424. _k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
  1425. _k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
  1426. _k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
  1427. _k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
  1428. }
  1429. void AES::_encrypt_aesni(const void *const in, void *const out) const noexcept
  1430. {
  1431. __m128i tmp = _mm_loadu_si128((const __m128i *)in);
  1432. tmp = _mm_xor_si128(tmp, _k.ni.k[0]);
  1433. tmp = _mm_aesenc_si128(tmp, _k.ni.k[1]);
  1434. tmp = _mm_aesenc_si128(tmp, _k.ni.k[2]);
  1435. tmp = _mm_aesenc_si128(tmp, _k.ni.k[3]);
  1436. tmp = _mm_aesenc_si128(tmp, _k.ni.k[4]);
  1437. tmp = _mm_aesenc_si128(tmp, _k.ni.k[5]);
  1438. tmp = _mm_aesenc_si128(tmp, _k.ni.k[6]);
  1439. tmp = _mm_aesenc_si128(tmp, _k.ni.k[7]);
  1440. tmp = _mm_aesenc_si128(tmp, _k.ni.k[8]);
  1441. tmp = _mm_aesenc_si128(tmp, _k.ni.k[9]);
  1442. tmp = _mm_aesenc_si128(tmp, _k.ni.k[10]);
  1443. tmp = _mm_aesenc_si128(tmp, _k.ni.k[11]);
  1444. tmp = _mm_aesenc_si128(tmp, _k.ni.k[12]);
  1445. tmp = _mm_aesenc_si128(tmp, _k.ni.k[13]);
  1446. _mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, _k.ni.k[14]));
  1447. }
  1448. void AES::_decrypt_aesni(const void *in, void *out) const noexcept
  1449. {
  1450. __m128i tmp = _mm_loadu_si128((const __m128i *)in);
  1451. tmp = _mm_xor_si128(tmp, _k.ni.k[14]);
  1452. tmp = _mm_aesdec_si128(tmp, _k.ni.k[15]);
  1453. tmp = _mm_aesdec_si128(tmp, _k.ni.k[16]);
  1454. tmp = _mm_aesdec_si128(tmp, _k.ni.k[17]);
  1455. tmp = _mm_aesdec_si128(tmp, _k.ni.k[18]);
  1456. tmp = _mm_aesdec_si128(tmp, _k.ni.k[19]);
  1457. tmp = _mm_aesdec_si128(tmp, _k.ni.k[20]);
  1458. tmp = _mm_aesdec_si128(tmp, _k.ni.k[21]);
  1459. tmp = _mm_aesdec_si128(tmp, _k.ni.k[22]);
  1460. tmp = _mm_aesdec_si128(tmp, _k.ni.k[23]);
  1461. tmp = _mm_aesdec_si128(tmp, _k.ni.k[24]);
  1462. tmp = _mm_aesdec_si128(tmp, _k.ni.k[25]);
  1463. tmp = _mm_aesdec_si128(tmp, _k.ni.k[26]);
  1464. tmp = _mm_aesdec_si128(tmp, _k.ni.k[27]);
  1465. _mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, _k.ni.k[0]));
  1466. }
  1467. #endif // ZT_AES_AESNI
  1468. #ifdef ZT_AES_NEON
  1469. #define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
  1470. #define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
  1471. #define ZT_INIT_ARMNEON_CRYPTO_NK 8
  1472. #define ZT_INIT_ARMNEON_CRYPTO_NB 4
  1473. #define ZT_INIT_ARMNEON_CRYPTO_NR 14
  1474. void AES::_init_armneon_crypto(const uint8_t key[32]) noexcept
  1475. {
  1476. static const uint8_t s_sbox[256] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,
  1477. 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea,
  1478. 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
  1479. uint64_t h[2];
  1480. uint32_t *const w = reinterpret_cast<uint32_t *>(_k.neon.ek);
  1481. for (unsigned int i=0;i<ZT_INIT_ARMNEON_CRYPTO_NK;++i) {
  1482. const unsigned int j = i * 4;
  1483. w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
  1484. }
  1485. for (unsigned int i=ZT_INIT_ARMNEON_CRYPTO_NK;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
  1486. uint32_t t = w[i - 1];
  1487. const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
  1488. if (imod == 0) {
  1489. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
  1490. } else if (imod == 4) {
  1491. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
  1492. }
  1493. w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
  1494. }
  1495. for (unsigned int i=0;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i)
  1496. w[i] = Utils::hton(w[i]);
  1497. _k.neon.dk[0] = _k.neon.ek[14];
  1498. for (int i=1;i<14;++i)
  1499. _k.neon.dk[i] = vaesimcq_u8(_k.neon.ek[14 - i]);
  1500. _k.neon.dk[14] = _k.neon.ek[0];
  1501. _encrypt_armneon_crypto(Utils::ZERO256, h);
  1502. Utils::copy<16>(&(_k.neon.h), h);
  1503. _k.neon.h = vrbitq_u8(_k.neon.h);
  1504. _k.sw.h[0] = Utils::ntoh(h[0]);
  1505. _k.sw.h[1] = Utils::ntoh(h[1]);
  1506. }
  1507. void AES::_encrypt_armneon_crypto(const void *const in, void *const out) const noexcept
  1508. {
  1509. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
  1510. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[0]));
  1511. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[1]));
  1512. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[2]));
  1513. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[3]));
  1514. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[4]));
  1515. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[5]));
  1516. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[6]));
  1517. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[7]));
  1518. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[8]));
  1519. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[9]));
  1520. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[10]));
  1521. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[11]));
  1522. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[12]));
  1523. tmp = veorq_u8(vaeseq_u8(tmp, _k.neon.ek[13]), _k.neon.ek[14]);
  1524. vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
  1525. }
  1526. void AES::_decrypt_armneon_crypto(const void *const in, void *const out) const noexcept
  1527. {
  1528. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
  1529. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[0]));
  1530. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[1]));
  1531. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[2]));
  1532. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[3]));
  1533. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[4]));
  1534. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[5]));
  1535. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[6]));
  1536. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[7]));
  1537. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[8]));
  1538. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[9]));
  1539. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[10]));
  1540. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[11]));
  1541. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[12]));
  1542. tmp = veorq_u8(vaesdq_u8(tmp, _k.neon.dk[13]), _k.neon.dk[14]);
  1543. vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
  1544. }
  1545. #endif // ZT_AES_NEON
  1546. } // namespace ZeroTier