root.cpp 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266
  1. /*
  2. * Copyright (c)2019 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2023-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. /*
  14. * This is a high-throughput minimal root server. It implements only
  15. * those functions of a ZT node that a root must perform and does so
  16. * using highly efficient multithreaded I/O code. It's only been
  17. * thoroughly tested on Linux but should also run on BSDs.
  18. *
  19. * Root configuration file format (JSON):
  20. *
  21. * {
  22. * "name": Name of this root for documentation/UI purposes (string)
  23. * "port": UDP port (int)
  24. * "httpPort": Local HTTP port for basic stats (int)
  25. * "relayMaxHops": Max hops (up to 7)
  26. * "planetFile": Location of planet file for pre-2.x peers (string)
  27. * "statsRoot": If present, path to periodically save stats files (string)
  28. * "s_siblings": [
  29. * {
  30. * "name": Sibling name for UI/documentation purposes (string)
  31. * "id": Full public identity of subling (string)
  32. * "ip": IP address of sibling (string)
  33. * "port": port of subling (for ZeroTier UDP) (int)
  34. * }, ...
  35. * ]
  36. * }
  37. *
  38. * The only required field is port. If statsRoot is present then files
  39. * are periodically written there containing the root's current state.
  40. * It should be a memory filesystem like /dev/shm on Linux as these
  41. * files are large and rewritten frequently and do not need to be
  42. * persisted.
  43. *
  44. * s_siblings are other root servers that should receive packets to peers
  45. * that we can't find. This can occur due to e.g. network topology
  46. * hiccups, IP blockages, etc. s_siblings are used in the order in which
  47. * they appear with the first alive sibling being used.
  48. */
  49. #include <Constants.hpp>
  50. #include <stdio.h>
  51. #include <stdlib.h>
  52. #include <unistd.h>
  53. #include <string.h>
  54. #include <fcntl.h>
  55. #include <signal.h>
  56. #include <errno.h>
  57. #include <sys/stat.h>
  58. #include <sys/types.h>
  59. #include <sys/socket.h>
  60. #include <sys/select.h>
  61. #include <sys/time.h>
  62. #include <sys/un.h>
  63. #include <sys/ioctl.h>
  64. #include <arpa/inet.h>
  65. #include <netinet/in.h>
  66. #include <netinet/ip.h>
  67. #include <netinet/ip6.h>
  68. #include <netinet/tcp.h>
  69. #include <netinet/udp.h>
  70. #include <json.hpp>
  71. #include <httplib.h>
  72. #include <Packet.hpp>
  73. #include <Utils.hpp>
  74. #include <Address.hpp>
  75. #include <Identity.hpp>
  76. #include <InetAddress.hpp>
  77. #include <Mutex.hpp>
  78. #include <SharedPtr.hpp>
  79. #include <MulticastGroup.hpp>
  80. #include <CertificateOfMembership.hpp>
  81. #include <OSUtils.hpp>
  82. #include <Meter.hpp>
  83. #include <string>
  84. #include <thread>
  85. #include <map>
  86. #include <set>
  87. #include <vector>
  88. #include <iostream>
  89. #include <unordered_map>
  90. #include <unordered_set>
  91. #include <vector>
  92. #include <atomic>
  93. #include <mutex>
  94. #include <sstream>
  95. #include "geoip-html.h"
  96. using namespace ZeroTier;
  97. using json = nlohmann::json;
  98. #ifdef MSG_DONTWAIT
  99. #define SENDTO_FLAGS MSG_DONTWAIT
  100. #else
  101. #define SENDTO_FLAGS 0
  102. #endif
  103. //////////////////////////////////////////////////////////////////////////////
  104. //////////////////////////////////////////////////////////////////////////////
  105. /**
  106. * RootPeer is a normal peer known to this root
  107. *
  108. * This can also be a sibling root, which is itself a peer. Sibling roots
  109. * are sent HELLO while for other peers we only listen for HELLO.
  110. */
  111. struct RootPeer
  112. {
  113. ZT_ALWAYS_INLINE RootPeer() : lastSend(0),lastReceive(0),lastSync(0),lastEcho(0),lastHello(0),vProto(-1),vMajor(-1),vMinor(-1),vRev(-1) {}
  114. ZT_ALWAYS_INLINE ~RootPeer() { Utils::burn(key,sizeof(key)); }
  115. Identity id; // Identity
  116. uint8_t key[32]; // Shared secret key
  117. InetAddress ip4,ip6; // IPv4 and IPv6 addresses
  118. int64_t lastSend; // Time of last send (any packet)
  119. int64_t lastReceive; // Time of last receive (any packet)
  120. int64_t lastSync; // Time of last data synchronization with LF or other root state backend (currently unused)
  121. int64_t lastEcho; // Time of last received ECHO
  122. int64_t lastHello; // Time of last received HELLO
  123. int vProto; // Protocol version
  124. int vMajor,vMinor,vRev; // Peer version or -1,-1,-1 if unknown
  125. std::mutex lock;
  126. AtomicCounter __refCount;
  127. };
  128. // Hashers for std::unordered_map
  129. struct IdentityHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Identity &id) const { return (std::size_t)id.hashCode(); } };
  130. struct AddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Address &a) const { return (std::size_t)a.toInt(); } };
  131. struct InetAddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const InetAddress &ip) const { return (std::size_t)ip.hashCode(); } };
  132. struct MulticastGroupHasher { ZT_ALWAYS_INLINE std::size_t operator()(const MulticastGroup &mg) const { return (std::size_t)mg.hashCode(); } };
  133. // An ordered tuple key representing an introduction of one peer to another
  134. struct RendezvousKey
  135. {
  136. RendezvousKey(const Address &aa,const Address &bb)
  137. {
  138. if (aa > bb) {
  139. a = aa;
  140. b = bb;
  141. } else {
  142. a = bb;
  143. b = aa;
  144. }
  145. }
  146. Address a,b;
  147. ZT_ALWAYS_INLINE bool operator==(const RendezvousKey &k) const { return ((a == k.a)&&(b == k.b)); }
  148. ZT_ALWAYS_INLINE bool operator!=(const RendezvousKey &k) const { return ((a != k.a)||(b != k.b)); }
  149. struct Hasher { ZT_ALWAYS_INLINE std::size_t operator()(const RendezvousKey &k) const { return (std::size_t)(k.a.toInt() ^ k.b.toInt()); } };
  150. };
  151. struct RendezvousStats
  152. {
  153. RendezvousStats() : count(0),ts(0) {}
  154. int64_t count;
  155. int64_t ts;
  156. };
  157. struct ForwardingStats
  158. {
  159. ForwardingStats() : bytes(0),ts(0),bps() {}
  160. uint64_t bytes;
  161. int64_t ts;
  162. Meter bps;
  163. };
  164. static int64_t s_startTime; // Time service was started
  165. static std::vector<int> s_ports; // Ports to bind for UDP traffic
  166. static int s_relayMaxHops = 0; // Max relay hops
  167. static Identity s_self; // My identity (including secret)
  168. static std::atomic_bool s_run; // Remains true until shutdown is ordered
  169. static json s_config; // JSON config file contents
  170. static std::string s_statsRoot; // Root to write stats, peers, etc.
  171. static std::atomic_bool s_geoInit; // True if geoIP data is initialized
  172. static Meter s_inputRate;
  173. static Meter s_outputRate;
  174. static Meter s_forwardRate;
  175. static Meter s_discardedForwardRate;
  176. static std::string s_planet;
  177. static std::unordered_map< uint64_t,std::unordered_map< MulticastGroup,std::unordered_map< Address,int64_t,AddressHasher >,MulticastGroupHasher > > s_multicastSubscriptions;
  178. static std::unordered_map< Identity,SharedPtr<RootPeer>,IdentityHasher > s_peersByIdentity;
  179. static std::unordered_map< Address,std::set< SharedPtr<RootPeer> >,AddressHasher > s_peersByVirtAddr;
  180. static std::unordered_map< InetAddress,std::set< SharedPtr<RootPeer> >,InetAddressHasher > s_peersByPhysAddr;
  181. static std::unordered_map< RendezvousKey,RendezvousStats,RendezvousKey::Hasher > s_rendezvousTracking;
  182. static std::unordered_map< Address,ForwardingStats,AddressHasher > s_lastForwardedTo;
  183. static std::map< std::pair< uint32_t,uint32_t >,std::pair< float,float > > s_geoIp4;
  184. static std::map< std::pair< std::array< uint64_t,2 >,std::array< uint64_t,2 > >,std::pair< float,float > > s_geoIp6;
  185. static std::mutex s_planet_l;
  186. static std::mutex s_siblings_l;
  187. static std::mutex s_multicastSubscriptions_l;
  188. static std::mutex s_peersByIdentity_l;
  189. static std::mutex s_peersByVirtAddr_l;
  190. static std::mutex s_peersByPhysAddr_l;
  191. static std::mutex s_rendezvousTracking_l;
  192. static std::mutex s_lastForwardedTo_l;
  193. //////////////////////////////////////////////////////////////////////////////
  194. //////////////////////////////////////////////////////////////////////////////
  195. static uint32_t ip4ToH32(const InetAddress &ip)
  196. {
  197. return Utils::ntoh((uint32_t)(((const struct sockaddr_in *)&ip)->sin_addr.s_addr));
  198. }
  199. static std::array< uint64_t,2 > ip6ToH128(const InetAddress &ip)
  200. {
  201. std::array<uint64_t,2> i128;
  202. memcpy(i128.data(),ip.rawIpData(),16);
  203. i128[0] = Utils::ntoh(i128[0]);
  204. i128[1] = Utils::ntoh(i128[1]);
  205. return i128;
  206. }
  207. static void handlePacket(const int v4s,const int v6s,const InetAddress *const ip,Packet &pkt)
  208. {
  209. char ipstr[128],ipstr2[128],astr[32],astr2[32],tmpstr[256];
  210. const bool fragment = pkt[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR;
  211. const Address source(pkt.source());
  212. const Address dest(pkt.destination());
  213. const int64_t now = OSUtils::now();
  214. s_inputRate.log(now,pkt.size());
  215. if ((!fragment)&&(!pkt.fragmented())&&(dest == s_self.address())) {
  216. SharedPtr<RootPeer> peer;
  217. // If this is an un-encrypted HELLO, either learn a new peer or verify
  218. // that this is a peer we already know.
  219. if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(pkt.verb() == Packet::VERB_HELLO)) {
  220. std::lock_guard<std::mutex> pbi_l(s_peersByIdentity_l);
  221. std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
  222. Identity id;
  223. if (id.deserialize(pkt,ZT_PROTO_VERB_HELLO_IDX_IDENTITY)) {
  224. {
  225. auto pById = s_peersByIdentity.find(id);
  226. if (pById != s_peersByIdentity.end()) {
  227. peer = pById->second;
  228. //printf("%s has %s (known (1))" ZT_EOL_S,ip->toString(ipstr),source().toString(astr));
  229. }
  230. }
  231. if (peer) {
  232. if (!pkt.dearmor(peer->key)) {
  233. printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr));
  234. return;
  235. }
  236. } else {
  237. peer.set(new RootPeer);
  238. if (s_self.agree(id,peer->key)) {
  239. if (pkt.dearmor(peer->key)) {
  240. if (!pkt.uncompress()) {
  241. printf("%s HELLO rejected: decompression failed" ZT_EOL_S,ip->toString(ipstr));
  242. return;
  243. }
  244. peer->id = id;
  245. peer->lastReceive = now;
  246. s_peersByIdentity.emplace(id,peer);
  247. s_peersByVirtAddr[id.address()].emplace(peer);
  248. } else {
  249. printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr));
  250. return;
  251. }
  252. } else {
  253. printf("%s HELLO rejected: key agreement failed" ZT_EOL_S,ip->toString(ipstr));
  254. return;
  255. }
  256. }
  257. }
  258. }
  259. // If it wasn't a HELLO, check to see if any known identities for the sender's
  260. // short ZT address successfully decrypt the packet.
  261. if (!peer) {
  262. std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
  263. auto peers = s_peersByVirtAddr.find(source);
  264. if (peers != s_peersByVirtAddr.end()) {
  265. for(auto p=peers->second.begin();p!=peers->second.end();++p) {
  266. if (pkt.dearmor((*p)->key)) {
  267. if (!pkt.uncompress()) {
  268. printf("%s packet rejected: decompression failed" ZT_EOL_S,ip->toString(ipstr));
  269. return;
  270. }
  271. peer = (*p);
  272. //printf("%s has %s (known (2))" ZT_EOL_S,ip->toString(ipstr),source().toString(astr));
  273. break;
  274. }
  275. }
  276. }
  277. }
  278. // If we found the peer, update IP and/or time and handle certain key packet types that the
  279. // root must concern itself with.
  280. if (peer) {
  281. std::lock_guard<std::mutex> pl(peer->lock);
  282. InetAddress *const peerIp = ip->isV4() ? &(peer->ip4) : &(peer->ip6);
  283. if (*peerIp != ip) {
  284. std::lock_guard<std::mutex> pbp_l(s_peersByPhysAddr_l);
  285. if (*peerIp) {
  286. auto prev = s_peersByPhysAddr.find(*peerIp);
  287. if (prev != s_peersByPhysAddr.end()) {
  288. prev->second.erase(peer);
  289. if (prev->second.empty())
  290. s_peersByPhysAddr.erase(prev);
  291. }
  292. }
  293. *peerIp = ip;
  294. s_peersByPhysAddr[ip].emplace(peer);
  295. }
  296. const int64_t now = OSUtils::now();
  297. peer->lastReceive = now;
  298. switch(pkt.verb()) {
  299. case Packet::VERB_HELLO:
  300. try {
  301. if ((now - peer->lastHello) > 500) {
  302. peer->lastHello = now;
  303. peer->vProto = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
  304. peer->vMajor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
  305. peer->vMinor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
  306. peer->vRev = (int)pkt.template at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
  307. const uint64_t origId = pkt.packetId();
  308. const uint64_t ts = pkt.template at<uint64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
  309. pkt.reset(source,s_self.address(),Packet::VERB_OK);
  310. pkt.append((uint8_t)Packet::VERB_HELLO);
  311. pkt.append(origId);
  312. pkt.append(ts);
  313. pkt.append((uint8_t)ZT_PROTO_VERSION);
  314. pkt.append((uint8_t)0);
  315. pkt.append((uint8_t)0);
  316. pkt.append((uint16_t)0);
  317. ip->serialize(pkt);
  318. if (peer->vProto < 11) { // send planet file for pre-2.x peers
  319. std::lock_guard<std::mutex> pl(s_planet_l);
  320. if (s_planet.length() > 0) {
  321. pkt.append((uint16_t)s_planet.size());
  322. pkt.append((const uint8_t *)s_planet.data(),s_planet.size());
  323. }
  324. }
  325. pkt.armor(peer->key,true);
  326. sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
  327. s_outputRate.log(now,pkt.size());
  328. peer->lastSend = now;
  329. }
  330. } catch ( ... ) {
  331. printf("* unexpected exception handling HELLO from %s" ZT_EOL_S,ip->toString(ipstr));
  332. }
  333. break;
  334. case Packet::VERB_ECHO:
  335. try {
  336. if ((now - peer->lastEcho) > 500) {
  337. peer->lastEcho = now;
  338. Packet outp(source,s_self.address(),Packet::VERB_OK);
  339. outp.append((uint8_t)Packet::VERB_ECHO);
  340. outp.append(pkt.packetId());
  341. outp.append(((const uint8_t *)pkt.data()) + ZT_PACKET_IDX_PAYLOAD,pkt.size() - ZT_PACKET_IDX_PAYLOAD);
  342. outp.compress();
  343. outp.armor(peer->key,true);
  344. sendto(ip->isV4() ? v4s : v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
  345. s_outputRate.log(now,outp.size());
  346. peer->lastSend = now;
  347. }
  348. } catch ( ... ) {
  349. printf("* unexpected exception handling ECHO from %s" ZT_EOL_S,ip->toString(ipstr));
  350. }
  351. case Packet::VERB_WHOIS:
  352. try {
  353. std::vector< SharedPtr<RootPeer> > results;
  354. {
  355. std::lock_guard<std::mutex> l(s_peersByVirtAddr_l);
  356. for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+ZT_ADDRESS_LENGTH)<=pkt.size();ptr+=ZT_ADDRESS_LENGTH) {
  357. auto peers = s_peersByVirtAddr.find(Address(pkt.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH));
  358. if (peers != s_peersByVirtAddr.end()) {
  359. for(auto p=peers->second.begin();p!=peers->second.end();++p)
  360. results.push_back(*p);
  361. }
  362. }
  363. }
  364. if (!results.empty()) {
  365. const uint64_t origId = pkt.packetId();
  366. pkt.reset(source,s_self.address(),Packet::VERB_OK);
  367. pkt.append((uint8_t)Packet::VERB_WHOIS);
  368. pkt.append(origId);
  369. for(auto p=results.begin();p!=results.end();++p)
  370. (*p)->id.serialize(pkt,false);
  371. pkt.armor(peer->key,true);
  372. sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
  373. s_outputRate.log(now,pkt.size());
  374. peer->lastSend = now;
  375. }
  376. } catch ( ... ) {
  377. printf("* unexpected exception handling ECHO from %s" ZT_EOL_S,ip->toString(ipstr));
  378. }
  379. case Packet::VERB_MULTICAST_LIKE:
  380. try {
  381. std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
  382. for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+18)<=pkt.size();ptr+=18) {
  383. const uint64_t nwid = pkt.template at<uint64_t>(ptr);
  384. const MulticastGroup mg(MAC(pkt.field(ptr + 8,6),6),pkt.template at<uint32_t>(ptr + 14));
  385. s_multicastSubscriptions[nwid][mg][source] = now;
  386. //printf("%s %s subscribes to %s/%.8lx on network %.16llx" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid);
  387. }
  388. } catch ( ... ) {
  389. printf("* unexpected exception handling MULTICAST_LIKE from %s" ZT_EOL_S,ip->toString(ipstr));
  390. }
  391. break;
  392. case Packet::VERB_MULTICAST_GATHER:
  393. try {
  394. const uint64_t nwid = pkt.template at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
  395. //const unsigned int flags = pkt[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS];
  396. const MulticastGroup mg(MAC(pkt.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),pkt.template at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
  397. unsigned int gatherLimit = pkt.template at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
  398. if (gatherLimit > 255)
  399. gatherLimit = 255;
  400. const uint64_t origId = pkt.packetId();
  401. pkt.reset(source,s_self.address(),Packet::VERB_OK);
  402. pkt.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
  403. pkt.append(origId);
  404. pkt.append(nwid);
  405. mg.mac().appendTo(pkt);
  406. pkt.append((uint32_t)mg.adi());
  407. {
  408. std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
  409. auto forNet = s_multicastSubscriptions.find(nwid);
  410. if (forNet != s_multicastSubscriptions.end()) {
  411. auto forGroup = forNet->second.find(mg);
  412. if (forGroup != forNet->second.end()) {
  413. pkt.append((uint32_t)forGroup->second.size());
  414. const unsigned int countAt = pkt.size();
  415. pkt.addSize(2);
  416. unsigned int l = 0;
  417. for(auto g=forGroup->second.begin();((l<gatherLimit)&&(g!=forGroup->second.end()));++g) {
  418. if (g->first != source) {
  419. ++l;
  420. g->first.appendTo(pkt);
  421. }
  422. }
  423. if (l > 0) {
  424. pkt.setAt<uint16_t>(countAt,(uint16_t)l);
  425. pkt.armor(peer->key,true);
  426. sendto(ip->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)ip,(socklen_t)(ip->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
  427. s_outputRate.log(now,pkt.size());
  428. peer->lastSend = now;
  429. //printf("%s %s gathered %u subscribers to %s/%.8lx on network %.16llx" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),l,mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid);
  430. }
  431. }
  432. }
  433. }
  434. } catch ( ... ) {
  435. printf("* unexpected exception handling MULTICAST_GATHER from %s" ZT_EOL_S,ip->toString(ipstr));
  436. }
  437. break;
  438. default:
  439. break;
  440. }
  441. return;
  442. }
  443. }
  444. // If we made it here, we are forwarding this packet to someone else and also possibly
  445. // sending a RENDEZVOUS message.
  446. int hops = 0;
  447. bool introduce = false;
  448. if (fragment) {
  449. if ((hops = (int)reinterpret_cast<Packet::Fragment *>(&pkt)->incrementHops()) > s_relayMaxHops) {
  450. //printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr));
  451. s_discardedForwardRate.log(now,pkt.size());
  452. return;
  453. }
  454. } else {
  455. if ((hops = (int)pkt.incrementHops()) > s_relayMaxHops) {
  456. //printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr));
  457. s_discardedForwardRate.log(now,pkt.size());
  458. return;
  459. }
  460. if (hops == 1) {
  461. RendezvousKey rk(source,dest);
  462. std::lock_guard<std::mutex> l(s_rendezvousTracking_l);
  463. RendezvousStats &lr = s_rendezvousTracking[rk];
  464. if ((now - lr.ts) >= 30000) {
  465. ++lr.count;
  466. lr.ts = now;
  467. introduce = true;
  468. }
  469. }
  470. }
  471. std::vector< std::pair< InetAddress *,SharedPtr<RootPeer> > > toAddrs;
  472. {
  473. std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
  474. auto peers = s_peersByVirtAddr.find(dest);
  475. if (peers != s_peersByVirtAddr.end()) {
  476. for(auto p=peers->second.begin();p!=peers->second.end();++p) {
  477. if ((*p)->ip4) {
  478. toAddrs.push_back(std::pair< InetAddress *,SharedPtr<RootPeer> >(&((*p)->ip4),*p));
  479. } else if ((*p)->ip6) {
  480. toAddrs.push_back(std::pair< InetAddress *,SharedPtr<RootPeer> >(&((*p)->ip6),*p));
  481. }
  482. }
  483. }
  484. }
  485. if (toAddrs.empty()) {
  486. s_discardedForwardRate.log(now,pkt.size());
  487. return;
  488. }
  489. {
  490. std::lock_guard<std::mutex> l(s_lastForwardedTo_l);
  491. ForwardingStats &fs = s_lastForwardedTo[dest];
  492. fs.bytes += (uint64_t)pkt.size();
  493. fs.ts = now;
  494. fs.bps.log(now,pkt.size());
  495. }
  496. if (introduce) {
  497. std::lock_guard<std::mutex> l(s_peersByVirtAddr_l);
  498. auto sources = s_peersByVirtAddr.find(source);
  499. if (sources != s_peersByVirtAddr.end()) {
  500. for(auto a=sources->second.begin();a!=sources->second.end();++a) {
  501. for(auto b=toAddrs.begin();b!=toAddrs.end();++b) {
  502. if (((*a)->ip6)&&(b->second->ip6)) {
  503. //printf("* introducing %s(%s) to %s(%s)" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),b->second->ip6.toString(ipstr2),dest.toString(astr2));
  504. // Introduce source to destination (V6)
  505. Packet outp(source,s_self.address(),Packet::VERB_RENDEZVOUS);
  506. outp.append((uint8_t)0);
  507. dest.appendTo(outp);
  508. outp.append((uint16_t)b->second->ip6.port());
  509. outp.append((uint8_t)16);
  510. outp.append((const uint8_t *)b->second->ip6.rawIpData(),16);
  511. outp.armor((*a)->key,true);
  512. sendto(v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&((*a)->ip6),(socklen_t)sizeof(struct sockaddr_in6));
  513. s_outputRate.log(now,outp.size());
  514. (*a)->lastSend = now;
  515. // Introduce destination to source (V6)
  516. outp.reset(dest,s_self.address(),Packet::VERB_RENDEZVOUS);
  517. outp.append((uint8_t)0);
  518. source.appendTo(outp);
  519. outp.append((uint16_t)ip->port());
  520. outp.append((uint8_t)16);
  521. outp.append((const uint8_t *)ip->rawIpData(),16);
  522. outp.armor(b->second->key,true);
  523. sendto(v6s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&(b->second->ip6),(socklen_t)sizeof(struct sockaddr_in6));
  524. s_outputRate.log(now,outp.size());
  525. b->second->lastSend = now;
  526. }
  527. if (((*a)->ip4)&&(b->second->ip4)) {
  528. //printf("* introducing %s(%s) to %s(%s)" ZT_EOL_S,ip->toString(ipstr),source.toString(astr),b->second->ip4.toString(ipstr2),dest.toString(astr2));
  529. // Introduce source to destination (V4)
  530. Packet outp(source,s_self.address(),Packet::VERB_RENDEZVOUS);
  531. outp.append((uint8_t)0);
  532. dest.appendTo(outp);
  533. outp.append((uint16_t)b->second->ip4.port());
  534. outp.append((uint8_t)4);
  535. outp.append((const uint8_t *)b->second->ip4.rawIpData(),4);
  536. outp.armor((*a)->key,true);
  537. sendto(v4s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&((*a)->ip4),(socklen_t)sizeof(struct sockaddr_in));
  538. s_outputRate.log(now,outp.size());
  539. (*a)->lastSend = now;
  540. // Introduce destination to source (V4)
  541. outp.reset(dest,s_self.address(),Packet::VERB_RENDEZVOUS);
  542. outp.append((uint8_t)0);
  543. source.appendTo(outp);
  544. outp.append((uint16_t)ip->port());
  545. outp.append((uint8_t)4);
  546. outp.append((const uint8_t *)ip->rawIpData(),4);
  547. outp.armor(b->second->key,true);
  548. sendto(v4s,outp.data(),outp.size(),SENDTO_FLAGS,(const struct sockaddr *)&(b->second->ip4),(socklen_t)sizeof(struct sockaddr_in));
  549. s_outputRate.log(now,outp.size());
  550. b->second->lastSend = now;
  551. }
  552. }
  553. }
  554. }
  555. }
  556. for(auto i=toAddrs.begin();i!=toAddrs.end();++i) {
  557. //printf("%s -> %s for %s -> %s (%u bytes)" ZT_EOL_S,ip->toString(ipstr),i->first->toString(ipstr2),source.toString(astr),dest.toString(astr2),pkt.size());
  558. if (sendto(i->first->isV4() ? v4s : v6s,pkt.data(),pkt.size(),SENDTO_FLAGS,(const struct sockaddr *)i->first,(socklen_t)(i->first->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) > 0) {
  559. s_outputRate.log(now,pkt.size());
  560. s_forwardRate.log(now,pkt.size());
  561. i->second->lastSend = now;
  562. }
  563. }
  564. }
  565. //////////////////////////////////////////////////////////////////////////////
  566. //////////////////////////////////////////////////////////////////////////////
  567. static int bindSocket(struct sockaddr *const bindAddr)
  568. {
  569. const int s = socket(bindAddr->sa_family,SOCK_DGRAM,0);
  570. if (s < 0) {
  571. close(s);
  572. return -1;
  573. }
  574. int f = 4194304;
  575. while (f > 131072) {
  576. if (setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&f,sizeof(f)) == 0)
  577. break;
  578. f -= 131072;
  579. }
  580. f = 4194304;
  581. while (f > 131072) {
  582. if (setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&f,sizeof(f)) == 0)
  583. break;
  584. f -= 131072;
  585. }
  586. if (bindAddr->sa_family == AF_INET6) {
  587. f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
  588. #ifdef IPV6_MTU_DISCOVER
  589. f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f));
  590. #endif
  591. #ifdef IPV6_DONTFRAG
  592. f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f));
  593. #endif
  594. }
  595. #ifdef IP_DONTFRAG
  596. f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f));
  597. #endif
  598. #ifdef IP_MTU_DISCOVER
  599. f = IP_PMTUDISC_DONT; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f));
  600. #endif
  601. #ifdef SO_NO_CHECK
  602. if (bindAddr->sa_family == AF_INET) {
  603. f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f));
  604. }
  605. #endif
  606. #if defined(SO_REUSEPORT)
  607. f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEPORT,(void *)&f,sizeof(f));
  608. #endif
  609. #ifndef __LINUX__ // linux wants just SO_REUSEPORT
  610. f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
  611. #endif
  612. if (bind(s,bindAddr,(bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) {
  613. close(s);
  614. //printf("%s\n",strerror(errno));
  615. return -1;
  616. }
  617. return s;
  618. }
  619. static void shutdownSigHandler(int sig) { s_run = false; }
  620. int main(int argc,char **argv)
  621. {
  622. std::vector<std::thread> threads;
  623. std::vector<int> sockets;
  624. int v4Sock = -1,v6Sock = -1;
  625. signal(SIGTERM,shutdownSigHandler);
  626. signal(SIGINT,shutdownSigHandler);
  627. signal(SIGQUIT,shutdownSigHandler);
  628. signal(SIGPIPE,SIG_IGN);
  629. signal(SIGUSR1,SIG_IGN);
  630. signal(SIGUSR2,SIG_IGN);
  631. signal(SIGCHLD,SIG_IGN);
  632. s_startTime = OSUtils::now();
  633. s_geoInit = false;
  634. if (argc < 3) {
  635. printf("Usage: zerotier-root <identity.secret> <config path>" ZT_EOL_S);
  636. return 1;
  637. }
  638. {
  639. std::string myIdStr;
  640. if (!OSUtils::readFile(argv[1],myIdStr)) {
  641. printf("FATAL: cannot read identity.secret at %s" ZT_EOL_S,argv[1]);
  642. return 1;
  643. }
  644. if (!s_self.fromString(myIdStr.c_str())) {
  645. printf("FATAL: cannot read identity.secret at %s (invalid identity)" ZT_EOL_S,argv[1]);
  646. return 1;
  647. }
  648. if (!s_self.hasPrivate()) {
  649. printf("FATAL: cannot read identity.secret at %s (missing secret key)" ZT_EOL_S,argv[1]);
  650. return 1;
  651. }
  652. }
  653. {
  654. std::string configStr;
  655. if (!OSUtils::readFile(argv[2],configStr)) {
  656. printf("FATAL: cannot read config file at %s" ZT_EOL_S,argv[2]);
  657. return 1;
  658. }
  659. try {
  660. s_config = json::parse(configStr);
  661. } catch (std::exception &exc) {
  662. printf("FATAL: config file at %s invalid: %s" ZT_EOL_S,argv[2],exc.what());
  663. return 1;
  664. } catch ( ... ) {
  665. printf("FATAL: config file at %s invalid: unknown exception" ZT_EOL_S,argv[2]);
  666. return 1;
  667. }
  668. if (!s_config.is_object()) {
  669. printf("FATAL: config file at %s invalid: does not contain a JSON object" ZT_EOL_S,argv[2]);
  670. return 1;
  671. }
  672. }
  673. try {
  674. auto jport = s_config["port"];
  675. if (jport.is_array()) {
  676. for(long i=0;i<(long)jport.size();++i) {
  677. int port = jport[i];
  678. if ((port <= 0)||(port > 65535)) {
  679. printf("FATAL: invalid port in config file %d" ZT_EOL_S,port);
  680. return 1;
  681. }
  682. s_ports.push_back(port);
  683. }
  684. } else {
  685. int port = jport;
  686. if ((port <= 0)||(port > 65535)) {
  687. printf("FATAL: invalid port in config file %d" ZT_EOL_S,port);
  688. return 1;
  689. }
  690. s_ports.push_back(port);
  691. }
  692. } catch ( ... ) {}
  693. if (s_ports.empty())
  694. s_ports.push_back(ZT_DEFAULT_PORT);
  695. std::sort(s_ports.begin(),s_ports.end());
  696. int httpPort = ZT_DEFAULT_PORT;
  697. try {
  698. httpPort = s_config["httpPort"];
  699. if ((httpPort <= 0)||(httpPort > 65535)) {
  700. printf("FATAL: invalid HTTP port in config file %d" ZT_EOL_S,httpPort);
  701. return 1;
  702. }
  703. } catch ( ... ) {
  704. httpPort = ZT_DEFAULT_PORT;
  705. }
  706. std::string planetFilePath;
  707. try {
  708. planetFilePath = s_config["planetFile"];
  709. } catch ( ... ) {
  710. planetFilePath = "";
  711. }
  712. try {
  713. s_statsRoot = s_config["statsRoot"];
  714. while ((s_statsRoot.length() > 0)&&(s_statsRoot[s_statsRoot.length()-1] == ZT_PATH_SEPARATOR))
  715. s_statsRoot = s_statsRoot.substr(0,s_statsRoot.length()-1);
  716. if (s_statsRoot.length() > 0)
  717. OSUtils::mkdir(s_statsRoot);
  718. } catch ( ... ) {
  719. s_statsRoot = "";
  720. }
  721. s_relayMaxHops = ZT_RELAY_MAX_HOPS;
  722. try {
  723. s_relayMaxHops = s_config["relayMaxHops"];
  724. if (s_relayMaxHops > ZT_PROTO_MAX_HOPS)
  725. s_relayMaxHops = ZT_PROTO_MAX_HOPS;
  726. else if (s_relayMaxHops < 0)
  727. s_relayMaxHops = 0;
  728. } catch ( ... ) {
  729. s_relayMaxHops = ZT_RELAY_MAX_HOPS;
  730. }
  731. try {
  732. std::string geoIpPath = s_config["geoIp"];
  733. if (geoIpPath.length() > 0) {
  734. FILE *gf = fopen(geoIpPath.c_str(),"rb");
  735. if (gf) {
  736. threads.emplace_back(std::thread([gf]() {
  737. try {
  738. char line[1024];
  739. while (fgets(line,sizeof(line),gf)) {
  740. InetAddress start,end;
  741. float lat,lon;
  742. int field = 0;
  743. for(char *saveptr=nullptr,*f=Utils::stok(line,",\r\n",&saveptr);(f);f=Utils::stok(nullptr,",\r\n",&saveptr)) {
  744. switch(field++) {
  745. case 0:
  746. start.fromString(f);
  747. break;
  748. case 1:
  749. end.fromString(f);
  750. break;
  751. case 2:
  752. lat = strtof(f,nullptr);
  753. break;
  754. case 3:
  755. lon = strtof(f,nullptr);
  756. break;
  757. }
  758. }
  759. if ((start)&&(end)&&(start.ss_family == end.ss_family)&&(lat >= -90.0F)&&(lat <= 90.0F)&&(lon >= -180.0F)&&(lon <= 180.0F)) {
  760. if (start.ss_family == AF_INET) {
  761. s_geoIp4[std::pair< uint32_t,uint32_t >(ip4ToH32(start),ip4ToH32(end))] = std::pair< float,float >(lat,lon);
  762. } else if (start.ss_family == AF_INET6) {
  763. s_geoIp6[std::pair< std::array< uint64_t,2 >,std::array< uint64_t,2 > >(ip6ToH128(start),ip6ToH128(end))] = std::pair< float,float >(lat,lon);
  764. }
  765. }
  766. }
  767. s_geoInit = true;
  768. } catch ( ... ) {}
  769. fclose(gf);
  770. }));
  771. }
  772. }
  773. } catch ( ... ) {}
  774. unsigned int ncores = std::thread::hardware_concurrency();
  775. if (ncores == 0) ncores = 1;
  776. s_run = true;
  777. for(auto port=s_ports.begin();port!=s_ports.end();++port) {
  778. for(unsigned int tn=0;tn<ncores;++tn) {
  779. struct sockaddr_in6 in6;
  780. memset(&in6,0,sizeof(in6));
  781. in6.sin6_family = AF_INET6;
  782. in6.sin6_port = htons((uint16_t)*port);
  783. const int s6 = bindSocket((struct sockaddr *)&in6);
  784. if (s6 < 0) {
  785. std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S;
  786. exit(1);
  787. }
  788. struct sockaddr_in in4;
  789. memset(&in4,0,sizeof(in4));
  790. in4.sin_family = AF_INET;
  791. in4.sin_port = htons((uint16_t)*port);
  792. const int s4 = bindSocket((struct sockaddr *)&in4);
  793. if (s4 < 0) {
  794. std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S;
  795. exit(1);
  796. }
  797. sockets.push_back(s6);
  798. sockets.push_back(s4);
  799. if (v4Sock < 0) v4Sock = s4;
  800. if (v6Sock < 0) v6Sock = s6;
  801. threads.push_back(std::thread([s6,s4]() {
  802. struct sockaddr_in6 in6;
  803. Packet pkt;
  804. memset(&in6,0,sizeof(in6));
  805. for(;;) {
  806. socklen_t sl = sizeof(in6);
  807. const int pl = (int)recvfrom(s6,pkt.unsafeData(),pkt.capacity(),0,(struct sockaddr *)&in6,&sl);
  808. if (pl > 0) {
  809. if (pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  810. try {
  811. pkt.setSize((unsigned int)pl);
  812. handlePacket(s4,s6,reinterpret_cast<const InetAddress *>(&in6),pkt);
  813. } catch ( ... ) {
  814. char ipstr[128];
  815. printf("* unexpected exception handling packet from %s" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in6)->toString(ipstr));
  816. }
  817. }
  818. } else {
  819. break;
  820. }
  821. }
  822. }));
  823. threads.push_back(std::thread([s6,s4]() {
  824. struct sockaddr_in in4;
  825. Packet pkt;
  826. memset(&in4,0,sizeof(in4));
  827. for(;;) {
  828. socklen_t sl = sizeof(in4);
  829. const int pl = (int)recvfrom(s4,pkt.unsafeData(),pkt.capacity(),0,(struct sockaddr *)&in4,&sl);
  830. if (pl > 0) {
  831. if (pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  832. try {
  833. pkt.setSize((unsigned int)pl);
  834. handlePacket(s4,s6,reinterpret_cast<const InetAddress *>(&in4),pkt);
  835. } catch ( ... ) {
  836. char ipstr[128];
  837. printf("* unexpected exception handling packet from %s" ZT_EOL_S,reinterpret_cast<const InetAddress *>(&in4)->toString(ipstr));
  838. }
  839. }
  840. } else {
  841. break;
  842. }
  843. }
  844. }));
  845. }
  846. }
  847. // Minimal local API for use with monitoring clients, etc.
  848. httplib::Server apiServ;
  849. threads.push_back(std::thread([&apiServ,httpPort]() {
  850. apiServ.Get("/",[](const httplib::Request &req,httplib::Response &res) {
  851. std::ostringstream o;
  852. std::lock_guard<std::mutex> l0(s_peersByIdentity_l);
  853. std::lock_guard<std::mutex> l1(s_peersByPhysAddr_l);
  854. o << "ZeroTier Root Server " << ZEROTIER_ONE_VERSION_MAJOR << '.' << ZEROTIER_ONE_VERSION_MINOR << '.' << ZEROTIER_ONE_VERSION_REVISION << ZT_EOL_S;
  855. o << "(c)2019 ZeroTier, Inc." ZT_EOL_S "Licensed under the ZeroTier BSL 1.1" ZT_EOL_S ZT_EOL_S;
  856. o << "Peers Online: " << s_peersByIdentity.size() << ZT_EOL_S;
  857. o << "Physical Addresses: " << s_peersByPhysAddr.size() << ZT_EOL_S;
  858. res.set_content(o.str(),"text/plain");
  859. });
  860. apiServ.Get("/peer",[](const httplib::Request &req,httplib::Response &res) {
  861. char tmp[256];
  862. std::ostringstream o;
  863. o << '[';
  864. {
  865. bool first = true;
  866. std::lock_guard<std::mutex> l(s_peersByIdentity_l);
  867. for(auto p=s_peersByIdentity.begin();p!=s_peersByIdentity.end();++p) {
  868. if (first)
  869. first = false;
  870. else o << ',';
  871. o <<
  872. "{\"address\":\"" << p->first.address().toString(tmp) << "\""
  873. ",\"latency\":-1"
  874. ",\"paths\":[";
  875. if (p->second->ip4) {
  876. o <<
  877. "{\"active\":true"
  878. ",\"address\":\"" << p->second->ip4.toIpString(tmp) << "\\/" << p->second->ip4.port() << "\""
  879. ",\"expired\":false"
  880. ",\"lastReceive\":" << p->second->lastReceive <<
  881. ",\"lastSend\":" << p->second->lastSend <<
  882. ",\"preferred\":true"
  883. ",\"trustedPathId\":0}";
  884. }
  885. if (p->second->ip6) {
  886. if (p->second->ip4)
  887. o << ',';
  888. o <<
  889. "{\"active\":true"
  890. ",\"address\":\"" << p->second->ip6.toIpString(tmp) << "\\/" << p->second->ip6.port() << "\""
  891. ",\"expired\":false"
  892. ",\"lastReceive\":" << p->second->lastReceive <<
  893. ",\"lastSend\":" << p->second->lastSend <<
  894. ",\"preferred\":" << ((p->second->ip4) ? "false" : "true") <<
  895. ",\"trustedPathId\":0}";
  896. }
  897. o << "]"
  898. ",\"role\":\"LEAF\""
  899. ",\"version\":\"" << p->second->vMajor << '.' << p->second->vMinor << '.' << p->second->vRev << "\""
  900. ",\"versionMajor\":" << p->second->vMajor <<
  901. ",\"versionMinor\":" << p->second->vMinor <<
  902. ",\"versionRev\":" << p->second->vRev << "}";
  903. }
  904. }
  905. o << ']';
  906. res.set_content(o.str(),"application/json");
  907. });
  908. apiServ.Get("/map",[](const httplib::Request &req,httplib::Response &res) {
  909. char tmp[128];
  910. if (!s_geoInit) {
  911. res.set_content("Not enabled or GeoIP CSV file not finished reading.","text/plain");
  912. return;
  913. }
  914. std::ostringstream o;
  915. o << ZT_GEOIP_HTML_HEAD;
  916. {
  917. bool firstCoord = true;
  918. std::pair< uint32_t,uint32_t > k4(0,0);
  919. std::pair< std::array< uint64_t,2 >,std::array< uint64_t,2 > > k6;
  920. k6.second[0] = 0; k6.second[1] = 0;
  921. std::lock_guard<std::mutex> l(s_peersByPhysAddr_l);
  922. for(auto p=s_peersByPhysAddr.begin();p!=s_peersByPhysAddr.end();++p) {
  923. if (!p->second.empty()) {
  924. k4.first = ip4ToH32(p->first);
  925. auto geo = s_geoIp4.lower_bound(k4);
  926. while ((geo != s_geoIp4.end())&&(geo->first.first == k4.first)) {
  927. if (geo->first.second >= k4.first) {
  928. if (!firstCoord)
  929. o << ',';
  930. firstCoord = false;
  931. o << "{lat:" << geo->second.first << ",lng:" << geo->second.second << ",_l:\"";
  932. bool firstAddr = true;
  933. for(auto a=p->second.begin();a!=p->second.end();++a) {
  934. if (!firstAddr)
  935. o << ',';
  936. o << (*a)->id.address().toString(tmp);
  937. firstAddr = false;
  938. }
  939. o << "\"}";
  940. break;
  941. }
  942. }
  943. }
  944. }
  945. }
  946. o << ZT_GEOIP_HTML_TAIL;
  947. res.set_content(o.str(),"text/html");
  948. });
  949. apiServ.listen("127.0.0.1",httpPort,0);
  950. }));
  951. // In the main thread periodically clean stuff up
  952. int64_t lastCleaned = 0;
  953. int64_t lastWroteStats = 0;
  954. while (s_run) {
  955. //s_peersByIdentity_l.lock();
  956. //s_peersByPhysAddr_l.lock();
  957. //printf("*** have %lu peers at %lu physical endpoints" ZT_EOL_S,(unsigned long)s_peersByIdentity.size(),(unsigned long)s_peersByPhysAddr.size());
  958. //s_peersByPhysAddr_l.unlock();
  959. //s_peersByIdentity_l.unlock();
  960. sleep(1);
  961. const int64_t now = OSUtils::now();
  962. if ((now - lastCleaned) > 120000) {
  963. lastCleaned = now;
  964. // Old multicast subscription cleanup
  965. {
  966. std::lock_guard<std::mutex> l(s_multicastSubscriptions_l);
  967. for(auto a=s_multicastSubscriptions.begin();a!=s_multicastSubscriptions.end();) {
  968. for(auto b=a->second.begin();b!=a->second.end();) {
  969. for(auto c=b->second.begin();c!=b->second.end();) {
  970. if ((now - c->second) > ZT_MULTICAST_LIKE_EXPIRE)
  971. b->second.erase(c++);
  972. else ++c;
  973. }
  974. if (b->second.empty())
  975. a->second.erase(b++);
  976. else ++b;
  977. }
  978. if (a->second.empty())
  979. s_multicastSubscriptions.erase(a++);
  980. else ++a;
  981. }
  982. }
  983. // Remove expired peers
  984. {
  985. std::lock_guard<std::mutex> pbi_l(s_peersByIdentity_l);
  986. for(auto p=s_peersByIdentity.begin();p!=s_peersByIdentity.end();) {
  987. if ((now - p->second->lastReceive) > ZT_PEER_ACTIVITY_TIMEOUT) {
  988. std::lock_guard<std::mutex> pbv_l(s_peersByVirtAddr_l);
  989. std::lock_guard<std::mutex> pbp_l(s_peersByPhysAddr_l);
  990. auto pbv = s_peersByVirtAddr.find(p->second->id.address());
  991. if (pbv != s_peersByVirtAddr.end()) {
  992. pbv->second.erase(p->second);
  993. if (pbv->second.empty())
  994. s_peersByVirtAddr.erase(pbv);
  995. }
  996. if (p->second->ip4) {
  997. auto pbp = s_peersByPhysAddr.find(p->second->ip4);
  998. if (pbp != s_peersByPhysAddr.end()) {
  999. pbp->second.erase(p->second);
  1000. if (pbp->second.empty())
  1001. s_peersByPhysAddr.erase(pbp);
  1002. }
  1003. }
  1004. if (p->second->ip6) {
  1005. auto pbp = s_peersByPhysAddr.find(p->second->ip6);
  1006. if (pbp != s_peersByPhysAddr.end()) {
  1007. pbp->second.erase(p->second);
  1008. if (pbp->second.empty())
  1009. s_peersByPhysAddr.erase(pbp);
  1010. }
  1011. }
  1012. s_peersByIdentity.erase(p++);
  1013. } else ++p;
  1014. }
  1015. }
  1016. // Remove old rendezvous and last forwarded tracking entries
  1017. {
  1018. std::lock_guard<std::mutex> l(s_rendezvousTracking_l);
  1019. for(auto lr=s_rendezvousTracking.begin();lr!=s_rendezvousTracking.end();) {
  1020. if ((now - lr->second.ts) > ZT_PEER_ACTIVITY_TIMEOUT)
  1021. s_rendezvousTracking.erase(lr++);
  1022. else ++lr;
  1023. }
  1024. }
  1025. // Remove old last forwarded tracking entries
  1026. {
  1027. std::lock_guard<std::mutex> l(s_lastForwardedTo_l);
  1028. for(auto lf=s_lastForwardedTo.begin();lf!=s_lastForwardedTo.end();) {
  1029. if ((now - lf->second.ts) > ZT_PEER_ACTIVITY_TIMEOUT)
  1030. s_lastForwardedTo.erase(lf++);
  1031. else ++lf;
  1032. }
  1033. }
  1034. }
  1035. // Write stats if configured to do so, and periodically refresh planet file (if any)
  1036. if (((now - lastWroteStats) > 15000)&&(s_statsRoot.length() > 0)) {
  1037. lastWroteStats = now;
  1038. try {
  1039. if (planetFilePath.length() > 0) {
  1040. std::string planetData;
  1041. if ((OSUtils::readFile(planetFilePath.c_str(),planetData))&&(planetData.length() > 0)) {
  1042. std::lock_guard<std::mutex> pl(s_planet_l);
  1043. s_planet = planetData;
  1044. }
  1045. }
  1046. } catch ( ... ) {
  1047. std::lock_guard<std::mutex> pl(s_planet_l);
  1048. s_planet.clear();
  1049. }
  1050. std::string peersFilePath(s_statsRoot);
  1051. peersFilePath.append("/.peers.tmp");
  1052. FILE *pf = fopen(peersFilePath.c_str(),"wb");
  1053. if (pf) {
  1054. std::vector< SharedPtr<RootPeer> > sp;
  1055. {
  1056. std::lock_guard<std::mutex> pbi_l(s_peersByIdentity_l);
  1057. sp.reserve(s_peersByIdentity.size());
  1058. for(auto p=s_peersByIdentity.begin();p!=s_peersByIdentity.end();++p) {
  1059. sp.push_back(p->second);
  1060. }
  1061. }
  1062. std::sort(sp.begin(),sp.end(),[](const SharedPtr<RootPeer> &a,const SharedPtr<RootPeer> &b) { return (a->id < b->id); });
  1063. fprintf(pf,"Address %21s %45s %10s %6s %10s" ZT_EOL_S,"IPv4","IPv6","Age(sec)","Vers","Fwd(KiB/s)");
  1064. {
  1065. std::lock_guard<std::mutex> lf_l(s_lastForwardedTo_l);
  1066. char ip4[128],ip6[128],ver[128];
  1067. for(auto p=sp.begin();p!=sp.end();++p) {
  1068. if ((*p)->ip4) {
  1069. (*p)->ip4.toString(ip4);
  1070. } else {
  1071. ip4[0] = '-';
  1072. ip4[1] = 0;
  1073. }
  1074. if ((*p)->ip6) {
  1075. (*p)->ip6.toString(ip6);
  1076. } else {
  1077. ip6[0] = '-';
  1078. ip6[1] = 0;
  1079. }
  1080. OSUtils::ztsnprintf(ver,sizeof(ver),"%d.%d.%d",(*p)->vMajor,(*p)->vMinor,(*p)->vRev);
  1081. double forwardingSpeed = 0.0;
  1082. auto lft = s_lastForwardedTo.find((*p)->id.address());
  1083. if (lft != s_lastForwardedTo.end())
  1084. forwardingSpeed = lft->second.bps.perSecond(now) / 1024.0;
  1085. fprintf(pf,"%.10llx %21s %45s %10.4f %6s %10.4f" ZT_EOL_S,
  1086. (unsigned long long)(*p)->id.address().toInt(),
  1087. ip4,
  1088. ip6,
  1089. fabs((double)(now - (*p)->lastReceive) / 1000.0),
  1090. ver,
  1091. forwardingSpeed);
  1092. }
  1093. }
  1094. fclose(pf);
  1095. std::string peersFilePath2(s_statsRoot);
  1096. peersFilePath2.append("/peers");
  1097. OSUtils::rm(peersFilePath2);
  1098. OSUtils::rename(peersFilePath.c_str(),peersFilePath2.c_str());
  1099. }
  1100. std::string statsFilePath(s_statsRoot);
  1101. statsFilePath.append("/.stats.tmp");
  1102. FILE *sf = fopen(statsFilePath.c_str(),"wb");
  1103. if (sf) {
  1104. fprintf(sf,"Uptime (seconds) : %ld" ZT_EOL_S,(long)((now - s_startTime) / 1000));
  1105. s_peersByIdentity_l.lock();
  1106. fprintf(sf,"Peers : %llu" ZT_EOL_S,(unsigned long long)s_peersByIdentity.size());
  1107. s_peersByVirtAddr_l.lock();
  1108. fprintf(sf,"Virtual Address Collisions : %llu" ZT_EOL_S,(unsigned long long)(s_peersByIdentity.size() - s_peersByVirtAddr.size()));
  1109. s_peersByVirtAddr_l.unlock();
  1110. s_peersByIdentity_l.unlock();
  1111. s_peersByPhysAddr_l.lock();
  1112. fprintf(sf,"Physical Endpoints : %llu" ZT_EOL_S,(unsigned long long)s_peersByPhysAddr.size());
  1113. s_peersByPhysAddr_l.unlock();
  1114. s_rendezvousTracking_l.lock();
  1115. uint64_t unsuccessfulp2p = 0;
  1116. for(auto lr=s_rendezvousTracking.begin();lr!=s_rendezvousTracking.end();++lr) {
  1117. if (lr->second.count > 6) // 6 == two attempts per edge, one for each direction
  1118. ++unsuccessfulp2p;
  1119. }
  1120. fprintf(sf,"Recent P2P Graph Edges : %llu" ZT_EOL_S,(unsigned long long)s_rendezvousTracking.size());
  1121. if (s_rendezvousTracking.empty()) {
  1122. fprintf(sf,"Recent P2P Success Rate : 100.0000%%" ZT_EOL_S);
  1123. } else {
  1124. fprintf(sf,"Recent P2P Success Rate : %.4f%%" ZT_EOL_S,(1.0 - ((double)unsuccessfulp2p / (double)s_rendezvousTracking.size())) * 100.0);
  1125. }
  1126. s_rendezvousTracking_l.unlock();
  1127. fprintf(sf,"Input (MiB/s) : %.4f" ZT_EOL_S,s_inputRate.perSecond(now) / 1048576.0);
  1128. fprintf(sf,"Output (MiB/s) : %.4f" ZT_EOL_S,s_outputRate.perSecond(now) / 1048576.0);
  1129. fprintf(sf,"Forwarded (MiB/s) : %.4f" ZT_EOL_S,s_forwardRate.perSecond(now) / 1048576.0);
  1130. fprintf(sf,"Discarded Forward (MiB/s) : %.4f" ZT_EOL_S,s_discardedForwardRate.perSecond(now) / 1048576.0);
  1131. fclose(sf);
  1132. std::string statsFilePath2(s_statsRoot);
  1133. statsFilePath2.append("/stats");
  1134. OSUtils::rm(statsFilePath2);
  1135. OSUtils::rename(statsFilePath.c_str(),statsFilePath2.c_str());
  1136. }
  1137. }
  1138. }
  1139. // If we received a kill signal, close everything and wait
  1140. // for threads to die before exiting.
  1141. apiServ.stop();
  1142. for(auto s=sockets.begin();s!=sockets.end();++s) {
  1143. shutdown(*s,SHUT_RDWR);
  1144. close(*s);
  1145. }
  1146. for(auto t=threads.begin();t!=threads.end();++t)
  1147. t->join();
  1148. return 0;
  1149. }