AES_aesni.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2025-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Constants.hpp"
  14. #include "AES.hpp"
  15. #ifdef ZT_AES_AESNI
  16. #ifdef __GNUC__
  17. #pragma GCC diagnostic ignored "-Wstrict-aliasing"
  18. #endif
  19. namespace ZeroTier {
  20. namespace {
  21. const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  22. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
  23. __m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
  24. {
  25. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  26. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  27. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  28. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  29. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  30. t2 = _mm_xor_si128(t2, t3);
  31. t3 = _mm_slli_si128(t2, 8);
  32. t2 = _mm_srli_si128(t2, 8);
  33. t1 = _mm_xor_si128(t1, t3);
  34. t4 = _mm_xor_si128(t4, t2);
  35. __m128i t5 = _mm_srli_epi32(t1, 31);
  36. t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
  37. t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
  38. t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
  39. t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
  40. t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
  41. return _mm_shuffle_epi8(t4, s_sseSwapBytes);
  42. }
  43. /* Disable VAES stuff on compilers too old to compile these intrinsics,
  44. * and MinGW64 also seems not to support them so disable on Windows.
  45. * The performance gain can be significant but regular SSE is already so
  46. * fast it's highly unlikely to be a rate limiting factor except on massive
  47. * servers and network infrastructure stuff. */
  48. #if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
  49. #define ZT_AES_VAES512 1
  50. __attribute__((__target__("sse4,aes,avx,avx2,vaes,avx512f,avx512bw")))
  51. void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  52. {
  53. const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
  54. const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
  55. const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
  56. const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
  57. const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
  58. const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
  59. const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
  60. const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
  61. const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
  62. const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
  63. const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
  64. const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
  65. const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
  66. const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
  67. const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
  68. do {
  69. __m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
  70. __m512i d0 = _mm512_set_epi64(
  71. (long long)Utils::hton(c1 + 3ULL), (long long)c0,
  72. (long long)Utils::hton(c1 + 2ULL), (long long)c0,
  73. (long long)Utils::hton(c1 + 1ULL), (long long)c0,
  74. (long long)Utils::hton(c1), (long long)c0);
  75. c1 += 4;
  76. in += 64;
  77. len -= 64;
  78. d0 = _mm512_xor_si512(d0, kk0);
  79. d0 = _mm512_aesenc_epi128(d0, kk1);
  80. d0 = _mm512_aesenc_epi128(d0, kk2);
  81. d0 = _mm512_aesenc_epi128(d0, kk3);
  82. d0 = _mm512_aesenc_epi128(d0, kk4);
  83. d0 = _mm512_aesenc_epi128(d0, kk5);
  84. d0 = _mm512_aesenc_epi128(d0, kk6);
  85. d0 = _mm512_aesenc_epi128(d0, kk7);
  86. d0 = _mm512_aesenc_epi128(d0, kk8);
  87. d0 = _mm512_aesenc_epi128(d0, kk9);
  88. d0 = _mm512_aesenc_epi128(d0, kk10);
  89. d0 = _mm512_aesenc_epi128(d0, kk11);
  90. d0 = _mm512_aesenc_epi128(d0, kk12);
  91. d0 = _mm512_aesenc_epi128(d0, kk13);
  92. d0 = _mm512_aesenclast_epi128(d0, kk14);
  93. _mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
  94. out += 64;
  95. } while (likely(len >= 64));
  96. }
  97. #define ZT_AES_VAES256 1
  98. __attribute__((__target__("sse4,aes,avx,avx2,vaes")))
  99. void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  100. {
  101. const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
  102. const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
  103. const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
  104. const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
  105. const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
  106. const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
  107. const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
  108. const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
  109. const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
  110. const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
  111. const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
  112. const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
  113. const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
  114. const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
  115. const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
  116. do {
  117. __m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
  118. __m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
  119. __m256i d0 = _mm256_set_epi64x(
  120. (long long)Utils::hton(c1 + 1ULL), (long long)c0,
  121. (long long)Utils::hton(c1), (long long)c0);
  122. __m256i d1 = _mm256_set_epi64x(
  123. (long long)Utils::hton(c1 + 3ULL), (long long)c0,
  124. (long long)Utils::hton(c1 + 2ULL), (long long)c0);
  125. c1 += 4;
  126. in += 64;
  127. len -= 64;
  128. d0 = _mm256_xor_si256(d0, kk0);
  129. d1 = _mm256_xor_si256(d1, kk0);
  130. d0 = _mm256_aesenc_epi128(d0, kk1);
  131. d1 = _mm256_aesenc_epi128(d1, kk1);
  132. d0 = _mm256_aesenc_epi128(d0, kk2);
  133. d1 = _mm256_aesenc_epi128(d1, kk2);
  134. d0 = _mm256_aesenc_epi128(d0, kk3);
  135. d1 = _mm256_aesenc_epi128(d1, kk3);
  136. d0 = _mm256_aesenc_epi128(d0, kk4);
  137. d1 = _mm256_aesenc_epi128(d1, kk4);
  138. d0 = _mm256_aesenc_epi128(d0, kk5);
  139. d1 = _mm256_aesenc_epi128(d1, kk5);
  140. d0 = _mm256_aesenc_epi128(d0, kk6);
  141. d1 = _mm256_aesenc_epi128(d1, kk6);
  142. d0 = _mm256_aesenc_epi128(d0, kk7);
  143. d1 = _mm256_aesenc_epi128(d1, kk7);
  144. d0 = _mm256_aesenc_epi128(d0, kk8);
  145. d1 = _mm256_aesenc_epi128(d1, kk8);
  146. d0 = _mm256_aesenc_epi128(d0, kk9);
  147. d1 = _mm256_aesenc_epi128(d1, kk9);
  148. d0 = _mm256_aesenc_epi128(d0, kk10);
  149. d1 = _mm256_aesenc_epi128(d1, kk10);
  150. d0 = _mm256_aesenc_epi128(d0, kk11);
  151. d1 = _mm256_aesenc_epi128(d1, kk11);
  152. d0 = _mm256_aesenc_epi128(d0, kk12);
  153. d1 = _mm256_aesenc_epi128(d1, kk12);
  154. d0 = _mm256_aesenc_epi128(d0, kk13);
  155. d1 = _mm256_aesenc_epi128(d1, kk13);
  156. d0 = _mm256_aesenclast_epi128(d0, kk14);
  157. d1 = _mm256_aesenclast_epi128(d1, kk14);
  158. _mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
  159. _mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
  160. out += 64;
  161. } while (likely(len >= 64));
  162. }
  163. #endif // does compiler support AVX2 and AVX512 AES intrinsics?
  164. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  165. __m128i p_init256_1_aesni(__m128i a, __m128i b) noexcept
  166. {
  167. __m128i x, y;
  168. b = _mm_shuffle_epi32(b, 0xff);
  169. y = _mm_slli_si128(a, 0x04);
  170. x = _mm_xor_si128(a, y);
  171. y = _mm_slli_si128(y, 0x04);
  172. x = _mm_xor_si128(x, y);
  173. y = _mm_slli_si128(y, 0x04);
  174. x = _mm_xor_si128(x, y);
  175. x = _mm_xor_si128(x, b);
  176. return x;
  177. }
  178. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  179. __m128i p_init256_2_aesni(__m128i a, __m128i b) noexcept
  180. {
  181. __m128i x, y, z;
  182. y = _mm_aeskeygenassist_si128(a, 0x00);
  183. z = _mm_shuffle_epi32(y, 0xaa);
  184. y = _mm_slli_si128(b, 0x04);
  185. x = _mm_xor_si128(b, y);
  186. y = _mm_slli_si128(y, 0x04);
  187. x = _mm_xor_si128(x, y);
  188. y = _mm_slli_si128(y, 0x04);
  189. x = _mm_xor_si128(x, y);
  190. x = _mm_xor_si128(x, z);
  191. return x;
  192. }
  193. } // anonymous namespace
  194. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
  195. void AES::GMAC::p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept
  196. {
  197. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
  198. // Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
  199. if (_rp) {
  200. for (;;) {
  201. if (!len)
  202. return;
  203. --len;
  204. _r[_rp++] = *(in++);
  205. if (_rp == 16) {
  206. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
  207. break;
  208. }
  209. }
  210. }
  211. if (likely(len >= 64)) {
  212. const __m128i sb = s_sseSwapBytes;
  213. const __m128i h = _aes.p_k.ni.h[0];
  214. const __m128i hh = _aes.p_k.ni.h[1];
  215. const __m128i hhh = _aes.p_k.ni.h[2];
  216. const __m128i hhhh = _aes.p_k.ni.h[3];
  217. const __m128i h2 = _aes.p_k.ni.h2[0];
  218. const __m128i hh2 = _aes.p_k.ni.h2[1];
  219. const __m128i hhh2 = _aes.p_k.ni.h2[2];
  220. const __m128i hhhh2 = _aes.p_k.ni.h2[3];
  221. const uint8_t *const end64 = in + (len & ~((unsigned int)63));
  222. len &= 63U;
  223. do {
  224. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
  225. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
  226. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
  227. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
  228. in += 64;
  229. __m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
  230. __m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
  231. __m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
  232. a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
  233. b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
  234. c = _mm_srli_epi32(a, 31);
  235. a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
  236. b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
  237. c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
  238. a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
  239. b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
  240. y = _mm_shuffle_epi8(b, sb);
  241. } while (likely(in != end64));
  242. }
  243. while (len >= 16) {
  244. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
  245. in += 16;
  246. len -= 16;
  247. }
  248. _mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
  249. // Any overflow is cached for a later run or finish().
  250. for (unsigned int i = 0; i < len; ++i)
  251. _r[i] = in[i];
  252. _rp = len; // len is always less than 16 here
  253. }
  254. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul,aes")))
  255. void AES::GMAC::p_aesNIFinish(uint8_t tag[16]) noexcept
  256. {
  257. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
  258. // Handle any remaining bytes, padding the last block with zeroes.
  259. if (_rp) {
  260. while (_rp < 16)
  261. _r[_rp++] = 0;
  262. y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
  263. }
  264. // Interleave encryption of IV with the final GHASH of y XOR (length * 8).
  265. // Then XOR these together to get the final tag.
  266. const __m128i *const k = _aes.p_k.ni.k;
  267. const __m128i h = _aes.p_k.ni.h[0];
  268. y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
  269. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  270. __m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
  271. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  272. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  273. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  274. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  275. encIV = _mm_aesenc_si128(encIV, k[1]);
  276. t2 = _mm_xor_si128(t2, t3);
  277. t3 = _mm_slli_si128(t2, 8);
  278. encIV = _mm_aesenc_si128(encIV, k[2]);
  279. t2 = _mm_srli_si128(t2, 8);
  280. t1 = _mm_xor_si128(t1, t3);
  281. encIV = _mm_aesenc_si128(encIV, k[3]);
  282. t4 = _mm_xor_si128(t4, t2);
  283. __m128i t5 = _mm_srli_epi32(t1, 31);
  284. t1 = _mm_slli_epi32(t1, 1);
  285. __m128i t6 = _mm_srli_epi32(t4, 31);
  286. encIV = _mm_aesenc_si128(encIV, k[4]);
  287. t4 = _mm_slli_epi32(t4, 1);
  288. t3 = _mm_srli_si128(t5, 12);
  289. encIV = _mm_aesenc_si128(encIV, k[5]);
  290. t6 = _mm_slli_si128(t6, 4);
  291. t5 = _mm_slli_si128(t5, 4);
  292. encIV = _mm_aesenc_si128(encIV, k[6]);
  293. t1 = _mm_or_si128(t1, t5);
  294. t4 = _mm_or_si128(t4, t6);
  295. encIV = _mm_aesenc_si128(encIV, k[7]);
  296. t4 = _mm_or_si128(t4, t3);
  297. t5 = _mm_slli_epi32(t1, 31);
  298. encIV = _mm_aesenc_si128(encIV, k[8]);
  299. t6 = _mm_slli_epi32(t1, 30);
  300. t3 = _mm_slli_epi32(t1, 25);
  301. encIV = _mm_aesenc_si128(encIV, k[9]);
  302. t5 = _mm_xor_si128(t5, t6);
  303. t5 = _mm_xor_si128(t5, t3);
  304. encIV = _mm_aesenc_si128(encIV, k[10]);
  305. t6 = _mm_srli_si128(t5, 4);
  306. t4 = _mm_xor_si128(t4, t6);
  307. encIV = _mm_aesenc_si128(encIV, k[11]);
  308. t5 = _mm_slli_si128(t5, 12);
  309. t1 = _mm_xor_si128(t1, t5);
  310. t4 = _mm_xor_si128(t4, t1);
  311. t5 = _mm_srli_epi32(t1, 1);
  312. encIV = _mm_aesenc_si128(encIV, k[12]);
  313. t2 = _mm_srli_epi32(t1, 2);
  314. t3 = _mm_srli_epi32(t1, 7);
  315. encIV = _mm_aesenc_si128(encIV, k[13]);
  316. t4 = _mm_xor_si128(t4, t2);
  317. t4 = _mm_xor_si128(t4, t3);
  318. encIV = _mm_aesenclast_si128(encIV, k[14]);
  319. t4 = _mm_xor_si128(t4, t5);
  320. _mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
  321. }
  322. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes")))
  323. void AES::CTR::p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
  324. {
  325. const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
  326. uint64_t c1 = Utils::ntoh(_ctr[1]);
  327. const __m128i *const k = _aes.p_k.ni.k;
  328. const __m128i k0 = k[0];
  329. const __m128i k1 = k[1];
  330. const __m128i k2 = k[2];
  331. const __m128i k3 = k[3];
  332. const __m128i k4 = k[4];
  333. const __m128i k5 = k[5];
  334. const __m128i k6 = k[6];
  335. const __m128i k7 = k[7];
  336. const __m128i k8 = k[8];
  337. const __m128i k9 = k[9];
  338. const __m128i k10 = k[10];
  339. const __m128i k11 = k[11];
  340. const __m128i k12 = k[12];
  341. const __m128i k13 = k[13];
  342. const __m128i k14 = k[14];
  343. // Complete any unfinished blocks from previous calls to crypt().
  344. unsigned int totalLen = _len;
  345. if ((totalLen & 15U)) {
  346. for (;;) {
  347. if (unlikely(!len)) {
  348. _ctr[1] = Utils::hton(c1);
  349. _len = totalLen;
  350. return;
  351. }
  352. --len;
  353. out[totalLen++] = *(in++);
  354. if (!(totalLen & 15U)) {
  355. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  356. d0 = _mm_xor_si128(d0, k0);
  357. d0 = _mm_aesenc_si128(d0, k1);
  358. d0 = _mm_aesenc_si128(d0, k2);
  359. d0 = _mm_aesenc_si128(d0, k3);
  360. d0 = _mm_aesenc_si128(d0, k4);
  361. d0 = _mm_aesenc_si128(d0, k5);
  362. d0 = _mm_aesenc_si128(d0, k6);
  363. d0 = _mm_aesenc_si128(d0, k7);
  364. d0 = _mm_aesenc_si128(d0, k8);
  365. d0 = _mm_aesenc_si128(d0, k9);
  366. d0 = _mm_aesenc_si128(d0, k10);
  367. __m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
  368. d0 = _mm_aesenc_si128(d0, k11);
  369. const __m128i p0 = _mm_loadu_si128(outblk);
  370. d0 = _mm_aesenc_si128(d0, k12);
  371. d0 = _mm_aesenc_si128(d0, k13);
  372. d0 = _mm_aesenclast_si128(d0, k14);
  373. _mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
  374. break;
  375. }
  376. }
  377. }
  378. out += totalLen;
  379. _len = totalLen + len;
  380. if (likely(len >= 64)) {
  381. #if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  382. if (Utils::CPUID.vaes && (len >= 256)) {
  383. if (Utils::CPUID.avx512f) {
  384. p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
  385. } else {
  386. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  387. }
  388. goto skip_conventional_aesni_64;
  389. }
  390. #endif
  391. #if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  392. if (Utils::CPUID.vaes && (len >= 256)) {
  393. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  394. goto skip_conventional_aesni_64;
  395. }
  396. #endif
  397. const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
  398. len &= 63;
  399. __m128i d0, d1, d2, d3;
  400. do {
  401. const uint64_t c10 = Utils::hton(c1);
  402. const uint64_t c11 = Utils::hton(c1 + 1ULL);
  403. const uint64_t c12 = Utils::hton(c1 + 2ULL);
  404. const uint64_t c13 = Utils::hton(c1 + 3ULL);
  405. d0 = _mm_insert_epi64(dd, (long long)c10, 1);
  406. d1 = _mm_insert_epi64(dd, (long long)c11, 1);
  407. d2 = _mm_insert_epi64(dd, (long long)c12, 1);
  408. d3 = _mm_insert_epi64(dd, (long long)c13, 1);
  409. c1 += 4;
  410. d0 = _mm_xor_si128(d0, k0);
  411. d1 = _mm_xor_si128(d1, k0);
  412. d2 = _mm_xor_si128(d2, k0);
  413. d3 = _mm_xor_si128(d3, k0);
  414. d0 = _mm_aesenc_si128(d0, k1);
  415. d1 = _mm_aesenc_si128(d1, k1);
  416. d2 = _mm_aesenc_si128(d2, k1);
  417. d3 = _mm_aesenc_si128(d3, k1);
  418. d0 = _mm_aesenc_si128(d0, k2);
  419. d1 = _mm_aesenc_si128(d1, k2);
  420. d2 = _mm_aesenc_si128(d2, k2);
  421. d3 = _mm_aesenc_si128(d3, k2);
  422. d0 = _mm_aesenc_si128(d0, k3);
  423. d1 = _mm_aesenc_si128(d1, k3);
  424. d2 = _mm_aesenc_si128(d2, k3);
  425. d3 = _mm_aesenc_si128(d3, k3);
  426. d0 = _mm_aesenc_si128(d0, k4);
  427. d1 = _mm_aesenc_si128(d1, k4);
  428. d2 = _mm_aesenc_si128(d2, k4);
  429. d3 = _mm_aesenc_si128(d3, k4);
  430. d0 = _mm_aesenc_si128(d0, k5);
  431. d1 = _mm_aesenc_si128(d1, k5);
  432. d2 = _mm_aesenc_si128(d2, k5);
  433. d3 = _mm_aesenc_si128(d3, k5);
  434. d0 = _mm_aesenc_si128(d0, k6);
  435. d1 = _mm_aesenc_si128(d1, k6);
  436. d2 = _mm_aesenc_si128(d2, k6);
  437. d3 = _mm_aesenc_si128(d3, k6);
  438. d0 = _mm_aesenc_si128(d0, k7);
  439. d1 = _mm_aesenc_si128(d1, k7);
  440. d2 = _mm_aesenc_si128(d2, k7);
  441. d3 = _mm_aesenc_si128(d3, k7);
  442. d0 = _mm_aesenc_si128(d0, k8);
  443. d1 = _mm_aesenc_si128(d1, k8);
  444. d2 = _mm_aesenc_si128(d2, k8);
  445. d3 = _mm_aesenc_si128(d3, k8);
  446. d0 = _mm_aesenc_si128(d0, k9);
  447. d1 = _mm_aesenc_si128(d1, k9);
  448. d2 = _mm_aesenc_si128(d2, k9);
  449. d3 = _mm_aesenc_si128(d3, k9);
  450. d0 = _mm_aesenc_si128(d0, k10);
  451. d1 = _mm_aesenc_si128(d1, k10);
  452. d2 = _mm_aesenc_si128(d2, k10);
  453. d3 = _mm_aesenc_si128(d3, k10);
  454. d0 = _mm_aesenc_si128(d0, k11);
  455. d1 = _mm_aesenc_si128(d1, k11);
  456. d2 = _mm_aesenc_si128(d2, k11);
  457. d3 = _mm_aesenc_si128(d3, k11);
  458. d0 = _mm_aesenc_si128(d0, k12);
  459. d1 = _mm_aesenc_si128(d1, k12);
  460. d2 = _mm_aesenc_si128(d2, k12);
  461. d3 = _mm_aesenc_si128(d3, k12);
  462. d0 = _mm_aesenc_si128(d0, k13);
  463. d1 = _mm_aesenc_si128(d1, k13);
  464. d2 = _mm_aesenc_si128(d2, k13);
  465. d3 = _mm_aesenc_si128(d3, k13);
  466. d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
  467. d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
  468. d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
  469. d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
  470. in += 64;
  471. _mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
  472. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
  473. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
  474. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
  475. out += 64;
  476. } while (likely(in != eof64));
  477. }
  478. skip_conventional_aesni_64:
  479. while (len >= 16) {
  480. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  481. d0 = _mm_xor_si128(d0, k0);
  482. d0 = _mm_aesenc_si128(d0, k1);
  483. d0 = _mm_aesenc_si128(d0, k2);
  484. d0 = _mm_aesenc_si128(d0, k3);
  485. d0 = _mm_aesenc_si128(d0, k4);
  486. d0 = _mm_aesenc_si128(d0, k5);
  487. d0 = _mm_aesenc_si128(d0, k6);
  488. d0 = _mm_aesenc_si128(d0, k7);
  489. d0 = _mm_aesenc_si128(d0, k8);
  490. d0 = _mm_aesenc_si128(d0, k9);
  491. d0 = _mm_aesenc_si128(d0, k10);
  492. d0 = _mm_aesenc_si128(d0, k11);
  493. d0 = _mm_aesenc_si128(d0, k12);
  494. d0 = _mm_aesenc_si128(d0, k13);
  495. _mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
  496. in += 16;
  497. len -= 16;
  498. out += 16;
  499. }
  500. // Any remaining input is placed in _out. This will be picked up and crypted
  501. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  502. // an even multiple of 16.
  503. for (unsigned int i = 0; i < len; ++i)
  504. out[i] = in[i];
  505. _ctr[1] = Utils::hton(c1);
  506. }
  507. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  508. void AES::p_init_aesni(const uint8_t *key) noexcept
  509. {
  510. __m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
  511. p_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  512. p_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
  513. p_k.ni.k[2] = k2 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
  514. p_k.ni.k[3] = k3 = t2 = p_init256_2_aesni(t1, t2);
  515. p_k.ni.k[4] = k4 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
  516. p_k.ni.k[5] = k5 = t2 = p_init256_2_aesni(t1, t2);
  517. p_k.ni.k[6] = k6 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
  518. p_k.ni.k[7] = k7 = t2 = p_init256_2_aesni(t1, t2);
  519. p_k.ni.k[8] = k8 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
  520. p_k.ni.k[9] = k9 = t2 = p_init256_2_aesni(t1, t2);
  521. p_k.ni.k[10] = k10 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
  522. p_k.ni.k[11] = k11 = t2 = p_init256_2_aesni(t1, t2);
  523. p_k.ni.k[12] = k12 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
  524. p_k.ni.k[13] = k13 = t2 = p_init256_2_aesni(t1, t2);
  525. p_k.ni.k[14] = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
  526. p_k.ni.k[15] = _mm_aesimc_si128(k13);
  527. p_k.ni.k[16] = _mm_aesimc_si128(k12);
  528. p_k.ni.k[17] = _mm_aesimc_si128(k11);
  529. p_k.ni.k[18] = _mm_aesimc_si128(k10);
  530. p_k.ni.k[19] = _mm_aesimc_si128(k9);
  531. p_k.ni.k[20] = _mm_aesimc_si128(k8);
  532. p_k.ni.k[21] = _mm_aesimc_si128(k7);
  533. p_k.ni.k[22] = _mm_aesimc_si128(k6);
  534. p_k.ni.k[23] = _mm_aesimc_si128(k5);
  535. p_k.ni.k[24] = _mm_aesimc_si128(k4);
  536. p_k.ni.k[25] = _mm_aesimc_si128(k3);
  537. p_k.ni.k[26] = _mm_aesimc_si128(k2);
  538. p_k.ni.k[27] = _mm_aesimc_si128(k1);
  539. __m128i h = p_k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  540. h = _mm_aesenc_si128(h, k1);
  541. h = _mm_aesenc_si128(h, k2);
  542. h = _mm_aesenc_si128(h, k3);
  543. h = _mm_aesenc_si128(h, k4);
  544. h = _mm_aesenc_si128(h, k5);
  545. h = _mm_aesenc_si128(h, k6);
  546. h = _mm_aesenc_si128(h, k7);
  547. h = _mm_aesenc_si128(h, k8);
  548. h = _mm_aesenc_si128(h, k9);
  549. h = _mm_aesenc_si128(h, k10);
  550. h = _mm_aesenc_si128(h, k11);
  551. h = _mm_aesenc_si128(h, k12);
  552. h = _mm_aesenc_si128(h, k13);
  553. h = _mm_aesenclast_si128(h, p_k.ni.k[14]);
  554. __m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
  555. __m128i hh = p_gmacPCLMUL128(hswap, h);
  556. __m128i hhh = p_gmacPCLMUL128(hswap, hh);
  557. __m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
  558. p_k.ni.h[0] = hswap;
  559. p_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
  560. p_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
  561. p_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
  562. p_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
  563. p_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
  564. p_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
  565. p_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
  566. }
  567. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  568. void AES::p_encrypt_aesni(const void *const in, void *const out) const noexcept
  569. {
  570. __m128i tmp = _mm_loadu_si128((const __m128i *)in);
  571. tmp = _mm_xor_si128(tmp, p_k.ni.k[0]);
  572. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[1]);
  573. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[2]);
  574. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[3]);
  575. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[4]);
  576. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[5]);
  577. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[6]);
  578. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[7]);
  579. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[8]);
  580. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[9]);
  581. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[10]);
  582. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[11]);
  583. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[12]);
  584. tmp = _mm_aesenc_si128(tmp, p_k.ni.k[13]);
  585. _mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, p_k.ni.k[14]));
  586. }
  587. __attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
  588. void AES::p_decrypt_aesni(const void *in, void *out) const noexcept
  589. {
  590. __m128i tmp = _mm_loadu_si128((const __m128i *)in);
  591. tmp = _mm_xor_si128(tmp, p_k.ni.k[14]);
  592. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[15]);
  593. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[16]);
  594. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[17]);
  595. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[18]);
  596. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[19]);
  597. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[20]);
  598. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[21]);
  599. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[22]);
  600. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[23]);
  601. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[24]);
  602. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[25]);
  603. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[26]);
  604. tmp = _mm_aesdec_si128(tmp, p_k.ni.k[27]);
  605. _mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, p_k.ni.k[0]));
  606. }
  607. } // namespace ZeroTier
  608. #endif // ZT_AES_AESNI