SHA512.cpp 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270
  1. // This code is public domain, taken from a PD crypto source file on GitHub.
  2. #include <cstdint>
  3. #include <cstdlib>
  4. #include <cstring>
  5. #include "SHA512.hpp"
  6. #include "Utils.hpp"
  7. #include <utility>
  8. #include <algorithm>
  9. namespace ZeroTier {
  10. #ifndef ZT_HAVE_NATIVE_SHA512
  11. namespace {
  12. struct sha512_state {
  13. uint64_t length,state[8];
  14. unsigned long curlen;
  15. uint8_t buf[128];
  16. };
  17. static const uint64_t K[80] = {
  18. 0x428a2f98d728ae22ULL,0x7137449123ef65cdULL,0xb5c0fbcfec4d3b2fULL,0xe9b5dba58189dbbcULL,
  19. 0x3956c25bf348b538ULL,0x59f111f1b605d019ULL,0x923f82a4af194f9bULL,0xab1c5ed5da6d8118ULL,
  20. 0xd807aa98a3030242ULL,0x12835b0145706fbeULL,0x243185be4ee4b28cULL,0x550c7dc3d5ffb4e2ULL,
  21. 0x72be5d74f27b896fULL,0x80deb1fe3b1696b1ULL,0x9bdc06a725c71235ULL,0xc19bf174cf692694ULL,
  22. 0xe49b69c19ef14ad2ULL,0xefbe4786384f25e3ULL,0x0fc19dc68b8cd5b5ULL,0x240ca1cc77ac9c65ULL,
  23. 0x2de92c6f592b0275ULL,0x4a7484aa6ea6e483ULL,0x5cb0a9dcbd41fbd4ULL,0x76f988da831153b5ULL,
  24. 0x983e5152ee66dfabULL,0xa831c66d2db43210ULL,0xb00327c898fb213fULL,0xbf597fc7beef0ee4ULL,
  25. 0xc6e00bf33da88fc2ULL,0xd5a79147930aa725ULL,0x06ca6351e003826fULL,0x142929670a0e6e70ULL,
  26. 0x27b70a8546d22ffcULL,0x2e1b21385c26c926ULL,0x4d2c6dfc5ac42aedULL,0x53380d139d95b3dfULL,
  27. 0x650a73548baf63deULL,0x766a0abb3c77b2a8ULL,0x81c2c92e47edaee6ULL,0x92722c851482353bULL,
  28. 0xa2bfe8a14cf10364ULL,0xa81a664bbc423001ULL,0xc24b8b70d0f89791ULL,0xc76c51a30654be30ULL,
  29. 0xd192e819d6ef5218ULL,0xd69906245565a910ULL,0xf40e35855771202aULL,0x106aa07032bbd1b8ULL,
  30. 0x19a4c116b8d2d0c8ULL,0x1e376c085141ab53ULL,0x2748774cdf8eeb99ULL,0x34b0bcb5e19b48a8ULL,
  31. 0x391c0cb3c5c95a63ULL,0x4ed8aa4ae3418acbULL,0x5b9cca4f7763e373ULL,0x682e6ff3d6b2b8a3ULL,
  32. 0x748f82ee5defb2fcULL,0x78a5636f43172f60ULL,0x84c87814a1f0ab72ULL,0x8cc702081a6439ecULL,
  33. 0x90befffa23631e28ULL,0xa4506cebde82bde9ULL,0xbef9a3f7b2c67915ULL,0xc67178f2e372532bULL,
  34. 0xca273eceea26619cULL,0xd186b8c721c0c207ULL,0xeada7dd6cde0eb1eULL,0xf57d4f7fee6ed178ULL,
  35. 0x06f067aa72176fbaULL,0x0a637dc5a2c898a6ULL,0x113f9804bef90daeULL,0x1b710b35131c471bULL,
  36. 0x28db77f523047d84ULL,0x32caab7b40c72493ULL,0x3c9ebe0a15c9bebcULL,0x431d67c49c100d4cULL,
  37. 0x4cc5d4becb3e42b6ULL,0x597f299cfc657e2aULL,0x5fcb6fab3ad6faecULL,0x6c44198c4a475817ULL
  38. };
  39. #define STORE64H(x, y) \
  40. { (y)[0] = (unsigned char)(((x)>>56)&255); (y)[1] = (unsigned char)(((x)>>48)&255); \
  41. (y)[2] = (unsigned char)(((x)>>40)&255); (y)[3] = (unsigned char)(((x)>>32)&255); \
  42. (y)[4] = (unsigned char)(((x)>>24)&255); (y)[5] = (unsigned char)(((x)>>16)&255); \
  43. (y)[6] = (unsigned char)(((x)>>8)&255); (y)[7] = (unsigned char)((x)&255); }
  44. #define LOAD64H(x, y) \
  45. { x = (((uint64_t)((y)[0] & 255))<<56)|(((uint64_t)((y)[1] & 255))<<48) | \
  46. (((uint64_t)((y)[2] & 255))<<40)|(((uint64_t)((y)[3] & 255))<<32) | \
  47. (((uint64_t)((y)[4] & 255))<<24)|(((uint64_t)((y)[5] & 255))<<16) | \
  48. (((uint64_t)((y)[6] & 255))<<8)|(((uint64_t)((y)[7] & 255))); }
  49. #define ROL64c(x,y) (((x)<<(y)) | ((x)>>(64-(y))))
  50. #define ROR64c(x,y) (((x)>>(y)) | ((x)<<(64-(y))))
  51. #define Ch(x,y,z) (z ^ (x & (y ^ z)))
  52. #define Maj(x,y,z) (((x | y) & z) | (x & y))
  53. #define S(x, n) ROR64c(x, n)
  54. #define R(x, n) ((x)>>(n))
  55. #define Sigma0(x) (S(x, 28) ^ S(x, 34) ^ S(x, 39))
  56. #define Sigma1(x) (S(x, 14) ^ S(x, 18) ^ S(x, 41))
  57. #define Gamma0(x) (S(x, 1) ^ S(x, 8) ^ R(x, 7))
  58. #define Gamma1(x) (S(x, 19) ^ S(x, 61) ^ R(x, 6))
  59. static inline void sha512_compress(sha512_state *const md,uint8_t *const buf)
  60. {
  61. uint64_t S[8], W[80], t0, t1;
  62. int i;
  63. for (i = 0; i < 8; i++)
  64. S[i] = md->state[i];
  65. for (i = 0; i < 16; i++)
  66. LOAD64H(W[i], buf + (8*i));
  67. for (i = 16; i < 80; i++)
  68. W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) + W[i - 16];
  69. #define RND(a,b,c,d,e,f,g,h,i) \
  70. t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
  71. t1 = Sigma0(a) + Maj(a, b, c); \
  72. d += t0; \
  73. h = t0 + t1;
  74. for (i = 0; i < 80; i += 8) {
  75. RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],i+0);
  76. RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],i+1);
  77. RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],i+2);
  78. RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],i+3);
  79. RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],i+4);
  80. RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],i+5);
  81. RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],i+6);
  82. RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],i+7);
  83. }
  84. for (i = 0; i < 8; i++)
  85. md->state[i] = md->state[i] + S[i];
  86. }
  87. static inline void sha384_init(sha512_state *const md)
  88. {
  89. md->curlen = 0;
  90. md->length = 0;
  91. md->state[0] = 0xcbbb9d5dc1059ed8ULL;
  92. md->state[1] = 0x629a292a367cd507ULL;
  93. md->state[2] = 0x9159015a3070dd17ULL;
  94. md->state[3] = 0x152fecd8f70e5939ULL;
  95. md->state[4] = 0x67332667ffc00b31ULL;
  96. md->state[5] = 0x8eb44a8768581511ULL;
  97. md->state[6] = 0xdb0c2e0d64f98fa7ULL;
  98. md->state[7] = 0x47b5481dbefa4fa4ULL;
  99. }
  100. static inline void sha512_init(sha512_state *const md)
  101. {
  102. md->curlen = 0;
  103. md->length = 0;
  104. md->state[0] = 0x6a09e667f3bcc908ULL;
  105. md->state[1] = 0xbb67ae8584caa73bULL;
  106. md->state[2] = 0x3c6ef372fe94f82bULL;
  107. md->state[3] = 0xa54ff53a5f1d36f1ULL;
  108. md->state[4] = 0x510e527fade682d1ULL;
  109. md->state[5] = 0x9b05688c2b3e6c1fULL;
  110. md->state[6] = 0x1f83d9abfb41bd6bULL;
  111. md->state[7] = 0x5be0cd19137e2179ULL;
  112. }
  113. static inline void sha512_process(sha512_state *const md,const uint8_t *in,unsigned long inlen)
  114. {
  115. while (inlen > 0) {
  116. if (md->curlen == 0 && inlen >= 128) {
  117. sha512_compress(md,(uint8_t *)in);
  118. md->length += 128 * 8;
  119. in += 128;
  120. inlen -= 128;
  121. } else {
  122. unsigned long n = std::min(inlen,(128 - md->curlen));
  123. memcpy(md->buf + md->curlen,in,n);
  124. md->curlen += n;
  125. in += n;
  126. inlen -= n;
  127. if (md->curlen == 128) {
  128. sha512_compress(md,md->buf);
  129. md->length += 8*128;
  130. md->curlen = 0;
  131. }
  132. }
  133. }
  134. }
  135. static inline void sha512_done(sha512_state *const md,uint8_t *out)
  136. {
  137. int i;
  138. md->length += md->curlen * 8ULL;
  139. md->buf[md->curlen++] = (uint8_t)0x80;
  140. if (md->curlen > 112) {
  141. while (md->curlen < 128) {
  142. md->buf[md->curlen++] = (uint8_t)0;
  143. }
  144. sha512_compress(md, md->buf);
  145. md->curlen = 0;
  146. }
  147. while (md->curlen < 120) {
  148. md->buf[md->curlen++] = (uint8_t)0;
  149. }
  150. STORE64H(md->length, md->buf+120);
  151. sha512_compress(md, md->buf);
  152. for (i = 0; i < 8; i++) {
  153. STORE64H(md->state[i], out+(8*i));
  154. }
  155. }
  156. } // anonymous namespace
  157. void SHA512(void *digest,const void *data,unsigned int len)
  158. {
  159. sha512_state state;
  160. sha512_init(&state);
  161. sha512_process(&state,(uint8_t *)data,(unsigned long)len);
  162. sha512_done(&state,(uint8_t *)digest);
  163. }
  164. void SHA384(void *digest,const void *data,unsigned int len)
  165. {
  166. uint8_t tmp[64];
  167. sha512_state state;
  168. sha384_init(&state);
  169. sha512_process(&state,(uint8_t *)data,(unsigned long)len);
  170. sha512_done(&state,tmp);
  171. memcpy(digest,tmp,48);
  172. }
  173. void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
  174. {
  175. uint8_t tmp[64];
  176. sha512_state state;
  177. sha384_init(&state);
  178. sha512_process(&state,(uint8_t *)data0,(unsigned long)len0);
  179. sha512_process(&state,(uint8_t *)data1,(unsigned long)len1);
  180. sha512_done(&state,tmp);
  181. memcpy(digest,tmp,48);
  182. }
  183. #endif // !ZT_HAVE_NATIVE_SHA512
  184. void HMACSHA384(const uint8_t key[32],const void *msg,const unsigned int msglen,uint8_t mac[48])
  185. {
  186. uint64_t kInPadded[16]; // input padded key
  187. uint64_t outer[22]; // output padded key | H(input padded key | msg)
  188. #ifdef ZT_NO_UNALIGNED_ACCESS
  189. for(int i=0;i<32;++i) ((uint8_t *)kInPadded)[i] = key[i] ^ 0x36;
  190. for(int i=4;i<16;++i) kInPadded[i] = 0x3636363636363636ULL;
  191. for(int i=0;i<32;++i) ((uint8_t *)outer)[i] = key[i] ^ 0x5c;
  192. for(int i=4;i<16;++i) outer[i] = 0x5c5c5c5c5c5c5c5cULL;
  193. #else
  194. {
  195. const uint64_t k0 = ((const uint64_t *)key)[0];
  196. const uint64_t k1 = ((const uint64_t *)key)[1];
  197. const uint64_t k2 = ((const uint64_t *)key)[2];
  198. const uint64_t k3 = ((const uint64_t *)key)[3];
  199. kInPadded[0] = k0 ^ 0x3636363636363636ULL;
  200. kInPadded[1] = k1 ^ 0x3636363636363636ULL;
  201. kInPadded[2] = k2 ^ 0x3636363636363636ULL;
  202. kInPadded[3] = k3 ^ 0x3636363636363636ULL;
  203. for(int i=4;i<16;++i) kInPadded[i] = 0x3636363636363636ULL;
  204. outer[0] = k0 ^ 0x5c5c5c5c5c5c5c5cULL;
  205. outer[1] = k1 ^ 0x5c5c5c5c5c5c5c5cULL;
  206. outer[2] = k2 ^ 0x5c5c5c5c5c5c5c5cULL;
  207. outer[3] = k3 ^ 0x5c5c5c5c5c5c5c5cULL;
  208. for(int i=4;i<16;++i) outer[i] = 0x5c5c5c5c5c5c5c5cULL;
  209. }
  210. #endif
  211. SHA384(((uint8_t *)outer) + 128,kInPadded,128,msg,msglen); // H(input padded key | msg)
  212. SHA384(mac,outer,176); // H(output padded key | H(input padded key | msg))
  213. }
  214. void KBKDFHMACSHA384(const uint8_t key[32],const char label,const char context,const uint32_t iter,uint8_t out[32])
  215. {
  216. uint8_t kbkdfMsg[13];
  217. uint8_t kbuf[48];
  218. kbkdfMsg[0] = (uint8_t)(iter >> 24);
  219. kbkdfMsg[1] = (uint8_t)(iter >> 16);
  220. kbkdfMsg[2] = (uint8_t)(iter >> 8);
  221. kbkdfMsg[3] = (uint8_t)iter;
  222. kbkdfMsg[4] = (uint8_t)'Z';
  223. kbkdfMsg[5] = (uint8_t)'T'; // preface our labels with something ZT-specific
  224. kbkdfMsg[6] = (uint8_t)label;
  225. kbkdfMsg[7] = 0;
  226. kbkdfMsg[8] = (uint8_t)context;
  227. kbkdfMsg[9] = 0;
  228. kbkdfMsg[10] = 0;
  229. kbkdfMsg[11] = 1;
  230. kbkdfMsg[12] = 0; // key length: 256 bits as big-endian 32-bit value
  231. HMACSHA384(key,&kbkdfMsg,sizeof(kbkdfMsg),kbuf);
  232. memcpy(out,kbuf,32);
  233. }
  234. } // namespace ZeroTier