Cluster.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_CLUSTER
  28. #include <stdint.h>
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include <math.h>
  33. #include <algorithm>
  34. #include <utility>
  35. #include "../version.h"
  36. #include "Cluster.hpp"
  37. #include "RuntimeEnvironment.hpp"
  38. #include "MulticastGroup.hpp"
  39. #include "CertificateOfMembership.hpp"
  40. #include "Salsa20.hpp"
  41. #include "Poly1305.hpp"
  42. #include "Packet.hpp"
  43. #include "Identity.hpp"
  44. #include "Peer.hpp"
  45. #include "Switch.hpp"
  46. #include "Node.hpp"
  47. namespace ZeroTier {
  48. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  49. throw()
  50. {
  51. double dx = ((double)x2 - (double)x1);
  52. double dy = ((double)y2 - (double)y1);
  53. double dz = ((double)z2 - (double)z1);
  54. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  55. }
  56. Cluster::Cluster(
  57. const RuntimeEnvironment *renv,
  58. uint16_t id,
  59. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  60. int32_t x,
  61. int32_t y,
  62. int32_t z,
  63. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  64. void *sendFunctionArg,
  65. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  66. void *addressToLocationFunctionArg) :
  67. RR(renv),
  68. _sendFunction(sendFunction),
  69. _sendFunctionArg(sendFunctionArg),
  70. _addressToLocationFunction(addressToLocationFunction),
  71. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  72. _x(x),
  73. _y(y),
  74. _z(z),
  75. _id(id),
  76. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  77. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS])
  78. {
  79. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  80. // Generate master secret by hashing the secret from our Identity key pair
  81. RR->identity.sha512PrivateKey(_masterSecret);
  82. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  83. memcpy(stmp,_masterSecret,sizeof(stmp));
  84. stmp[0] ^= Utils::hton(id);
  85. SHA512::hash(stmp,stmp,sizeof(stmp));
  86. SHA512::hash(stmp,stmp,sizeof(stmp));
  87. memcpy(_key,stmp,sizeof(_key));
  88. Utils::burn(stmp,sizeof(stmp));
  89. }
  90. Cluster::~Cluster()
  91. {
  92. Utils::burn(_masterSecret,sizeof(_masterSecret));
  93. Utils::burn(_key,sizeof(_key));
  94. delete [] _members;
  95. }
  96. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  97. {
  98. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  99. {
  100. // FORMAT: <[16] iv><[8] MAC><... data>
  101. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  102. return;
  103. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  104. char keytmp[32];
  105. memcpy(keytmp,_key,32);
  106. for(int i=0;i<8;++i)
  107. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  108. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  109. Utils::burn(keytmp,sizeof(keytmp));
  110. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  111. char polykey[ZT_POLY1305_KEY_LEN];
  112. memset(polykey,0,sizeof(polykey));
  113. s20.encrypt12(polykey,polykey,sizeof(polykey));
  114. // Compute 16-byte MAC
  115. char mac[ZT_POLY1305_MAC_LEN];
  116. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  117. // Check first 8 bytes of MAC against 64-bit MAC in stream
  118. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  119. return;
  120. // Decrypt!
  121. dmsg.setSize(len - 24);
  122. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  123. }
  124. if (dmsg.size() < 4)
  125. return;
  126. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  127. unsigned int ptr = 2;
  128. if (fromMemberId == _id)
  129. return;
  130. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  131. ptr += 2;
  132. if (toMemberId != _id)
  133. return;
  134. _Member &m = _members[fromMemberId];
  135. Mutex::Lock mlck(m.lock);
  136. try {
  137. while (ptr < dmsg.size()) {
  138. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  139. const unsigned int nextPtr = ptr + mlen;
  140. int mtype = -1;
  141. try {
  142. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  143. default:
  144. break;
  145. case STATE_MESSAGE_ALIVE: {
  146. ptr += 7; // skip version stuff, not used yet
  147. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  148. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  149. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  150. ptr += 8; // skip local clock, not used
  151. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  152. ptr += 8; // skip flags, unused
  153. #ifdef ZT_TRACE
  154. std::string addrs;
  155. #endif
  156. unsigned int physicalAddressCount = dmsg[ptr++];
  157. for(unsigned int i=0;i<physicalAddressCount;++i) {
  158. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  159. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  160. if (!(m.zeroTierPhysicalEndpoints.back())) {
  161. m.zeroTierPhysicalEndpoints.pop_back();
  162. }
  163. #ifdef ZT_TRACE
  164. else {
  165. if (addrs.length() > 0)
  166. addrs.push_back(',');
  167. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  168. }
  169. #endif
  170. }
  171. m.lastReceivedAliveAnnouncement = RR->node->now();
  172. #ifdef ZT_TRACE
  173. TRACE("[%u] I'm alive! send me peers at %s",(unsigned int)fromMemberId,addrs.c_str());
  174. #endif
  175. } break;
  176. case STATE_MESSAGE_HAVE_PEER: {
  177. try {
  178. Identity id;
  179. ptr += id.deserialize(dmsg,ptr);
  180. if (id) {
  181. RR->topology->saveIdentity(id);
  182. { // Add or update peer affinity entry
  183. _PeerAffinity pa(id.address(),fromMemberId,RR->node->now());
  184. Mutex::Lock _l2(_peerAffinities_m);
  185. std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
  186. if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
  187. i->timestamp = pa.timestamp;
  188. } else {
  189. _peerAffinities.push_back(pa);
  190. std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
  191. }
  192. }
  193. TRACE("[%u] has %s",(unsigned int)fromMemberId,id.address().toString().c_str());
  194. }
  195. } catch ( ... ) {
  196. // ignore invalid identities
  197. }
  198. } break;
  199. case STATE_MESSAGE_MULTICAST_LIKE: {
  200. const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
  201. const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  202. const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
  203. const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
  204. RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
  205. TRACE("[%u] %s likes %s/%u on %.16llu",(unsigned int)fromMemberId,address.toString().c_str(),mac.toString().c_str(),(unsigned int)adi,nwid);
  206. } break;
  207. case STATE_MESSAGE_COM: {
  208. CertificateOfMembership com;
  209. ptr += com.deserialize(dmsg,ptr);
  210. if (com) {
  211. TRACE("[%u] COM for %s on %.16llu rev %llu",(unsigned int)fromMemberId,com.issuedTo().toString().c_str(),com.networkId(),com.revision());
  212. }
  213. } break;
  214. case STATE_MESSAGE_RELAY: {
  215. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  216. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  217. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  218. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  219. const unsigned int packetLen = dmsg.at<uint16_t>(ptr); ptr += 2;
  220. const void *packet = (const void *)dmsg.field(ptr,packetLen); ptr += packetLen;
  221. if (packetLen >= ZT_PROTO_MIN_FRAGMENT_LENGTH) { // ignore anything too short to contain a dest address
  222. const Address destinationAddress(reinterpret_cast<const char *>(packet) + 8,ZT_ADDRESS_LENGTH);
  223. TRACE("[%u] relay %u bytes to %s (%u remote paths included)",(unsigned int)fromMemberId,packetLen,destinationAddress.toString().c_str(),numRemotePeerPaths);
  224. SharedPtr<Peer> destinationPeer(RR->topology->getPeer(destinationAddress));
  225. if (destinationPeer) {
  226. if (
  227. (destinationPeer->send(RR,packet,packetLen,RR->node->now()))&&
  228. (numRemotePeerPaths > 0)&&
  229. (packetLen >= 18)&&
  230. (reinterpret_cast<const unsigned char *>(packet)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  231. ) {
  232. // If remote peer paths were sent with this relayed packet, we do
  233. // RENDEZVOUS. It's handled here for cluster-relayed packets since
  234. // we don't have both Peer records so this is a different path.
  235. const Address remotePeerAddress(reinterpret_cast<const char *>(packet) + 13,ZT_ADDRESS_LENGTH);
  236. InetAddress bestDestV4,bestDestV6;
  237. destinationPeer->getBestActiveAddresses(RR->node->now(),bestDestV4,bestDestV6);
  238. InetAddress bestRemoteV4,bestRemoteV6;
  239. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  240. if ((bestRemoteV4)&&(bestRemoteV6))
  241. break;
  242. switch(remotePeerPaths[i].ss_family) {
  243. case AF_INET:
  244. if (!bestRemoteV4)
  245. bestRemoteV4 = remotePeerPaths[i];
  246. break;
  247. case AF_INET6:
  248. if (!bestRemoteV6)
  249. bestRemoteV6 = remotePeerPaths[i];
  250. break;
  251. }
  252. }
  253. Packet rendezvousForDest(destinationAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  254. rendezvousForDest.append((uint8_t)0);
  255. remotePeerAddress.appendTo(rendezvousForDest);
  256. Buffer<2048> rendezvousForOtherEnd;
  257. remotePeerAddress.appendTo(rendezvousForOtherEnd);
  258. rendezvousForOtherEnd.append((uint8_t)Packet::VERB_RENDEZVOUS);
  259. const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForOtherEnd.size();
  260. rendezvousForOtherEnd.addSize(2); // space for actual packet payload length
  261. rendezvousForOtherEnd.append((uint8_t)0); // flags == 0
  262. destinationAddress.appendTo(rendezvousForOtherEnd);
  263. bool haveMatch = false;
  264. if ((bestDestV6)&&(bestRemoteV6)) {
  265. haveMatch = true;
  266. rendezvousForDest.append((uint16_t)bestRemoteV6.port());
  267. rendezvousForDest.append((uint8_t)16);
  268. rendezvousForDest.append(bestRemoteV6.rawIpData(),16);
  269. rendezvousForOtherEnd.append((uint16_t)bestDestV6.port());
  270. rendezvousForOtherEnd.append((uint8_t)16);
  271. rendezvousForOtherEnd.append(bestDestV6.rawIpData(),16);
  272. rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
  273. } else if ((bestDestV4)&&(bestRemoteV4)) {
  274. haveMatch = true;
  275. rendezvousForDest.append((uint16_t)bestRemoteV4.port());
  276. rendezvousForDest.append((uint8_t)4);
  277. rendezvousForDest.append(bestRemoteV4.rawIpData(),4);
  278. rendezvousForOtherEnd.append((uint16_t)bestDestV4.port());
  279. rendezvousForOtherEnd.append((uint8_t)4);
  280. rendezvousForOtherEnd.append(bestDestV4.rawIpData(),4);
  281. rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
  282. }
  283. if (haveMatch) {
  284. _send(fromMemberId,STATE_MESSAGE_PROXY_SEND,rendezvousForOtherEnd.data(),rendezvousForOtherEnd.size());
  285. RR->sw->send(rendezvousForDest,true,0);
  286. }
  287. }
  288. }
  289. }
  290. } break;
  291. case STATE_MESSAGE_PROXY_SEND: {
  292. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  293. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  294. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  295. Packet outp(rcpt,RR->identity.address(),verb);
  296. outp.append(dmsg.field(ptr,len),len);
  297. RR->sw->send(outp,true,0);
  298. TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  299. } break;
  300. }
  301. } catch ( ... ) {
  302. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  303. // drop invalids
  304. }
  305. ptr = nextPtr;
  306. }
  307. } catch ( ... ) {
  308. TRACE("invalid message (outer loop), discarding");
  309. // drop invalids
  310. }
  311. }
  312. void Cluster::replicateHavePeer(const Identity &peerId)
  313. {
  314. { // Use peer affinity table to track our own last announce time for peers
  315. _PeerAffinity pa(peerId.address(),_id,RR->node->now());
  316. Mutex::Lock _l2(_peerAffinities_m);
  317. std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
  318. if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
  319. if ((pa.timestamp - i->timestamp) >= ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD) {
  320. i->timestamp = pa.timestamp;
  321. // continue to announcement
  322. } else {
  323. // we've already announced this peer recently, so skip
  324. return;
  325. }
  326. } else {
  327. _peerAffinities.push_back(pa);
  328. std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
  329. // continue to announcement
  330. }
  331. }
  332. // announcement
  333. Buffer<4096> buf;
  334. peerId.serialize(buf,false);
  335. {
  336. Mutex::Lock _l(_memberIds_m);
  337. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  338. Mutex::Lock _l2(_members[*mid].lock);
  339. _send(*mid,STATE_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  340. }
  341. }
  342. }
  343. void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
  344. {
  345. Buffer<4096> buf;
  346. buf.append((uint64_t)nwid);
  347. peerAddress.appendTo(buf);
  348. group.mac().appendTo(buf);
  349. buf.append((uint32_t)group.adi());
  350. {
  351. Mutex::Lock _l(_memberIds_m);
  352. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  353. Mutex::Lock _l2(_members[*mid].lock);
  354. _send(*mid,STATE_MESSAGE_MULTICAST_LIKE,buf.data(),buf.size());
  355. }
  356. }
  357. }
  358. void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
  359. {
  360. Buffer<4096> buf;
  361. com.serialize(buf);
  362. {
  363. Mutex::Lock _l(_memberIds_m);
  364. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  365. Mutex::Lock _l2(_members[*mid].lock);
  366. _send(*mid,STATE_MESSAGE_COM,buf.data(),buf.size());
  367. }
  368. }
  369. }
  370. void Cluster::doPeriodicTasks()
  371. {
  372. const uint64_t now = RR->node->now();
  373. {
  374. Mutex::Lock _l(_memberIds_m);
  375. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  376. Mutex::Lock _l2(_members[*mid].lock);
  377. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  378. Buffer<2048> alive;
  379. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  380. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  381. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  382. alive.append((uint8_t)ZT_PROTO_VERSION);
  383. if (_addressToLocationFunction) {
  384. alive.append((int32_t)_x);
  385. alive.append((int32_t)_y);
  386. alive.append((int32_t)_z);
  387. } else {
  388. alive.append((int32_t)0);
  389. alive.append((int32_t)0);
  390. alive.append((int32_t)0);
  391. }
  392. alive.append((uint64_t)now);
  393. alive.append((uint64_t)0); // TODO: compute and send load average
  394. alive.append((uint64_t)0); // unused/reserved flags
  395. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  396. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  397. pe->serialize(alive);
  398. _send(*mid,STATE_MESSAGE_ALIVE,alive.data(),alive.size());
  399. _members[*mid].lastAnnouncedAliveTo = now;
  400. }
  401. _flush(*mid); // does nothing if nothing to flush
  402. }
  403. }
  404. }
  405. void Cluster::addMember(uint16_t memberId)
  406. {
  407. if (memberId >= ZT_CLUSTER_MAX_MEMBERS)
  408. return;
  409. Mutex::Lock _l2(_members[memberId].lock);
  410. {
  411. Mutex::Lock _l(_memberIds_m);
  412. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  413. return;
  414. _memberIds.push_back(memberId);
  415. std::sort(_memberIds.begin(),_memberIds.end());
  416. }
  417. _members[memberId].clear();
  418. // Generate this member's message key from the master and its ID
  419. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  420. memcpy(stmp,_masterSecret,sizeof(stmp));
  421. stmp[0] ^= Utils::hton(memberId);
  422. SHA512::hash(stmp,stmp,sizeof(stmp));
  423. SHA512::hash(stmp,stmp,sizeof(stmp));
  424. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  425. Utils::burn(stmp,sizeof(stmp));
  426. // Prepare q
  427. _members[memberId].q.clear();
  428. char iv[16];
  429. Utils::getSecureRandom(iv,16);
  430. _members[memberId].q.append(iv,16);
  431. _members[memberId].q.addSize(8); // room for MAC
  432. _members[memberId].q.append((uint16_t)_id);
  433. _members[memberId].q.append((uint16_t)memberId);
  434. }
  435. void Cluster::removeMember(uint16_t memberId)
  436. {
  437. Mutex::Lock _l(_memberIds_m);
  438. std::vector<uint16_t> newMemberIds;
  439. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  440. if (*mid != memberId)
  441. newMemberIds.push_back(*mid);
  442. }
  443. _memberIds = newMemberIds;
  444. }
  445. bool Cluster::redirectPeer(const SharedPtr<Peer> &peer,const InetAddress &peerPhysicalAddress,bool offload)
  446. {
  447. if (!peerPhysicalAddress) // sanity check
  448. return false;
  449. if (_addressToLocationFunction) {
  450. // Pick based on location if it can be determined
  451. int px = 0,py = 0,pz = 0;
  452. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  453. // No geo-info so no change
  454. return false;
  455. }
  456. // Find member closest to this peer
  457. const uint64_t now = RR->node->now();
  458. std::vector<InetAddress> best; // initial "best" is for peer to stay put
  459. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  460. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  461. unsigned int bestMember = _id;
  462. {
  463. Mutex::Lock _l(_memberIds_m);
  464. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  465. _Member &m = _members[*mid];
  466. Mutex::Lock _ml(m.lock);
  467. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  468. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  469. double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  470. if (mdist < bestDistance) {
  471. bestMember = *mid;
  472. best = m.zeroTierPhysicalEndpoints;
  473. }
  474. }
  475. }
  476. }
  477. if (best.size() > 0) {
  478. TRACE("peer %s is at [%d,%d,%d], distance to us is %f, sending to %u instead for better distance %f",peer->address().toString().c_str(),px,py,pz,currentDistance,bestMember,bestDistance);
  479. /* if (peer->remoteVersionProtocol() >= 5) {
  480. // If it's a newer peer send VERB_PUSH_DIRECT_PATHS which is more idiomatic
  481. } else { */
  482. // Otherwise send VERB_RENDEZVOUS for ourselves, which will trick peers into trying other endpoints for us even if they're too old for PUSH_DIRECT_PATHS
  483. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  484. if ((a->ss_family == AF_INET)||(a->ss_family == AF_INET6)) {
  485. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
  486. outp.append((uint8_t)0); // no flags
  487. RR->identity.address().appendTo(outp); // HACK: rendezvous with ourselves! with really old peers this will only work if I'm a root server!
  488. outp.append((uint16_t)a->port());
  489. if (a->ss_family == AF_INET) {
  490. outp.append((uint8_t)4);
  491. outp.append(a->rawIpData(),4);
  492. } else {
  493. outp.append((uint8_t)16);
  494. outp.append(a->rawIpData(),16);
  495. }
  496. RR->sw->send(outp,true,0);
  497. }
  498. }
  499. //}
  500. return true;
  501. } else {
  502. TRACE("peer %s is at [%d,%d,%d], distance to us is %f and this seems to be the best",peer->address().toString().c_str(),px,py,pz,currentDistance);
  503. return false;
  504. }
  505. } else {
  506. // TODO: pick based on load if no location info?
  507. return false;
  508. }
  509. }
  510. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  511. {
  512. _Member &m = _members[memberId];
  513. // assumes m.lock is locked!
  514. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  515. _flush(memberId);
  516. m.q.append((uint16_t)(len + 1));
  517. m.q.append((uint8_t)type);
  518. m.q.append(msg,len);
  519. }
  520. void Cluster::_flush(uint16_t memberId)
  521. {
  522. _Member &m = _members[memberId];
  523. // assumes m.lock is locked!
  524. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  525. // Create key from member's key and IV
  526. char keytmp[32];
  527. memcpy(keytmp,m.key,32);
  528. for(int i=0;i<8;++i)
  529. keytmp[i] ^= m.q[i];
  530. Salsa20 s20(keytmp,256,m.q.field(8,8));
  531. Utils::burn(keytmp,sizeof(keytmp));
  532. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  533. char polykey[ZT_POLY1305_KEY_LEN];
  534. memset(polykey,0,sizeof(polykey));
  535. s20.encrypt12(polykey,polykey,sizeof(polykey));
  536. // Encrypt m.q in place
  537. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  538. // Add MAC for authentication (encrypt-then-MAC)
  539. char mac[ZT_POLY1305_MAC_LEN];
  540. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  541. memcpy(m.q.field(16,8),mac,8);
  542. // Send!
  543. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  544. // Prepare for more
  545. m.q.clear();
  546. char iv[16];
  547. Utils::getSecureRandom(iv,16);
  548. m.q.append(iv,16);
  549. m.q.addSize(8); // room for MAC
  550. m.q.append((uint16_t)_id); // from member ID
  551. m.q.append((uint16_t)memberId); // to member ID
  552. }
  553. }
  554. } // namespace ZeroTier
  555. #endif // ZT_ENABLE_CLUSTER