Switch.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "../version.h"
  33. #include "../include/ZeroTierOne.h"
  34. #include "Constants.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "Switch.hpp"
  37. #include "Node.hpp"
  38. #include "InetAddress.hpp"
  39. #include "Topology.hpp"
  40. #include "Peer.hpp"
  41. #include "CMWC4096.hpp"
  42. #include "AntiRecursion.hpp"
  43. #include "Packet.hpp"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. RR(renv),
  47. _lastBeacon(0)
  48. {
  49. }
  50. Switch::~Switch()
  51. {
  52. }
  53. void Switch::onRemotePacket(const InetAddress &fromAddr,const void *data,unsigned int len)
  54. {
  55. try {
  56. if (len == ZT_PROTO_BEACON_LENGTH) {
  57. _handleBeacon(fromAddr,Buffer<ZT_PROTO_BEACON_LENGTH>(data,len));
  58. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  59. if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  60. _handleRemotePacketFragment(fromAddr,data,len);
  61. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) {
  62. _handleRemotePacketHead(fromAddr,data,len);
  63. }
  64. }
  65. } catch (std::exception &ex) {
  66. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  67. } catch ( ... ) {
  68. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  69. }
  70. }
  71. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  72. {
  73. SharedPtr<NetworkConfig> nconf(network->config2());
  74. if (!nconf)
  75. return;
  76. // Sanity check -- bridge loop? OS problem?
  77. if (to == network->mac())
  78. return;
  79. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  80. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  81. * still happen because Windows likes to send broadcasts over interfaces that have little
  82. * to do with their intended target audience. :P */
  83. if (!RR->antiRec->checkEthernetFrame(data,len)) {
  84. TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len);
  85. return;
  86. }
  87. // Check to make sure this protocol is allowed on this network
  88. if (!nconf->permitsEtherType(etherType)) {
  89. TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  90. return;
  91. }
  92. // Check if this packet is from someone other than the tap -- i.e. bridged in
  93. bool fromBridged = false;
  94. if (from != network->mac()) {
  95. if (!network->permitsBridging(RR->identity.address())) {
  96. TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  97. return;
  98. }
  99. fromBridged = true;
  100. }
  101. if (to.isMulticast()) {
  102. // Destination is a multicast address (including broadcast)
  103. MulticastGroup mg(to,0);
  104. if (to.isBroadcast()) {
  105. if (
  106. (etherType == ZT_ETHERTYPE_ARP)&&
  107. (len >= 28)&&
  108. (
  109. (((const unsigned char *)data)[2] == 0x08)&&
  110. (((const unsigned char *)data)[3] == 0x00)&&
  111. (((const unsigned char *)data)[4] == 6)&&
  112. (((const unsigned char *)data)[5] == 4)&&
  113. (((const unsigned char *)data)[7] == 0x01)
  114. )
  115. ) {
  116. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  117. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  118. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  119. } else if (!nconf->enableBroadcast()) {
  120. // Don't transmit broadcasts if this network doesn't want them
  121. TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
  122. return;
  123. }
  124. }
  125. /* Learn multicast groups for bridged-in hosts.
  126. * Note that some OSes, most notably Linux, do this for you by learning
  127. * multicast addresses on bridge interfaces and subscribing each slave.
  128. * But in that case this does no harm, as the sets are just merged. */
  129. if (fromBridged)
  130. network->learnBridgedMulticastGroup(mg,RR->node->now());
  131. //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
  132. RR->mc->send(
  133. ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
  134. nconf->multicastLimit(),
  135. RR->node->now(),
  136. network->id(),
  137. nconf->activeBridges(),
  138. mg,
  139. (fromBridged) ? from : MAC(),
  140. etherType,
  141. data,
  142. len);
  143. return;
  144. }
  145. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  146. // Destination is another ZeroTier peer on the same network
  147. Address toZT(to.toAddress(network->id()));
  148. if (network->isAllowed(toZT)) {
  149. const bool includeCom = network->peerNeedsOurMembershipCertificate(toZT,RR->node->now());
  150. /*
  151. if (network->peerNeedsOurMembershipCertificate(toZT,RR->node->now())) {
  152. // TODO: once there are no more <1.0.0 nodes around, we can
  153. // bundle this with EXT_FRAME instead of sending two packets.
  154. Packet outp(toZT,RR->identity.address(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE);
  155. nconf->com().serialize(outp);
  156. send(outp,true,network->id());
  157. }
  158. */
  159. if ((fromBridged)||(includeCom)) {
  160. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  161. outp.append(network->id());
  162. if (includeCom) {
  163. outp.append((unsigned char)0x01); // 0x01 -- COM included
  164. nconf->com().serialize(outp);
  165. } else {
  166. outp.append((unsigned char)0x00);
  167. }
  168. to.appendTo(outp);
  169. from.appendTo(outp);
  170. outp.append((uint16_t)etherType);
  171. outp.append(data,len);
  172. outp.compress();
  173. send(outp,true,network->id());
  174. } else {
  175. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  176. outp.append(network->id());
  177. outp.append((uint16_t)etherType);
  178. outp.append(data,len);
  179. outp.compress();
  180. send(outp,true,network->id());
  181. }
  182. //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom);
  183. } else {
  184. TRACE("%.16llx: UNICAST: %s -> %s etherType==%s dropped, destination not a member of private network",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  185. }
  186. return;
  187. }
  188. {
  189. // Destination is bridged behind a remote peer
  190. Address bridges[ZT_MAX_BRIDGE_SPAM];
  191. unsigned int numBridges = 0;
  192. bridges[0] = network->findBridgeTo(to);
  193. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) {
  194. // We have a known bridge route for this MAC.
  195. ++numBridges;
  196. } else if (!nconf->activeBridges().empty()) {
  197. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  198. * bridges. This is similar to what many switches do -- if they do not
  199. * know which port corresponds to a MAC, they send it to all ports. If
  200. * there aren't any active bridges, numBridges will stay 0 and packet
  201. * is dropped. */
  202. std::vector<Address>::const_iterator ab(nconf->activeBridges().begin());
  203. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  204. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  205. while (ab != nconf->activeBridges().end()) {
  206. if (network->isAllowed(*ab)) // config sanity check
  207. bridges[numBridges++] = *ab;
  208. ++ab;
  209. }
  210. } else {
  211. // Otherwise pick a random set of them
  212. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  213. if (ab == nconf->activeBridges().end())
  214. ab = nconf->activeBridges().begin();
  215. if (((unsigned long)RR->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
  216. if (network->isAllowed(*ab)) // config sanity check
  217. bridges[numBridges++] = *ab;
  218. ++ab;
  219. } else ++ab;
  220. }
  221. }
  222. }
  223. for(unsigned int b=0;b<numBridges;++b) {
  224. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  225. outp.append(network->id());
  226. outp.append((unsigned char)0);
  227. to.appendTo(outp);
  228. from.appendTo(outp);
  229. outp.append((uint16_t)etherType);
  230. outp.append(data,len);
  231. outp.compress();
  232. send(outp,true,network->id());
  233. }
  234. }
  235. }
  236. void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid)
  237. {
  238. if (packet.destination() == RR->identity.address()) {
  239. TRACE("BUG: caught attempt to send() to self, ignored");
  240. return;
  241. }
  242. if (!_trySend(packet,encrypt,nwid)) {
  243. Mutex::Lock _l(_txQueue_m);
  244. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(RR->node->now(),packet,encrypt,nwid)));
  245. }
  246. }
  247. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  248. {
  249. if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
  250. return false;
  251. SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
  252. if (!p1p)
  253. return false;
  254. SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
  255. if (!p2p)
  256. return false;
  257. const uint64_t now = RR->node->now();
  258. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  259. if (!(cg.first))
  260. return false;
  261. if (cg.first.ipScope() != cg.second.ipScope())
  262. return false;
  263. // Addresses are sorted in key for last unite attempt map for order
  264. // invariant lookup: (p1,p2) == (p2,p1)
  265. Array<Address,2> uniteKey;
  266. if (p1 >= p2) {
  267. uniteKey[0] = p2;
  268. uniteKey[1] = p1;
  269. } else {
  270. uniteKey[0] = p1;
  271. uniteKey[1] = p2;
  272. }
  273. {
  274. Mutex::Lock _l(_lastUniteAttempt_m);
  275. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  276. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  277. return false;
  278. else _lastUniteAttempt[uniteKey] = now;
  279. }
  280. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  281. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  282. * P2 in randomized order in terms of which gets sent first. This is done
  283. * since in a few cases NAT-t can be sensitive to slight timing differences
  284. * in terms of when the two peers initiate. Normally this is accounted for
  285. * by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
  286. * given that relay are hosted on cloud providers this can in some
  287. * cases have a few ms of latency between packet departures. By randomizing
  288. * the order we make each attempted NAT-t favor one or the other going
  289. * first, meaning if it doesn't succeed the first time it might the second
  290. * and so forth. */
  291. unsigned int alt = RR->prng->next32() & 1;
  292. unsigned int completed = alt + 2;
  293. while (alt != completed) {
  294. if ((alt & 1) == 0) {
  295. // Tell p1 where to find p2.
  296. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  297. outp.append((unsigned char)0);
  298. p2.appendTo(outp);
  299. outp.append((uint16_t)cg.first.port());
  300. if (cg.first.isV6()) {
  301. outp.append((unsigned char)16);
  302. outp.append(cg.first.rawIpData(),16);
  303. } else {
  304. outp.append((unsigned char)4);
  305. outp.append(cg.first.rawIpData(),4);
  306. }
  307. outp.armor(p1p->key(),true);
  308. p1p->send(RR,outp.data(),outp.size(),now);
  309. } else {
  310. // Tell p2 where to find p1.
  311. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  312. outp.append((unsigned char)0);
  313. p1.appendTo(outp);
  314. outp.append((uint16_t)cg.second.port());
  315. if (cg.second.isV6()) {
  316. outp.append((unsigned char)16);
  317. outp.append(cg.second.rawIpData(),16);
  318. } else {
  319. outp.append((unsigned char)4);
  320. outp.append(cg.second.rawIpData(),4);
  321. }
  322. outp.armor(p2p->key(),true);
  323. p2p->send(RR,outp.data(),outp.size(),now);
  324. }
  325. ++alt; // counts up and also flips LSB
  326. }
  327. return true;
  328. }
  329. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  330. {
  331. TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
  332. const uint64_t now = RR->node->now();
  333. // Attempt to contact directly
  334. peer->attemptToContactAt(RR,atAddr,now);
  335. // If we have not punched through after this timeout, open refreshing can of whupass
  336. {
  337. Mutex::Lock _l(_contactQueue_m);
  338. _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,atAddr));
  339. }
  340. }
  341. void Switch::requestWhois(const Address &addr)
  342. {
  343. bool inserted = false;
  344. {
  345. Mutex::Lock _l(_outstandingWhoisRequests_m);
  346. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  347. if ((inserted = entry.second))
  348. entry.first->second.lastSent = RR->node->now();
  349. entry.first->second.retries = 0; // reset retry count if entry already existed
  350. }
  351. if (inserted)
  352. _sendWhoisRequest(addr,(const Address *)0,0);
  353. }
  354. void Switch::cancelWhoisRequest(const Address &addr)
  355. {
  356. Mutex::Lock _l(_outstandingWhoisRequests_m);
  357. _outstandingWhoisRequests.erase(addr);
  358. }
  359. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  360. {
  361. { // cancel pending WHOIS since we now know this peer
  362. Mutex::Lock _l(_outstandingWhoisRequests_m);
  363. _outstandingWhoisRequests.erase(peer->address());
  364. }
  365. { // finish processing any packets waiting on peer's public key / identity
  366. Mutex::Lock _l(_rxQueue_m);
  367. for(std::list< SharedPtr<IncomingPacket> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  368. if ((*rxi)->tryDecode(RR))
  369. _rxQueue.erase(rxi++);
  370. else ++rxi;
  371. }
  372. }
  373. { // finish sending any packets waiting on peer's public key / identity
  374. Mutex::Lock _l(_txQueue_m);
  375. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  376. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  377. if (_trySend(txi->second.packet,txi->second.encrypt,txi->second.nwid))
  378. _txQueue.erase(txi++);
  379. else ++txi;
  380. }
  381. }
  382. }
  383. unsigned long Switch::doTimerTasks(uint64_t now)
  384. {
  385. unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
  386. { // Aggressive NAT traversal time!
  387. Mutex::Lock _l(_contactQueue_m);
  388. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  389. if (now >= qi->fireAtTime) {
  390. if (qi->peer->hasActiveDirectPath(now)) {
  391. // We've successfully NAT-t'd, so cancel attempt
  392. _contactQueue.erase(qi++);
  393. continue;
  394. } else {
  395. // Nope, nothing yet. Time to kill some kittens.
  396. if (qi->strategyIteration == 0) {
  397. // First strategy: send packet directly (we already tried this but try again)
  398. qi->peer->attemptToContactAt(RR,qi->inaddr,now);
  399. } else if (qi->strategyIteration <= 9) {
  400. // Strategies 1-9: try escalating ports
  401. InetAddress tmpaddr(qi->inaddr);
  402. int p = (int)qi->inaddr.port() + qi->strategyIteration;
  403. if (p < 0xffff) {
  404. tmpaddr.setPort((unsigned int)p);
  405. qi->peer->attemptToContactAt(RR,tmpaddr,now);
  406. } else qi->strategyIteration = 9;
  407. } else if (qi->strategyIteration <= 18) {
  408. // Strategies 10-18: try ports below
  409. InetAddress tmpaddr(qi->inaddr);
  410. int p = (int)qi->inaddr.port() - (qi->strategyIteration - 9);
  411. if (p >= 1024) {
  412. tmpaddr.setPort((unsigned int)p);
  413. qi->peer->attemptToContactAt(RR,tmpaddr,now);
  414. } else qi->strategyIteration = 18;
  415. } else {
  416. // All strategies tried, expire entry
  417. _contactQueue.erase(qi++);
  418. continue;
  419. }
  420. ++qi->strategyIteration;
  421. qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
  422. nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
  423. }
  424. } else {
  425. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  426. }
  427. ++qi; // if qi was erased, loop will have continued before here
  428. }
  429. }
  430. { // Retry outstanding WHOIS requests
  431. Mutex::Lock _l(_outstandingWhoisRequests_m);
  432. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  433. unsigned long since = (unsigned long)(now - i->second.lastSent);
  434. if (since >= ZT_WHOIS_RETRY_DELAY) {
  435. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  436. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  437. _outstandingWhoisRequests.erase(i++);
  438. continue;
  439. } else {
  440. i->second.lastSent = now;
  441. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  442. ++i->second.retries;
  443. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  444. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  445. }
  446. } else {
  447. nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  448. }
  449. ++i;
  450. }
  451. }
  452. { // Time out TX queue packets that never got WHOIS lookups or other info.
  453. Mutex::Lock _l(_txQueue_m);
  454. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  455. if (_trySend(i->second.packet,i->second.encrypt,i->second.nwid))
  456. _txQueue.erase(i++);
  457. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  458. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  459. _txQueue.erase(i++);
  460. } else ++i;
  461. }
  462. }
  463. { // Time out RX queue packets that never got WHOIS lookups or other info.
  464. Mutex::Lock _l(_rxQueue_m);
  465. for(std::list< SharedPtr<IncomingPacket> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  466. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  467. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  468. _rxQueue.erase(i++);
  469. } else ++i;
  470. }
  471. }
  472. { // Time out packets that didn't get all their fragments.
  473. Mutex::Lock _l(_defragQueue_m);
  474. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  475. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  476. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  477. _defragQueue.erase(i++);
  478. } else ++i;
  479. }
  480. }
  481. return nextDelay;
  482. }
  483. const char *Switch::etherTypeName(const unsigned int etherType)
  484. throw()
  485. {
  486. switch(etherType) {
  487. case ZT_ETHERTYPE_IPV4: return "IPV4";
  488. case ZT_ETHERTYPE_ARP: return "ARP";
  489. case ZT_ETHERTYPE_RARP: return "RARP";
  490. case ZT_ETHERTYPE_ATALK: return "ATALK";
  491. case ZT_ETHERTYPE_AARP: return "AARP";
  492. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  493. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  494. case ZT_ETHERTYPE_IPV6: return "IPV6";
  495. }
  496. return "UNKNOWN";
  497. }
  498. void Switch::_handleRemotePacketFragment(const InetAddress &fromAddr,const void *data,unsigned int len)
  499. {
  500. Packet::Fragment fragment(data,len);
  501. Address destination(fragment.destination());
  502. if (destination != RR->identity.address()) {
  503. // Fragment is not for us, so try to relay it
  504. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  505. fragment.incrementHops();
  506. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  507. // It wouldn't hurt anything, just redundant and unnecessary.
  508. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  509. if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
  510. // Don't know peer or no direct path -- so relay via root server
  511. relayTo = RR->topology->getBestRoot();
  512. if (relayTo)
  513. relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
  514. }
  515. } else {
  516. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  517. }
  518. } else {
  519. // Fragment looks like ours
  520. uint64_t pid = fragment.packetId();
  521. unsigned int fno = fragment.fragmentNumber();
  522. unsigned int tf = fragment.totalFragments();
  523. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  524. // Fragment appears basically sane. Its fragment number must be
  525. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  526. // Total fragments must be more than 1, otherwise why are we
  527. // seeing a Packet::Fragment?
  528. Mutex::Lock _l(_defragQueue_m);
  529. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  530. if (dqe == _defragQueue.end()) {
  531. // We received a Packet::Fragment without its head, so queue it and wait
  532. DefragQueueEntry &dq = _defragQueue[pid];
  533. dq.creationTime = RR->node->now();
  534. dq.frags[fno - 1] = fragment;
  535. dq.totalFragments = tf; // total fragment count is known
  536. dq.haveFragments = 1 << fno; // we have only this fragment
  537. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  538. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  539. // We have other fragments and maybe the head, so add this one and check
  540. dqe->second.frags[fno - 1] = fragment;
  541. dqe->second.totalFragments = tf;
  542. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  543. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  544. // We have all fragments -- assemble and process full Packet
  545. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  546. SharedPtr<IncomingPacket> packet(dqe->second.frag0);
  547. for(unsigned int f=1;f<tf;++f)
  548. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  549. _defragQueue.erase(dqe);
  550. if (!packet->tryDecode(RR)) {
  551. Mutex::Lock _l(_rxQueue_m);
  552. _rxQueue.push_back(packet);
  553. }
  554. }
  555. } // else this is a duplicate fragment, ignore
  556. }
  557. }
  558. }
  559. void Switch::_handleRemotePacketHead(const InetAddress &fromAddr,const void *data,unsigned int len)
  560. {
  561. SharedPtr<IncomingPacket> packet(new IncomingPacket(data,len,fromAddr,RR->node->now()));
  562. Address source(packet->source());
  563. Address destination(packet->destination());
  564. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  565. if (destination != RR->identity.address()) {
  566. // Packet is not for us, so try to relay it
  567. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  568. packet->incrementHops();
  569. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  570. if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
  571. unite(source,destination,false);
  572. } else {
  573. // Don't know peer or no direct path -- so relay via root server
  574. relayTo = RR->topology->getBestRoot(&source,1,true);
  575. if (relayTo)
  576. relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
  577. }
  578. } else {
  579. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  580. }
  581. } else if (packet->fragmented()) {
  582. // Packet is the head of a fragmented packet series
  583. uint64_t pid = packet->packetId();
  584. Mutex::Lock _l(_defragQueue_m);
  585. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  586. if (dqe == _defragQueue.end()) {
  587. // If we have no other fragments yet, create an entry and save the head
  588. DefragQueueEntry &dq = _defragQueue[pid];
  589. dq.creationTime = RR->node->now();
  590. dq.frag0 = packet;
  591. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  592. dq.haveFragments = 1; // head is first bit (left to right)
  593. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  594. } else if (!(dqe->second.haveFragments & 1)) {
  595. // If we have other fragments but no head, see if we are complete with the head
  596. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  597. // We have all fragments -- assemble and process full Packet
  598. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  599. // packet already contains head, so append fragments
  600. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  601. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  602. _defragQueue.erase(dqe);
  603. if (!packet->tryDecode(RR)) {
  604. Mutex::Lock _l(_rxQueue_m);
  605. _rxQueue.push_back(packet);
  606. }
  607. } else {
  608. // Still waiting on more fragments, so queue the head
  609. dqe->second.frag0 = packet;
  610. }
  611. } // else this is a duplicate head, ignore
  612. } else {
  613. // Packet is unfragmented, so just process it
  614. if (!packet->tryDecode(RR)) {
  615. Mutex::Lock _l(_rxQueue_m);
  616. _rxQueue.push_back(packet);
  617. }
  618. }
  619. }
  620. void Switch::_handleBeacon(const InetAddress &fromAddr,const Buffer<ZT_PROTO_BEACON_LENGTH> &data)
  621. {
  622. Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  623. if (beaconAddr == RR->identity.address())
  624. return;
  625. SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
  626. if (peer) {
  627. const uint64_t now = RR->node->now();
  628. if ((now - _lastBeacon) >= ZT_MIN_BEACON_RESPONSE_INTERVAL) {
  629. _lastBeacon = now;
  630. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  631. outp.armor(peer->key(),false);
  632. RR->node->putPacket(fromAddr,outp.data(),outp.size());
  633. }
  634. }
  635. }
  636. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  637. {
  638. SharedPtr<Peer> root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  639. if (root) {
  640. Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS);
  641. addr.appendTo(outp);
  642. outp.armor(root->key(),true);
  643. if (root->send(RR,outp.data(),outp.size(),RR->node->now()))
  644. return root->address();
  645. }
  646. return Address();
  647. }
  648. bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
  649. {
  650. SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
  651. if (peer) {
  652. const uint64_t now = RR->node->now();
  653. Path *viaPath = peer->getBestPath(now);
  654. if (!viaPath) {
  655. SharedPtr<Peer> relay;
  656. if (nwid) {
  657. SharedPtr<Network> network(RR->node->network(nwid));
  658. if (network) {
  659. SharedPtr<NetworkConfig> nconf(network->config2());
  660. if (nconf) {
  661. unsigned int latency = ~((unsigned int)0);
  662. for(std::vector< std::pair<Address,InetAddress> >::const_iterator r(nconf->relays().begin());r!=nconf->relays().end();++r) {
  663. if (r->first != peer->address()) {
  664. SharedPtr<Peer> rp(RR->topology->getPeer(r->first));
  665. if ((rp)&&(rp->hasActiveDirectPath(now))&&(rp->latency() <= latency))
  666. rp.swap(relay);
  667. }
  668. }
  669. }
  670. }
  671. }
  672. if (!relay)
  673. relay = RR->topology->getBestRoot();
  674. if (!(relay)||(!(viaPath = relay->getBestPath(now))))
  675. return false;
  676. }
  677. Packet tmp(packet);
  678. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  679. tmp.setFragmented(chunkSize < tmp.size());
  680. tmp.armor(peer->key(),encrypt);
  681. if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
  682. if (chunkSize < tmp.size()) {
  683. // Too big for one bite, fragment the rest
  684. unsigned int fragStart = chunkSize;
  685. unsigned int remaining = tmp.size() - chunkSize;
  686. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  687. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  688. ++fragsRemaining;
  689. unsigned int totalFragments = fragsRemaining + 1;
  690. for(unsigned int fno=1;fno<totalFragments;++fno) {
  691. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  692. Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
  693. viaPath->send(RR,frag.data(),frag.size(),now);
  694. fragStart += chunkSize;
  695. remaining -= chunkSize;
  696. }
  697. }
  698. return true;
  699. }
  700. } else {
  701. requestWhois(packet.destination());
  702. }
  703. return false;
  704. }
  705. } // namespace ZeroTier