Switch.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "../version.h"
  33. #include "../include/ZeroTierOne.h"
  34. #include "Constants.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "Switch.hpp"
  37. #include "Node.hpp"
  38. #include "InetAddress.hpp"
  39. #include "Topology.hpp"
  40. #include "Peer.hpp"
  41. #include "AntiRecursion.hpp"
  42. #include "SelfAwareness.hpp"
  43. #include "Packet.hpp"
  44. namespace ZeroTier {
  45. #ifdef ZT_TRACE
  46. static const char *etherTypeName(const unsigned int etherType)
  47. {
  48. switch(etherType) {
  49. case ZT_ETHERTYPE_IPV4: return "IPV4";
  50. case ZT_ETHERTYPE_ARP: return "ARP";
  51. case ZT_ETHERTYPE_RARP: return "RARP";
  52. case ZT_ETHERTYPE_ATALK: return "ATALK";
  53. case ZT_ETHERTYPE_AARP: return "AARP";
  54. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  55. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  56. case ZT_ETHERTYPE_IPV6: return "IPV6";
  57. }
  58. return "UNKNOWN";
  59. }
  60. #endif // ZT_TRACE
  61. Switch::Switch(const RuntimeEnvironment *renv) :
  62. RR(renv),
  63. _lastBeaconResponse(0),
  64. _outstandingWhoisRequests(32),
  65. _defragQueue(32),
  66. _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine
  67. {
  68. }
  69. Switch::~Switch()
  70. {
  71. }
  72. void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len)
  73. {
  74. try {
  75. if (len == 13) {
  76. /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
  77. * announcements on the LAN to solve the 'same network problem.' We
  78. * no longer send these, but we'll listen for them for a while to
  79. * locate peers with versions <1.0.4. */
  80. Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
  81. if (beaconAddr == RR->identity.address())
  82. return;
  83. SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
  84. if (peer) { // we'll only respond to beacons from known peers
  85. const uint64_t now = RR->node->now();
  86. if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses
  87. _lastBeaconResponse = now;
  88. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  89. outp.armor(peer->key(),false);
  90. RR->node->putPacket(localAddr,fromAddr,outp.data(),outp.size());
  91. }
  92. }
  93. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  94. if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  95. _handleRemotePacketFragment(localAddr,fromAddr,data,len);
  96. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) {
  97. _handleRemotePacketHead(localAddr,fromAddr,data,len);
  98. }
  99. }
  100. } catch (std::exception &ex) {
  101. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  102. } catch ( ... ) {
  103. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  104. }
  105. }
  106. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  107. {
  108. SharedPtr<NetworkConfig> nconf(network->config2());
  109. if (!nconf)
  110. return;
  111. // Sanity check -- bridge loop? OS problem?
  112. if (to == network->mac())
  113. return;
  114. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  115. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  116. * still happen because Windows likes to send broadcasts over interfaces that have little
  117. * to do with their intended target audience. :P */
  118. if (!RR->antiRec->checkEthernetFrame(data,len)) {
  119. TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len);
  120. return;
  121. }
  122. // Check to make sure this protocol is allowed on this network
  123. if (!nconf->permitsEtherType(etherType)) {
  124. TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  125. return;
  126. }
  127. // Check if this packet is from someone other than the tap -- i.e. bridged in
  128. bool fromBridged = false;
  129. if (from != network->mac()) {
  130. if (!network->permitsBridging(RR->identity.address())) {
  131. TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  132. return;
  133. }
  134. fromBridged = true;
  135. }
  136. if (to.isMulticast()) {
  137. // Destination is a multicast address (including broadcast)
  138. MulticastGroup mg(to,0);
  139. if (to.isBroadcast()) {
  140. if (
  141. (etherType == ZT_ETHERTYPE_ARP)&&
  142. (len >= 28)&&
  143. (
  144. (((const unsigned char *)data)[2] == 0x08)&&
  145. (((const unsigned char *)data)[3] == 0x00)&&
  146. (((const unsigned char *)data)[4] == 6)&&
  147. (((const unsigned char *)data)[5] == 4)&&
  148. (((const unsigned char *)data)[7] == 0x01)
  149. )
  150. ) {
  151. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  152. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  153. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  154. } else if (!nconf->enableBroadcast()) {
  155. // Don't transmit broadcasts if this network doesn't want them
  156. TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
  157. return;
  158. }
  159. }
  160. /* Learn multicast groups for bridged-in hosts.
  161. * Note that some OSes, most notably Linux, do this for you by learning
  162. * multicast addresses on bridge interfaces and subscribing each slave.
  163. * But in that case this does no harm, as the sets are just merged. */
  164. if (fromBridged)
  165. network->learnBridgedMulticastGroup(mg,RR->node->now());
  166. //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
  167. RR->mc->send(
  168. ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
  169. nconf->multicastLimit(),
  170. RR->node->now(),
  171. network->id(),
  172. nconf->activeBridges(),
  173. mg,
  174. (fromBridged) ? from : MAC(),
  175. etherType,
  176. data,
  177. len);
  178. return;
  179. }
  180. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  181. // Destination is another ZeroTier peer on the same network
  182. Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
  183. SharedPtr<Peer> toPeer(RR->topology->getPeer(toZT));
  184. const bool includeCom = ( (nconf->isPrivate()) && (nconf->com()) && ((!toPeer)||(toPeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) );
  185. if ((fromBridged)||(includeCom)) {
  186. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  187. outp.append(network->id());
  188. if (includeCom) {
  189. outp.append((unsigned char)0x01); // 0x01 -- COM included
  190. nconf->com().serialize(outp);
  191. } else {
  192. outp.append((unsigned char)0x00);
  193. }
  194. to.appendTo(outp);
  195. from.appendTo(outp);
  196. outp.append((uint16_t)etherType);
  197. outp.append(data,len);
  198. outp.compress();
  199. send(outp,true,network->id());
  200. } else {
  201. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  202. outp.append(network->id());
  203. outp.append((uint16_t)etherType);
  204. outp.append(data,len);
  205. outp.compress();
  206. send(outp,true,network->id());
  207. }
  208. //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom);
  209. return;
  210. }
  211. {
  212. // Destination is bridged behind a remote peer
  213. Address bridges[ZT_MAX_BRIDGE_SPAM];
  214. unsigned int numBridges = 0;
  215. /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
  216. bridges[0] = network->findBridgeTo(to);
  217. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->permitsBridging(bridges[0]))) {
  218. /* We have a known bridge route for this MAC, send it there. */
  219. ++numBridges;
  220. } else if (!nconf->activeBridges().empty()) {
  221. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  222. * bridges. If someone responds, we'll learn the route. */
  223. std::vector<Address>::const_iterator ab(nconf->activeBridges().begin());
  224. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  225. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  226. while (ab != nconf->activeBridges().end()) {
  227. bridges[numBridges++] = *ab;
  228. ++ab;
  229. }
  230. } else {
  231. // Otherwise pick a random set of them
  232. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  233. if (ab == nconf->activeBridges().end())
  234. ab = nconf->activeBridges().begin();
  235. if (((unsigned long)RR->node->prng() % (unsigned long)nconf->activeBridges().size()) == 0) {
  236. bridges[numBridges++] = *ab;
  237. ++ab;
  238. } else ++ab;
  239. }
  240. }
  241. }
  242. for(unsigned int b=0;b<numBridges;++b) {
  243. SharedPtr<Peer> bridgePeer(RR->topology->getPeer(bridges[b]));
  244. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  245. outp.append(network->id());
  246. if ( (nconf->isPrivate()) && (nconf->com()) && ((!bridgePeer)||(bridgePeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) ) {
  247. outp.append((unsigned char)0x01); // 0x01 -- COM included
  248. nconf->com().serialize(outp);
  249. } else {
  250. outp.append((unsigned char)0);
  251. }
  252. to.appendTo(outp);
  253. from.appendTo(outp);
  254. outp.append((uint16_t)etherType);
  255. outp.append(data,len);
  256. outp.compress();
  257. send(outp,true,network->id());
  258. }
  259. }
  260. }
  261. void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid)
  262. {
  263. if (packet.destination() == RR->identity.address()) {
  264. TRACE("BUG: caught attempt to send() to self, ignored");
  265. return;
  266. }
  267. if (!_trySend(packet,encrypt,nwid)) {
  268. Mutex::Lock _l(_txQueue_m);
  269. _txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt,nwid));
  270. }
  271. }
  272. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  273. {
  274. if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
  275. return false;
  276. SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
  277. if (!p1p)
  278. return false;
  279. SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
  280. if (!p2p)
  281. return false;
  282. const uint64_t now = RR->node->now();
  283. {
  284. Mutex::Lock _l(_lastUniteAttempt_m);
  285. uint64_t &luts = _lastUniteAttempt[_LastUniteKey(p1,p2)];
  286. if (((now - luts) < ZT_MIN_UNITE_INTERVAL)&&(!force))
  287. return false;
  288. luts = now;
  289. }
  290. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  291. if ((!(cg.first))||(cg.first.ipScope() != cg.second.ipScope()))
  292. return false;
  293. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  294. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  295. * P2 in randomized order in terms of which gets sent first. This is done
  296. * since in a few cases NAT-t can be sensitive to slight timing differences
  297. * in terms of when the two peers initiate. Normally this is accounted for
  298. * by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
  299. * given that relay are hosted on cloud providers this can in some
  300. * cases have a few ms of latency between packet departures. By randomizing
  301. * the order we make each attempted NAT-t favor one or the other going
  302. * first, meaning if it doesn't succeed the first time it might the second
  303. * and so forth. */
  304. unsigned int alt = (unsigned int)RR->node->prng() & 1;
  305. unsigned int completed = alt + 2;
  306. while (alt != completed) {
  307. if ((alt & 1) == 0) {
  308. // Tell p1 where to find p2.
  309. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  310. outp.append((unsigned char)0);
  311. p2.appendTo(outp);
  312. outp.append((uint16_t)cg.first.port());
  313. if (cg.first.isV6()) {
  314. outp.append((unsigned char)16);
  315. outp.append(cg.first.rawIpData(),16);
  316. } else {
  317. outp.append((unsigned char)4);
  318. outp.append(cg.first.rawIpData(),4);
  319. }
  320. outp.armor(p1p->key(),true);
  321. p1p->send(RR,outp.data(),outp.size(),now);
  322. } else {
  323. // Tell p2 where to find p1.
  324. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  325. outp.append((unsigned char)0);
  326. p1.appendTo(outp);
  327. outp.append((uint16_t)cg.second.port());
  328. if (cg.second.isV6()) {
  329. outp.append((unsigned char)16);
  330. outp.append(cg.second.rawIpData(),16);
  331. } else {
  332. outp.append((unsigned char)4);
  333. outp.append(cg.second.rawIpData(),4);
  334. }
  335. outp.armor(p2p->key(),true);
  336. p2p->send(RR,outp.data(),outp.size(),now);
  337. }
  338. ++alt; // counts up and also flips LSB
  339. }
  340. return true;
  341. }
  342. void Switch::rendezvous(const SharedPtr<Peer> &peer,const InetAddress &localAddr,const InetAddress &atAddr)
  343. {
  344. TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
  345. const uint64_t now = RR->node->now();
  346. peer->attemptToContactAt(RR,localAddr,atAddr,now);
  347. {
  348. Mutex::Lock _l(_contactQueue_m);
  349. _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,localAddr,atAddr));
  350. }
  351. }
  352. void Switch::requestWhois(const Address &addr)
  353. {
  354. bool inserted = false;
  355. {
  356. Mutex::Lock _l(_outstandingWhoisRequests_m);
  357. WhoisRequest &r = _outstandingWhoisRequests[addr];
  358. if (r.lastSent) {
  359. r.retries = 0; // reset retry count if entry already existed, but keep waiting and retry again after normal timeout
  360. } else {
  361. r.lastSent = RR->node->now();
  362. inserted = true;
  363. }
  364. }
  365. if (inserted)
  366. _sendWhoisRequest(addr,(const Address *)0,0);
  367. }
  368. void Switch::cancelWhoisRequest(const Address &addr)
  369. {
  370. Mutex::Lock _l(_outstandingWhoisRequests_m);
  371. _outstandingWhoisRequests.erase(addr);
  372. }
  373. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  374. {
  375. { // cancel pending WHOIS since we now know this peer
  376. Mutex::Lock _l(_outstandingWhoisRequests_m);
  377. _outstandingWhoisRequests.erase(peer->address());
  378. }
  379. { // finish processing any packets waiting on peer's public key / identity
  380. Mutex::Lock _l(_rxQueue_m);
  381. for(std::list< SharedPtr<IncomingPacket> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  382. if ((*rxi)->tryDecode(RR))
  383. _rxQueue.erase(rxi++);
  384. else ++rxi;
  385. }
  386. }
  387. { // finish sending any packets waiting on peer's public key / identity
  388. Mutex::Lock _l(_txQueue_m);
  389. for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
  390. if (txi->dest == peer->address()) {
  391. if (_trySend(txi->packet,txi->encrypt,txi->nwid))
  392. _txQueue.erase(txi++);
  393. else ++txi;
  394. } else ++txi;
  395. }
  396. }
  397. }
  398. unsigned long Switch::doTimerTasks(uint64_t now)
  399. {
  400. unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
  401. { // Iterate through NAT traversal strategies for entries in contact queue
  402. Mutex::Lock _l(_contactQueue_m);
  403. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  404. if (now >= qi->fireAtTime) {
  405. if ((!qi->peer->alive(now))||(qi->peer->hasActiveDirectPath(now))) {
  406. // Cancel attempt if we've already connected or peer is no longer "alive"
  407. _contactQueue.erase(qi++);
  408. continue;
  409. } else {
  410. if (qi->strategyIteration == 0) {
  411. // First strategy: send packet directly to destination
  412. qi->peer->attemptToContactAt(RR,qi->localAddr,qi->inaddr,now);
  413. } else if (qi->strategyIteration <= 4) {
  414. // Strategies 1-4: try escalating ports for symmetric NATs that remap sequentially
  415. InetAddress tmpaddr(qi->inaddr);
  416. int p = (int)qi->inaddr.port() + qi->strategyIteration;
  417. if (p < 0xffff) {
  418. tmpaddr.setPort((unsigned int)p);
  419. qi->peer->attemptToContactAt(RR,qi->localAddr,tmpaddr,now);
  420. } else qi->strategyIteration = 5;
  421. } else {
  422. // All strategies tried, expire entry
  423. _contactQueue.erase(qi++);
  424. continue;
  425. }
  426. ++qi->strategyIteration;
  427. qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
  428. nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
  429. }
  430. } else {
  431. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  432. }
  433. ++qi; // if qi was erased, loop will have continued before here
  434. }
  435. }
  436. { // Retry outstanding WHOIS requests
  437. Mutex::Lock _l(_outstandingWhoisRequests_m);
  438. Hashtable< Address,WhoisRequest >::Iterator i(_outstandingWhoisRequests);
  439. Address *a = (Address *)0;
  440. WhoisRequest *r = (WhoisRequest *)0;
  441. while (i.next(a,r)) {
  442. const unsigned long since = (unsigned long)(now - r->lastSent);
  443. if (since >= ZT_WHOIS_RETRY_DELAY) {
  444. if (r->retries >= ZT_MAX_WHOIS_RETRIES) {
  445. TRACE("WHOIS %s timed out",a->toString().c_str());
  446. _outstandingWhoisRequests.erase(*a);
  447. } else {
  448. r->lastSent = now;
  449. r->peersConsulted[r->retries] = _sendWhoisRequest(*a,r->peersConsulted,r->retries);
  450. ++r->retries;
  451. TRACE("WHOIS %s (retry %u)",a->toString().c_str(),r->retries);
  452. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  453. }
  454. } else {
  455. nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  456. }
  457. }
  458. }
  459. { // Time out TX queue packets that never got WHOIS lookups or other info.
  460. Mutex::Lock _l(_txQueue_m);
  461. for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
  462. if (_trySend(txi->packet,txi->encrypt,txi->nwid))
  463. _txQueue.erase(txi++);
  464. else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  465. TRACE("TX %s -> %s timed out",txi->packet.source().toString().c_str(),txi->packet.destination().toString().c_str());
  466. _txQueue.erase(txi++);
  467. } else ++txi;
  468. }
  469. }
  470. { // Time out RX queue packets that never got WHOIS lookups or other info.
  471. Mutex::Lock _l(_rxQueue_m);
  472. for(std::list< SharedPtr<IncomingPacket> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  473. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  474. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  475. _rxQueue.erase(i++);
  476. } else ++i;
  477. }
  478. }
  479. { // Time out packets that didn't get all their fragments.
  480. Mutex::Lock _l(_defragQueue_m);
  481. Hashtable< uint64_t,DefragQueueEntry >::Iterator i(_defragQueue);
  482. uint64_t *packetId = (uint64_t *)0;
  483. DefragQueueEntry *qe = (DefragQueueEntry *)0;
  484. while (i.next(packetId,qe)) {
  485. if ((now - qe->creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  486. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",*packetId);
  487. _defragQueue.erase(*packetId);
  488. }
  489. }
  490. }
  491. { // Remove really old last unite attempt entries to keep table size controlled
  492. Mutex::Lock _l(_lastUniteAttempt_m);
  493. Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt);
  494. _LastUniteKey *k = (_LastUniteKey *)0;
  495. uint64_t *v = (uint64_t *)0;
  496. while (i.next(k,v)) {
  497. if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 16))
  498. _lastUniteAttempt.erase(*k);
  499. }
  500. }
  501. return nextDelay;
  502. }
  503. void Switch::_handleRemotePacketFragment(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len)
  504. {
  505. Packet::Fragment fragment(data,len);
  506. Address destination(fragment.destination());
  507. if (destination != RR->identity.address()) {
  508. // Fragment is not for us, so try to relay it
  509. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  510. fragment.incrementHops();
  511. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  512. // It wouldn't hurt anything, just redundant and unnecessary.
  513. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  514. if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
  515. // Don't know peer or no direct path -- so relay via root server
  516. relayTo = RR->topology->getBestRoot();
  517. if (relayTo)
  518. relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
  519. }
  520. } else {
  521. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  522. }
  523. } else {
  524. // Fragment looks like ours
  525. uint64_t pid = fragment.packetId();
  526. unsigned int fno = fragment.fragmentNumber();
  527. unsigned int tf = fragment.totalFragments();
  528. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  529. // Fragment appears basically sane. Its fragment number must be
  530. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  531. // Total fragments must be more than 1, otherwise why are we
  532. // seeing a Packet::Fragment?
  533. Mutex::Lock _l(_defragQueue_m);
  534. DefragQueueEntry &dq = _defragQueue[pid];
  535. if (!dq.creationTime) {
  536. // We received a Packet::Fragment without its head, so queue it and wait
  537. dq.creationTime = RR->node->now();
  538. dq.frags[fno - 1] = fragment;
  539. dq.totalFragments = tf; // total fragment count is known
  540. dq.haveFragments = 1 << fno; // we have only this fragment
  541. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  542. } else if (!(dq.haveFragments & (1 << fno))) {
  543. // We have other fragments and maybe the head, so add this one and check
  544. dq.frags[fno - 1] = fragment;
  545. dq.totalFragments = tf;
  546. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  547. if (Utils::countBits(dq.haveFragments |= (1 << fno)) == tf) {
  548. // We have all fragments -- assemble and process full Packet
  549. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  550. SharedPtr<IncomingPacket> packet(dq.frag0);
  551. for(unsigned int f=1;f<tf;++f)
  552. packet->append(dq.frags[f - 1].payload(),dq.frags[f - 1].payloadLength());
  553. _defragQueue.erase(pid); // dq no longer valid after this
  554. if (!packet->tryDecode(RR)) {
  555. Mutex::Lock _l(_rxQueue_m);
  556. _rxQueue.push_back(packet);
  557. }
  558. }
  559. } // else this is a duplicate fragment, ignore
  560. }
  561. }
  562. }
  563. void Switch::_handleRemotePacketHead(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len)
  564. {
  565. SharedPtr<IncomingPacket> packet(new IncomingPacket(data,len,localAddr,fromAddr,RR->node->now()));
  566. Address source(packet->source());
  567. Address destination(packet->destination());
  568. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  569. if (destination != RR->identity.address()) {
  570. // Packet is not for us, so try to relay it
  571. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  572. packet->incrementHops();
  573. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  574. if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
  575. unite(source,destination,false);
  576. } else {
  577. // Don't know peer or no direct path -- so relay via root server
  578. relayTo = RR->topology->getBestRoot(&source,1,true);
  579. if (relayTo)
  580. relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
  581. }
  582. } else {
  583. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  584. }
  585. } else if (packet->fragmented()) {
  586. // Packet is the head of a fragmented packet series
  587. uint64_t pid = packet->packetId();
  588. Mutex::Lock _l(_defragQueue_m);
  589. DefragQueueEntry &dq = _defragQueue[pid];
  590. if (!dq.creationTime) {
  591. // If we have no other fragments yet, create an entry and save the head
  592. dq.creationTime = RR->node->now();
  593. dq.frag0 = packet;
  594. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  595. dq.haveFragments = 1; // head is first bit (left to right)
  596. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  597. } else if (!(dq.haveFragments & 1)) {
  598. // If we have other fragments but no head, see if we are complete with the head
  599. if ((dq.totalFragments)&&(Utils::countBits(dq.haveFragments |= 1) == dq.totalFragments)) {
  600. // We have all fragments -- assemble and process full Packet
  601. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  602. // packet already contains head, so append fragments
  603. for(unsigned int f=1;f<dq.totalFragments;++f)
  604. packet->append(dq.frags[f - 1].payload(),dq.frags[f - 1].payloadLength());
  605. _defragQueue.erase(pid); // dq no longer valid after this
  606. if (!packet->tryDecode(RR)) {
  607. Mutex::Lock _l(_rxQueue_m);
  608. _rxQueue.push_back(packet);
  609. }
  610. } else {
  611. // Still waiting on more fragments, so queue the head
  612. dq.frag0 = packet;
  613. }
  614. } // else this is a duplicate head, ignore
  615. } else {
  616. // Packet is unfragmented, so just process it
  617. if (!packet->tryDecode(RR)) {
  618. Mutex::Lock _l(_rxQueue_m);
  619. _rxQueue.push_back(packet);
  620. }
  621. }
  622. }
  623. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  624. {
  625. SharedPtr<Peer> root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  626. if (root) {
  627. Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS);
  628. addr.appendTo(outp);
  629. outp.armor(root->key(),true);
  630. if (root->send(RR,outp.data(),outp.size(),RR->node->now()))
  631. return root->address();
  632. }
  633. return Address();
  634. }
  635. bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
  636. {
  637. SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
  638. if (peer) {
  639. const uint64_t now = RR->node->now();
  640. SharedPtr<Network> network;
  641. SharedPtr<NetworkConfig> nconf;
  642. if (nwid) {
  643. network = RR->node->network(nwid);
  644. if (!network)
  645. return false; // we probably just left this network, let its packets die
  646. nconf = network->config2();
  647. if (!nconf)
  648. return false; // sanity check: unconfigured network? why are we trying to talk to it?
  649. }
  650. RemotePath *viaPath = peer->getBestPath(now);
  651. SharedPtr<Peer> relay;
  652. if (!viaPath) {
  653. // See if this network has a preferred relay (if packet has an associated network)
  654. if (nconf) {
  655. unsigned int latency = ~((unsigned int)0);
  656. for(std::vector< std::pair<Address,InetAddress> >::const_iterator r(nconf->relays().begin());r!=nconf->relays().end();++r) {
  657. if (r->first != peer->address()) {
  658. SharedPtr<Peer> rp(RR->topology->getPeer(r->first));
  659. if ((rp)&&(rp->hasActiveDirectPath(now))&&(rp->latency() <= latency))
  660. rp.swap(relay);
  661. }
  662. }
  663. }
  664. // Otherwise relay off a root server
  665. if (!relay)
  666. relay = RR->topology->getBestRoot();
  667. if (!(relay)||(!(viaPath = relay->getBestPath(now))))
  668. return false; // no paths, no root servers?
  669. }
  670. if ((network)&&(relay)&&(network->isAllowed(peer))) {
  671. // Push hints for direct connectivity to this peer if we are relaying
  672. peer->pushDirectPaths(RR,viaPath,now,false);
  673. }
  674. Packet tmp(packet);
  675. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  676. tmp.setFragmented(chunkSize < tmp.size());
  677. tmp.armor(peer->key(),encrypt);
  678. if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
  679. if (chunkSize < tmp.size()) {
  680. // Too big for one packet, fragment the rest
  681. unsigned int fragStart = chunkSize;
  682. unsigned int remaining = tmp.size() - chunkSize;
  683. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  684. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  685. ++fragsRemaining;
  686. unsigned int totalFragments = fragsRemaining + 1;
  687. for(unsigned int fno=1;fno<totalFragments;++fno) {
  688. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  689. Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
  690. viaPath->send(RR,frag.data(),frag.size(),now);
  691. fragStart += chunkSize;
  692. remaining -= chunkSize;
  693. }
  694. }
  695. return true;
  696. }
  697. } else {
  698. requestWhois(packet.destination());
  699. }
  700. return false;
  701. }
  702. } // namespace ZeroTier