VL1.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2024-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "VL1.hpp"
  14. #include "RuntimeEnvironment.hpp"
  15. #include "Node.hpp"
  16. #include "Topology.hpp"
  17. #include "VL2.hpp"
  18. #include "Salsa20.hpp"
  19. #include "LZ4.hpp"
  20. #include "Poly1305.hpp"
  21. #include "Identity.hpp"
  22. #include "SelfAwareness.hpp"
  23. #include "SHA512.hpp"
  24. #include "Peer.hpp"
  25. #include "Path.hpp"
  26. #include "Expect.hpp"
  27. namespace ZeroTier {
  28. namespace {
  29. ZT_INLINE const Identity &identityFromPeerPtr(const SharedPtr<Peer> &p)
  30. {
  31. if (p)
  32. return p->identity();
  33. return Identity::NIL;
  34. }
  35. } // anonymous namespace
  36. VL1::VL1(const RuntimeEnvironment *renv) :
  37. RR(renv)
  38. {
  39. }
  40. VL1::~VL1()
  41. {
  42. }
  43. void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAddress &fromAddr,SharedPtr<Buf> &data,const unsigned int len)
  44. {
  45. // Get canonical Path object for this originating address and local socket pair.
  46. const SharedPtr<Path> path(RR->topology->path(localSocket,fromAddr));
  47. const int64_t now = RR->node->now();
  48. // Update path's last receive time (this is updated when anything is received at all, even if invalid or a keepalive)
  49. path->received(now,len);
  50. try {
  51. // Handle 8-byte short probes, which are used as a low-bandwidth way to initiate a real handshake.
  52. // These are only minimally "secure" in the sense that they are unique per graph edge (sender->recipient)
  53. // to within 1/2^64 but can easily be replayed. We rate limit this to prevent ZeroTier being used as
  54. // a vector in DDOS amplification attacks, then send a larger fully authenticated message to initiate
  55. // a handshake. We do not send HELLO since we don't want this to be a vector for third parties to
  56. // mass-probe for ZeroTier nodes and obtain all of the information in a HELLO. This isn't a huge risk
  57. // but we might as well avoid it. When the peer receives NOP on a path that hasn't been handshaked yet
  58. // it will send its own HELLO to which we will respond with a fully encrypted OK(HELLO).
  59. if (len == ZT_PROTO_PROBE_LENGTH) {
  60. const SharedPtr<Peer> peer(RR->topology->peerByProbe(data->lI64(0)));
  61. if ((peer)&&(peer->rateGateInboundProbe(now)))
  62. path->sent(now,peer->sendNOP(tPtr,path->localSocket(),path->address(),now));
  63. return;
  64. }
  65. // Discard any other runt packets that aren't probes. These are likely to be keepalives.
  66. // No reason to bother even logging them. Note that the last receive time for the path
  67. // was still updated, so tiny keepalives do keep the path alive.
  68. if (len < ZT_PROTO_MIN_FRAGMENT_LENGTH)
  69. return;
  70. // A vector of slices of buffers that aspires to eventually hold an assembled packet.
  71. // These are reassembled into a single contiguous buffer at the same time as decryption
  72. // and authentication.
  73. FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS> pktv;
  74. // Destination address of packet (filled below)
  75. Address destination;
  76. if (data->lI8(ZT_PROTO_PACKET_FRAGMENT_INDICATOR_INDEX) == ZT_PROTO_PACKET_FRAGMENT_INDICATOR) {
  77. // Fragment -----------------------------------------------------------------------------------------------------
  78. const Protocol::FragmentHeader &fragmentHeader = data->as<Protocol::FragmentHeader>();
  79. destination.setTo(fragmentHeader.destination);
  80. if (destination != RR->identity.address()) {
  81. _relay(tPtr,path,destination,data,len);
  82. return;
  83. }
  84. switch (_inputPacketAssembler.assemble(
  85. fragmentHeader.packetId,
  86. pktv,
  87. data,
  88. ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT,
  89. (unsigned int)(len - ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT),
  90. fragmentHeader.counts & 0xfU, // fragment number
  91. fragmentHeader.counts >> 4U, // total number of fragments in message is specified in each fragment
  92. now,
  93. path,
  94. ZT_MAX_INCOMING_FRAGMENTS_PER_PATH)) {
  95. case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::COMPLETE:
  96. break;
  97. default:
  98. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::OK:
  99. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_DUPLICATE_FRAGMENT:
  100. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_INVALID_FRAGMENT:
  101. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_TOO_MANY_FRAGMENTS_FOR_PATH:
  102. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_OUT_OF_MEMORY:
  103. return;
  104. }
  105. } else {
  106. // Not fragment, meaning whole packet or head of series with fragments ------------------------------------------
  107. if (len < ZT_PROTO_MIN_PACKET_LENGTH)
  108. return;
  109. const Protocol::Header &packetHeader = data->as<Protocol::Header>();
  110. destination.setTo(packetHeader.destination);
  111. if (destination != RR->identity.address()) {
  112. _relay(tPtr,path,destination,data,len);
  113. return;
  114. }
  115. if ((packetHeader.flags & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
  116. switch (_inputPacketAssembler.assemble(
  117. packetHeader.packetId,
  118. pktv,
  119. data,
  120. 0,
  121. len,
  122. 0, // always the zero'eth fragment
  123. 0, // this is specified in fragments, not in the head
  124. now,
  125. path,
  126. ZT_MAX_INCOMING_FRAGMENTS_PER_PATH)) {
  127. case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::COMPLETE:
  128. break;
  129. default:
  130. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::OK:
  131. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_DUPLICATE_FRAGMENT:
  132. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_INVALID_FRAGMENT:
  133. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_TOO_MANY_FRAGMENTS_FOR_PATH:
  134. //case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_OUT_OF_MEMORY:
  135. return;
  136. }
  137. } else { // packet isn't fragmented, so skip the Defragmenter logic completely.
  138. Buf::Slice &s = pktv.push();
  139. s.b.swap(data);
  140. s.s = 0;
  141. s.e = len;
  142. }
  143. }
  144. // Packet defragmented and apparently addressed to this node ------------------------------------------------------
  145. // Subject pktv to a few sanity checks just to make sure Defragmenter worked correctly and
  146. // there is enough room in each slice to shift their contents to sizes that are multiples
  147. // of 64 if needed for crypto.
  148. if ((pktv.empty()) || (((int)pktv[0].e - (int)pktv[0].s) < (int)sizeof(Protocol::Header))) {
  149. RR->t->unexpectedError(tPtr,0x3df19990,"empty or undersized packet vector after parsing packet from %s of length %d",Trace::str(path->address()).s,(int)len);
  150. return;
  151. }
  152. for(FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS>::const_iterator s(pktv.begin());s!=pktv.end();++s) {
  153. if ((s->e > (ZT_BUF_MEM_SIZE - 64))||(s->s > s->e))
  154. return;
  155. }
  156. Protocol::Header *ph = &(pktv[0].b->as<Protocol::Header>(pktv[0].s));
  157. const Address source(ph->source);
  158. if (source == RR->identity.address())
  159. return;
  160. SharedPtr<Peer> peer(RR->topology->peer(tPtr,source));
  161. Buf::Slice pkt;
  162. bool authenticated = false;
  163. const uint8_t hops = Protocol::packetHops(*ph);
  164. const uint8_t cipher = Protocol::packetCipher(*ph);
  165. unsigned int packetSize = pktv[0].e - pktv[0].s;
  166. for(FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS>::const_iterator s(pktv.begin()+1);s!=pktv.end();++s)
  167. packetSize += s->e - s->s;
  168. if (packetSize > ZT_PROTO_MAX_PACKET_LENGTH) {
  169. RR->t->incomingPacketDropped(tPtr,0x010348da,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  170. return;
  171. }
  172. // If we don't know this peer and this is not a HELLO, issue a WHOIS and enqueue this packet to try again.
  173. if ((!peer)&&(!(((cipher == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)||(cipher == ZT_PROTO_CIPHER_SUITE__NONE))&&((ph->verb & 0x1fU) == Protocol::VERB_HELLO)))) {
  174. pkt = Buf::assembleSliceVector(pktv);
  175. if (pkt.e < ZT_PROTO_MIN_PACKET_LENGTH) {
  176. RR->t->incomingPacketDropped(tPtr,0xbada9366,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  177. return;
  178. }
  179. {
  180. Mutex::Lock wl(_whoisQueue_l);
  181. _WhoisQueueItem &wq = _whoisQueue[source];
  182. wq.inboundPackets.push_back(pkt);
  183. }
  184. _sendPendingWhois(tPtr,now);
  185. return;
  186. }
  187. switch(cipher) {
  188. case ZT_PROTO_CIPHER_SUITE__POLY1305_NONE:
  189. if (peer) {
  190. pkt = Buf::assembleSliceVector(pktv);
  191. if (pkt.e < ZT_PROTO_MIN_PACKET_LENGTH) {
  192. RR->t->incomingPacketDropped(tPtr,0x432aa9da,ph->packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  193. return;
  194. }
  195. ph = &(pkt.b->as<Protocol::Header>());
  196. // Generate one-time-use MAC key using Salsa20.
  197. uint8_t perPacketKey[ZT_PEER_SECRET_KEY_LENGTH];
  198. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  199. Protocol::salsa2012DeriveKey(peer->key(),perPacketKey,*pktv[0].b,packetSize);
  200. Salsa20(perPacketKey,&ph->packetId).crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  201. // Verify packet MAC.
  202. uint64_t mac[2];
  203. poly1305(mac,pkt.b->unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  204. if (ph->mac != mac[0]) {
  205. RR->t->incomingPacketDropped(tPtr,0xcc89c812,ph->packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  206. return;
  207. }
  208. authenticated = true;
  209. }
  210. break;
  211. case ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012:
  212. if (peer) {
  213. // Derive per-packet key using symmetric key plus some data from the packet header.
  214. uint8_t perPacketKey[ZT_PEER_SECRET_KEY_LENGTH];
  215. Protocol::salsa2012DeriveKey(peer->key(),perPacketKey,*pktv[0].b,packetSize);
  216. Salsa20 s20(perPacketKey,&ph->packetId);
  217. // Do one Salsa20 block to generate the one-time-use Poly1305 key.
  218. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  219. s20.crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  220. // Get a buffer to store the decrypted and fully contiguous packet.
  221. pkt.b.set(new Buf());
  222. // Salsa20 is a stream cipher but it's only seekable to multiples of 64 bytes.
  223. // This moves data in slices around so that all slices have sizes that are
  224. // multiples of 64 except the last slice. Note that this does not corrupt
  225. // the assembled slice vector, just moves data around.
  226. if (pktv.size() > 1) {
  227. unsigned int prevOverflow,i;
  228. for (typename FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS>::iterator ps(pktv.begin()),s(ps + 1);s!=pktv.end();) {
  229. prevOverflow = (ps->e - ps->s) & 63U; // amount by which previous exceeds a multiple of 64
  230. for(i=0;i<prevOverflow;++i) {
  231. if (s->s >= s->e)
  232. goto next_slice;
  233. ps->b->unsafeData[ps->e++] = s->b->unsafeData[s->s++]; // move from head of current to end of previous
  234. }
  235. next_slice: ps = s++;
  236. }
  237. }
  238. // Simultaneously decrypt and assemble packet into a contiguous buffer.
  239. // Since we moved data around above all slices will have sizes that are
  240. // multiples of 64.
  241. Utils::copy<sizeof(Protocol::Header)>(pkt.b->unsafeData,ph);
  242. pkt.e = sizeof(Protocol::Header);
  243. for(FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS>::iterator s(pktv.begin());s!=pktv.end();++s) {
  244. const unsigned int sliceSize = s->e - s->s;
  245. s20.crypt12(s->b->unsafeData + s->s,pkt.b->unsafeData + pkt.e,sliceSize);
  246. pkt.e += sliceSize;
  247. }
  248. ph = &(pkt.b->as<Protocol::Header>());
  249. // Verify packet MAC.
  250. uint64_t mac[2];
  251. poly1305(mac,pkt.b->unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  252. if (ph->mac != mac[0]) {
  253. RR->t->incomingPacketDropped(tPtr,0xbc881231,ph->packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  254. return;
  255. }
  256. authenticated = true;
  257. } else {
  258. RR->t->incomingPacketDropped(tPtr,0xb0b01999,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  259. return;
  260. }
  261. break;
  262. case ZT_PROTO_CIPHER_SUITE__NONE: {
  263. // CIPHER_SUITE__NONE is only used with trusted paths. Verification is performed by
  264. // checking the address and the presence of its corresponding trusted path ID in the
  265. // packet header's MAC field.
  266. pkt = Buf::assembleSliceVector(pktv);
  267. if (pkt.e < ZT_PROTO_MIN_PACKET_LENGTH)
  268. RR->t->incomingPacketDropped(tPtr,0x3d3337df,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  269. ph = &(pkt.b->as<Protocol::Header>());
  270. if (RR->topology->shouldInboundPathBeTrusted(path->address(),Utils::ntoh(ph->mac))) {
  271. authenticated = true;
  272. } else {
  273. RR->t->incomingPacketDropped(tPtr,0x2dfa910b,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_NOT_TRUSTED_PATH);
  274. return;
  275. }
  276. } break;
  277. //case ZT_PROTO_CIPHER_SUITE__AES_GCM_NRH:
  278. // if (peer) {
  279. // }
  280. // break;
  281. default:
  282. RR->t->incomingPacketDropped(tPtr,0x5b001099,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  283. return;
  284. }
  285. // Packet fully assembled, authenticated 'true' if already authenticated via MAC ----------------------------------
  286. // Return any still held buffers in pktv to the buffer pool.
  287. pktv.clear();
  288. const Protocol::Verb verb = (Protocol::Verb)(ph->verb & ZT_PROTO_VERB_MASK);
  289. // All verbs except HELLO require authentication before being handled. The HELLO
  290. // handler does its own authentication.
  291. if (((!authenticated)||(!peer))&&(verb != Protocol::VERB_HELLO)) {
  292. RR->t->incomingPacketDropped(tPtr,0x5b001099,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  293. return;
  294. }
  295. // Decompress packet payload if compressed. For additional safety decompression is
  296. // only performed on packets whose MACs have already been validated. (Only HELLO is
  297. // sent without this, and HELLO doesn't benefit from compression.)
  298. if ((ph->verb & ZT_PROTO_VERB_FLAG_COMPRESSED) != 0) {
  299. if (!authenticated) {
  300. RR->t->incomingPacketDropped(tPtr,0x390bcd0a,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  301. return;
  302. }
  303. SharedPtr<Buf> nb(new Buf());
  304. const int uncompressedLen = LZ4_decompress_safe(
  305. reinterpret_cast<const char *>(pkt.b->unsafeData + ZT_PROTO_PACKET_PAYLOAD_START),
  306. reinterpret_cast<char *>(nb->unsafeData),
  307. (int)(packetSize - ZT_PROTO_PACKET_PAYLOAD_START),
  308. ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START);
  309. if ((uncompressedLen > 0)&&(uncompressedLen <= (ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START))) {
  310. pkt.b.swap(nb);
  311. pkt.e = packetSize = (unsigned int)uncompressedLen;
  312. } else {
  313. RR->t->incomingPacketDropped(tPtr,0xee9e4392,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_INVALID_COMPRESSED_DATA);
  314. return;
  315. }
  316. }
  317. /*
  318. * Important notes:
  319. *
  320. * All verbs except HELLO assume that authenticated is true and peer is non-NULL.
  321. * This is checked above. HELLO will accept either case and always performs its
  322. * own secondary validation. The path argument is never NULL.
  323. *
  324. * VL1 and VL2 are conceptually separate layers of the ZeroTier protocol. In the
  325. * code they are almost entirely logically separate. To make the code easier to
  326. * understand the handlers for VL2 data paths have been moved to a VL2 class.
  327. */
  328. bool ok = true; // set to false if a packet turns out to be invalid
  329. Protocol::Verb inReVerb = Protocol::VERB_NOP; // set via result parameter to _ERROR and _OK
  330. switch(verb) {
  331. case Protocol::VERB_NOP: break;
  332. case Protocol::VERB_HELLO: ok = _HELLO(tPtr,path,peer,*pkt.b,(int)packetSize,authenticated); break;
  333. case Protocol::VERB_ERROR: ok = _ERROR(tPtr,path,peer,*pkt.b,(int)packetSize,inReVerb); break;
  334. case Protocol::VERB_OK: ok = _OK(tPtr,path,peer,*pkt.b,(int)packetSize,inReVerb); break;
  335. case Protocol::VERB_WHOIS: ok = _WHOIS(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  336. case Protocol::VERB_RENDEZVOUS: ok = _RENDEZVOUS(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  337. case Protocol::VERB_FRAME: ok = RR->vl2->_FRAME(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  338. case Protocol::VERB_EXT_FRAME: ok = RR->vl2->_EXT_FRAME(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  339. case Protocol::VERB_ECHO: ok = _ECHO(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  340. case Protocol::VERB_MULTICAST_LIKE: ok = RR->vl2->_MULTICAST_LIKE(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  341. case Protocol::VERB_NETWORK_CREDENTIALS: ok = RR->vl2->_NETWORK_CREDENTIALS(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  342. case Protocol::VERB_NETWORK_CONFIG_REQUEST: ok = RR->vl2->_NETWORK_CONFIG_REQUEST(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  343. case Protocol::VERB_NETWORK_CONFIG: ok = RR->vl2->_NETWORK_CONFIG(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  344. case Protocol::VERB_MULTICAST_GATHER: ok = RR->vl2->_MULTICAST_GATHER(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  345. case Protocol::VERB_MULTICAST_FRAME_deprecated: ok = RR->vl2->_MULTICAST_FRAME_deprecated(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  346. case Protocol::VERB_PUSH_DIRECT_PATHS: ok = _PUSH_DIRECT_PATHS(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  347. case Protocol::VERB_USER_MESSAGE: ok = _USER_MESSAGE(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  348. case Protocol::VERB_MULTICAST: ok = RR->vl2->_MULTICAST(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  349. case Protocol::VERB_ENCAP: ok = _ENCAP(tPtr,path,peer,*pkt.b,(int)packetSize); break;
  350. default:
  351. RR->t->incomingPacketDropped(tPtr,0xeeeeeff0,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB);
  352. break;
  353. }
  354. if (ok)
  355. peer->received(tPtr,path,hops,ph->packetId,packetSize - ZT_PROTO_PACKET_PAYLOAD_START,verb,inReVerb);
  356. } catch ( ... ) {
  357. RR->t->unexpectedError(tPtr,0xea1b6dea,"unexpected exception in onRemotePacket() parsing packet from %s",Trace::str(path->address()).s);
  358. }
  359. }
  360. void VL1::_relay(void *tPtr,const SharedPtr<Path> &path,const Address &destination,SharedPtr<Buf> &data,unsigned int len)
  361. {
  362. const uint8_t newHopCount = (data->lI8(ZT_PROTO_PACKET_FLAGS_INDEX) & 7U) + 1;
  363. if (newHopCount >= ZT_RELAY_MAX_HOPS)
  364. return;
  365. data->sI8(ZT_PROTO_PACKET_FLAGS_INDEX,(data->lI8(ZT_PROTO_PACKET_FLAGS_INDEX) & 0xf8U) | newHopCount);
  366. const SharedPtr<Peer> toPeer(RR->topology->peer(tPtr,destination,false));
  367. if (!toPeer)
  368. return;
  369. const uint64_t now = RR->node->now();
  370. const SharedPtr<Path> toPath(toPeer->path(now));
  371. if (!toPath)
  372. return;
  373. toPath->send(RR,tPtr,data->unsafeData,len,now);
  374. }
  375. void VL1::_sendPendingWhois(void *const tPtr,const int64_t now)
  376. {
  377. SharedPtr<Peer> root(RR->topology->root());
  378. if (!root)
  379. return;
  380. SharedPtr<Path> rootPath(root->path(now));
  381. if (!rootPath)
  382. return;
  383. std::vector<Address> toSend;
  384. {
  385. Mutex::Lock wl(_whoisQueue_l);
  386. for(std::map<Address,_WhoisQueueItem>::iterator wi(_whoisQueue.begin());wi!=_whoisQueue.end();++wi) {
  387. if ((now - wi->second.lastRetry) >= ZT_WHOIS_RETRY_DELAY) {
  388. wi->second.lastRetry = now;
  389. ++wi->second.retries;
  390. toSend.push_back(wi->first);
  391. }
  392. }
  393. }
  394. Buf outp;
  395. Protocol::Header &ph = outp.as<Protocol::Header>();
  396. std::vector<Address>::iterator a(toSend.begin());
  397. while (a != toSend.end()) {
  398. ph.packetId = Protocol::getPacketId();
  399. root->address().copyTo(ph.destination);
  400. RR->identity.address().copyTo(ph.source);
  401. ph.flags = 0;
  402. ph.verb = Protocol::VERB_OK;
  403. int outl = sizeof(Protocol::Header);
  404. while ((a != toSend.end())&&(outl < ZT_PROTO_MAX_PACKET_LENGTH)) {
  405. a->copyTo(outp.unsafeData + outl);
  406. ++a;
  407. outl += ZT_ADDRESS_LENGTH;
  408. }
  409. if (outl > (int)sizeof(Protocol::Header)) {
  410. Protocol::armor(outp,outl,root->key(),root->cipher());
  411. RR->expect->sending(ph.packetId,now);
  412. rootPath->send(RR,tPtr,outp.unsafeData,outl,now);
  413. }
  414. }
  415. }
  416. bool VL1::_HELLO(void *tPtr,const SharedPtr<Path> &path,SharedPtr<Peer> &peer,Buf &pkt,int packetSize,const bool authenticated)
  417. {
  418. if (packetSize < (int)sizeof(Protocol::HELLO)) {
  419. RR->t->incomingPacketDropped(tPtr,0x2bdb0001,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  420. return false;
  421. }
  422. Protocol::HELLO &p = pkt.as<Protocol::HELLO>();
  423. const uint8_t hops = Protocol::packetHops(p.h);
  424. p.h.flags &= (uint8_t)~ZT_PROTO_FLAG_FIELD_HOPS_MASK; // mask off hops for MAC calculation
  425. int ptr = sizeof(Protocol::HELLO);
  426. if (p.versionProtocol < ZT_PROTO_VERSION_MIN) {
  427. RR->t->incomingPacketDropped(tPtr,0xe8d12bad,p.h.packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_PEER_TOO_OLD);
  428. return false;
  429. }
  430. Identity id;
  431. if (pkt.rO(ptr,id) < 0) {
  432. RR->t->incomingPacketDropped(tPtr,0x707a9810,p.h.packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  433. return false;
  434. }
  435. if (Address(p.h.source) != id.address()) {
  436. RR->t->incomingPacketDropped(tPtr,0x06aa9ff1,p.h.packetId,0,Identity::NIL,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  437. return false;
  438. }
  439. // Packet is basically valid and identity unmarshaled successfully --------------------------------------------------
  440. uint8_t key[ZT_PEER_SECRET_KEY_LENGTH];
  441. if ((peer) && (id == peer->identity())) {
  442. Utils::copy<ZT_PEER_SECRET_KEY_LENGTH>(key,peer->key());
  443. } else {
  444. peer.zero();
  445. if (!RR->identity.agree(id,key)) {
  446. RR->t->incomingPacketDropped(tPtr,0x46db8010,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  447. return false;
  448. }
  449. }
  450. if ((!peer)||(!authenticated)) {
  451. uint8_t perPacketKey[ZT_PEER_SECRET_KEY_LENGTH];
  452. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  453. Protocol::salsa2012DeriveKey(peer->key(),perPacketKey,pkt,packetSize);
  454. Salsa20(perPacketKey,&p.h.packetId).crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  455. uint64_t mac[2];
  456. poly1305(mac,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  457. if (p.h.mac != mac[0]) {
  458. RR->t->incomingPacketDropped(tPtr,0x11bfff81,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  459. return false;
  460. }
  461. }
  462. // Packet has passed Poly1305 MAC authentication --------------------------------------------------------------------
  463. uint8_t hmacKey[ZT_PEER_SECRET_KEY_LENGTH],hmac[ZT_HMACSHA384_LEN];
  464. if (peer->remoteVersionProtocol() >= 11) {
  465. if (packetSize <= ZT_HMACSHA384_LEN) { // sanity check, should be impossible
  466. RR->t->incomingPacketDropped(tPtr,0x1000662a,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  467. return false;
  468. }
  469. packetSize -= ZT_HMACSHA384_LEN;
  470. KBKDFHMACSHA384(key,ZT_PROTO_KDF_KEY_LABEL_HELLO_HMAC,0,0,hmacKey); // iter == 0 for HELLO, 1 for OK(HELLO)
  471. HMACSHA384(hmacKey,pkt.unsafeData,packetSize,hmac);
  472. if (!Utils::secureEq(pkt.unsafeData + packetSize,hmac,ZT_HMACSHA384_LEN)) {
  473. RR->t->incomingPacketDropped(tPtr,0x1000662a,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
  474. return false;
  475. }
  476. }
  477. // Packet has passed HMAC-SHA384 (if present) -----------------------------------------------------------------------
  478. InetAddress externalSurfaceAddress;
  479. Dictionary nodeMetaData;
  480. // Get external surface address if present.
  481. if (ptr < packetSize) {
  482. if (pkt.rO(ptr,externalSurfaceAddress) < 0) {
  483. RR->t->incomingPacketDropped(tPtr,0x10001003,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  484. return false;
  485. }
  486. }
  487. if ((ptr < packetSize)&&(peer->remoteVersionProtocol() >= 11)) {
  488. // Everything after this point is encrypted with Salsa20/12. This is only a privacy measure
  489. // since there's nothing truly secret in a HELLO packet. It also means that an observer
  490. // can't even get ephemeral public keys without first knowing the long term secret key,
  491. // adding a little defense in depth.
  492. uint8_t iv[8];
  493. for (int i = 0; i < 8; ++i) iv[i] = pkt.unsafeData[i];
  494. iv[7] &= 0xf8U; // this exists for pure legacy reasons, meh...
  495. Salsa20 s20(key,iv);
  496. s20.crypt12(pkt.unsafeData + ptr,pkt.unsafeData + ptr,packetSize - ptr);
  497. ptr += pkt.rI16(ptr); // skip length field which currently is always zero in v2.0+
  498. if (ptr < packetSize) {
  499. const unsigned int dictionarySize = pkt.rI16(ptr);
  500. const void *const dictionaryBytes = pkt.rBnc(ptr,dictionarySize);
  501. if (Buf::readOverflow(ptr,packetSize)) {
  502. RR->t->incomingPacketDropped(tPtr,0x0d0f0112,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  503. return false;
  504. }
  505. if (dictionarySize) {
  506. if (!nodeMetaData.decode(dictionaryBytes,dictionarySize)) {
  507. RR->t->incomingPacketDropped(tPtr,0x67192344,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  508. return false;
  509. }
  510. }
  511. ptr += pkt.rI16(ptr); // skip any additional fields, currently always 0
  512. }
  513. }
  514. if (Buf::readOverflow(ptr,packetSize)) { // sanity check, should be impossible
  515. RR->t->incomingPacketDropped(tPtr,0x50003470,0,p.h.packetId,id,path->address(),0,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  516. return false;
  517. }
  518. // Packet is fully decoded and has passed all tests -----------------------------------------------------------------
  519. const int64_t now = RR->node->now();
  520. if (!peer) {
  521. if (!id.locallyValidate()) {
  522. RR->t->incomingPacketDropped(tPtr,0x2ff7a909,p.h.packetId,0,id,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
  523. return false;
  524. }
  525. peer.set(new Peer(RR));
  526. if (!peer)
  527. return false;
  528. peer->init(id);
  529. peer = RR->topology->add(tPtr,peer);
  530. }
  531. // All validation steps complete, peer learned if not yet known -----------------------------------------------------
  532. if ((hops == 0) && (externalSurfaceAddress))
  533. RR->sa->iam(tPtr,id,path->localSocket(),path->address(),externalSurfaceAddress,RR->topology->isRoot(id),now);
  534. peer->setRemoteVersion(p.versionProtocol,p.versionMajor,p.versionMinor,Utils::ntoh(p.versionRev));
  535. // Compose and send OK(HELLO) ---------------------------------------------------------------------------------------
  536. std::vector<uint8_t> myNodeMetaDataBin;
  537. {
  538. Dictionary myNodeMetaData;
  539. myNodeMetaData.encode(myNodeMetaDataBin);
  540. }
  541. if (myNodeMetaDataBin.size() > ZT_PROTO_MAX_PACKET_LENGTH) {
  542. RR->t->unexpectedError(tPtr,0xbc8861e0,"node meta-data dictionary exceeds maximum packet length while composing OK(HELLO) to %s",Trace::str(id.address(),path).s);
  543. return false;
  544. }
  545. Buf outp;
  546. Protocol::OK::HELLO &ok = outp.as<Protocol::OK::HELLO>();
  547. ok.h.h.packetId = Protocol::getPacketId();
  548. id.address().copyTo(ok.h.h.destination);
  549. RR->identity.address().copyTo(ok.h.h.source);
  550. ok.h.h.flags = 0;
  551. ok.h.h.verb = Protocol::VERB_OK;
  552. ok.h.inReVerb = Protocol::VERB_HELLO;
  553. ok.h.inRePacketId = p.h.packetId;
  554. ok.timestampEcho = p.timestamp;
  555. ok.versionProtocol = ZT_PROTO_VERSION;
  556. ok.versionMajor = ZEROTIER_VERSION_MAJOR;
  557. ok.versionMinor = ZEROTIER_VERSION_MINOR;
  558. ok.versionRev = ZT_CONST_TO_BE_UINT16(ZEROTIER_VERSION_REVISION);
  559. int outl = sizeof(Protocol::OK::HELLO);
  560. outp.wO(outl,path->address());
  561. outp.wI16(outl,0); // legacy field, always 0
  562. if (p.versionProtocol >= 11) {
  563. outp.wI16(outl,(uint16_t)myNodeMetaDataBin.size());
  564. outp.wB(outl,myNodeMetaDataBin.data(),(unsigned int)myNodeMetaDataBin.size());
  565. outp.wI16(outl,0); // length of additional fields, currently 0
  566. if ((outl + ZT_HMACSHA384_LEN) > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check, shouldn't be possible
  567. return false;
  568. KBKDFHMACSHA384(key,ZT_PROTO_KDF_KEY_LABEL_HELLO_HMAC,0,1,hmacKey); // iter == 1 for OK
  569. HMACSHA384(hmacKey,outp.unsafeData + sizeof(ok.h),outl - sizeof(ok.h),outp.unsafeData + outl);
  570. outl += ZT_HMACSHA384_LEN;
  571. }
  572. Protocol::armor(outp,outl,peer->key(),peer->cipher());
  573. path->send(RR,tPtr,outp.unsafeData,outl,now);
  574. return true;
  575. }
  576. bool VL1::_ERROR(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize,Protocol::Verb &inReVerb)
  577. {
  578. if (packetSize < (int)sizeof(Protocol::ERROR::Header)) {
  579. RR->t->incomingPacketDropped(tPtr,0x3beb1947,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_ERROR,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  580. return false;
  581. }
  582. Protocol::ERROR::Header &eh = pkt.as<Protocol::ERROR::Header>();
  583. inReVerb = (Protocol::Verb)eh.inReVerb;
  584. const int64_t now = RR->node->now();
  585. if (!RR->expect->expecting(eh.inRePacketId,now)) {
  586. RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_REPLY_NOT_EXPECTED);
  587. return false;
  588. }
  589. switch(eh.error) {
  590. //case Protocol::ERROR_INVALID_REQUEST:
  591. //case Protocol::ERROR_BAD_PROTOCOL_VERSION:
  592. //case Protocol::ERROR_CANNOT_DELIVER:
  593. default:
  594. break;
  595. case Protocol::ERROR_OBJ_NOT_FOUND:
  596. if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
  597. }
  598. break;
  599. case Protocol::ERROR_UNSUPPORTED_OPERATION:
  600. if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
  601. }
  602. break;
  603. case Protocol::ERROR_NEED_MEMBERSHIP_CERTIFICATE:
  604. break;
  605. case Protocol::ERROR_NETWORK_ACCESS_DENIED_:
  606. if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
  607. }
  608. break;
  609. }
  610. return true;
  611. }
  612. bool VL1::_OK(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize,Protocol::Verb &inReVerb)
  613. {
  614. if (packetSize < (int)sizeof(Protocol::OK::Header)) {
  615. RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  616. return false;
  617. }
  618. Protocol::OK::Header &oh = pkt.as<Protocol::OK::Header>();
  619. inReVerb = (Protocol::Verb)oh.inReVerb;
  620. const int64_t now = RR->node->now();
  621. if (!RR->expect->expecting(oh.inRePacketId,now)) {
  622. RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_REPLY_NOT_EXPECTED);
  623. return false;
  624. }
  625. switch(oh.inReVerb) {
  626. case Protocol::VERB_HELLO:
  627. break;
  628. case Protocol::VERB_WHOIS:
  629. break;
  630. case Protocol::VERB_NETWORK_CONFIG_REQUEST:
  631. break;
  632. case Protocol::VERB_MULTICAST_GATHER:
  633. break;
  634. }
  635. return true;
  636. }
  637. bool VL1::_WHOIS(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  638. {
  639. if (packetSize < (int)sizeof(Protocol::OK::Header)) {
  640. RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  641. return false;
  642. }
  643. Protocol::Header &ph = pkt.as<Protocol::Header>();
  644. if (!peer->rateGateInboundWhoisRequest(RR->node->now())) {
  645. RR->t->incomingPacketDropped(tPtr,0x19f7194a,ph.packetId,0,peer->identity(),path->address(),Protocol::packetHops(ph),Protocol::VERB_WHOIS,ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED);
  646. return true;
  647. }
  648. Buf outp;
  649. Protocol::OK::WHOIS &outh = outp.as<Protocol::OK::WHOIS>();
  650. int ptr = sizeof(Protocol::Header);
  651. while ((ptr + ZT_ADDRESS_LENGTH) <= packetSize) {
  652. outh.h.h.packetId = Protocol::getPacketId();
  653. peer->address().copyTo(outh.h.h.destination);
  654. RR->identity.address().copyTo(outh.h.h.source);
  655. outh.h.h.flags = 0;
  656. outh.h.h.verb = Protocol::VERB_OK;
  657. outh.h.inReVerb = Protocol::VERB_WHOIS;
  658. outh.h.inRePacketId = ph.packetId;
  659. int outl = sizeof(Protocol::OK::WHOIS);
  660. while ( ((ptr + ZT_ADDRESS_LENGTH) <= packetSize) && ((outl + ZT_IDENTITY_MARSHAL_SIZE_MAX + ZT_LOCATOR_MARSHAL_SIZE_MAX) < ZT_PROTO_MAX_PACKET_LENGTH) ) {
  661. const SharedPtr<Peer> &wp(RR->topology->peer(tPtr,Address(pkt.unsafeData + ptr)));
  662. if (wp) {
  663. outp.wO(outl,wp->identity());
  664. if (peer->remoteVersionProtocol() >= 11) { // older versions don't know what a locator is
  665. const Locator loc(wp->locator());
  666. outp.wO(outl,loc);
  667. }
  668. if (Buf::writeOverflow(outl)) { // sanity check, shouldn't be possible
  669. RR->t->unexpectedError(tPtr,0xabc0f183,"Buf write overflow building OK(WHOIS) to reply to %s",Trace::str(peer->address(),path).s);
  670. return false;
  671. }
  672. }
  673. ptr += ZT_ADDRESS_LENGTH;
  674. }
  675. if (outl > (int)sizeof(Protocol::OK::WHOIS)) {
  676. Protocol::armor(outp,outl,peer->key(),peer->cipher());
  677. path->send(RR,tPtr,outp.unsafeData,outl,RR->node->now());
  678. }
  679. }
  680. return true;
  681. }
  682. bool VL1::_RENDEZVOUS(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  683. {
  684. if (RR->topology->isRoot(peer->identity())) {
  685. if (packetSize < (int)sizeof(Protocol::RENDEZVOUS)) {
  686. RR->t->incomingPacketDropped(tPtr,0x43e90ab3,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_RENDEZVOUS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  687. return false;
  688. }
  689. Protocol::RENDEZVOUS &rdv = pkt.as<Protocol::RENDEZVOUS>();
  690. const SharedPtr<Peer> with(RR->topology->peer(tPtr,Address(rdv.peerAddress)));
  691. if (with) {
  692. const int64_t now = RR->node->now();
  693. const unsigned int port = Utils::ntoh(rdv.port);
  694. if (port != 0) {
  695. switch(rdv.addressLength) {
  696. case 4:
  697. case 16:
  698. if ((int)(sizeof(Protocol::RENDEZVOUS) + rdv.addressLength) <= packetSize) {
  699. const InetAddress atAddr(pkt.unsafeData + sizeof(Protocol::RENDEZVOUS),rdv.addressLength,port);
  700. peer->contact(tPtr,Endpoint(atAddr),now,false);
  701. RR->t->tryingNewPath(tPtr,0x55a19aaa,with->identity(),atAddr,path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RENDEZVOUS);
  702. }
  703. break;
  704. case 255: {
  705. Endpoint ep;
  706. int p = sizeof(Protocol::RENDEZVOUS);
  707. int epl = pkt.rO(p,ep);
  708. if ((epl > 0) && (ep) && (!Buf::readOverflow(p,packetSize))) {
  709. switch (ep.type()) {
  710. case Endpoint::TYPE_INETADDR_V4:
  711. case Endpoint::TYPE_INETADDR_V6:
  712. peer->contact(tPtr,ep,now,false);
  713. RR->t->tryingNewPath(tPtr,0x55a19aab,with->identity(),ep.inetAddr(),path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RENDEZVOUS);
  714. break;
  715. default:
  716. break;
  717. }
  718. }
  719. } break;
  720. }
  721. }
  722. }
  723. }
  724. return true;
  725. }
  726. bool VL1::_ECHO(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  727. {
  728. const uint64_t packetId = Protocol::packetId(pkt,packetSize);
  729. const uint64_t now = RR->node->now();
  730. if (packetSize < (int)sizeof(Protocol::Header)) {
  731. RR->t->incomingPacketDropped(tPtr,0x14d70bb0,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  732. return false;
  733. }
  734. if (peer->rateGateEchoRequest(now)) {
  735. Buf outp;
  736. Protocol::OK::ECHO &outh = outp.as<Protocol::OK::ECHO>();
  737. outh.h.h.packetId = Protocol::getPacketId();
  738. peer->address().copyTo(outh.h.h.destination);
  739. RR->identity.address().copyTo(outh.h.h.source);
  740. outh.h.h.flags = 0;
  741. outh.h.h.verb = Protocol::VERB_OK;
  742. outh.h.inReVerb = Protocol::VERB_ECHO;
  743. outh.h.inRePacketId = packetId;
  744. int outl = sizeof(Protocol::OK::ECHO);
  745. outp.wB(outl,pkt.unsafeData + sizeof(Protocol::Header),packetSize - sizeof(Protocol::Header));
  746. if (Buf::writeOverflow(outl)) {
  747. RR->t->incomingPacketDropped(tPtr,0x14d70bb0,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  748. return false;
  749. }
  750. Protocol::armor(outp,outl,peer->key(),peer->cipher());
  751. path->send(RR,tPtr,outp.unsafeData,outl,now);
  752. } else {
  753. RR->t->incomingPacketDropped(tPtr,0x27878bc1,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED);
  754. }
  755. return true;
  756. }
  757. bool VL1::_PUSH_DIRECT_PATHS(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  758. {
  759. if (packetSize < (int)sizeof(Protocol::PUSH_DIRECT_PATHS)) {
  760. RR->t->incomingPacketDropped(tPtr,0x1bb1bbb1,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  761. return false;
  762. }
  763. Protocol::PUSH_DIRECT_PATHS &pdp = pkt.as<Protocol::PUSH_DIRECT_PATHS>();
  764. const uint64_t now = RR->node->now();
  765. if (!peer->rateGateInboundPushDirectPaths(now)) {
  766. RR->t->incomingPacketDropped(tPtr,0x35b1aaaa,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED);
  767. return true;
  768. }
  769. int ptr = sizeof(Protocol::PUSH_DIRECT_PATHS);
  770. const unsigned int numPaths = Utils::ntoh(pdp.numPaths);
  771. InetAddress a;
  772. Endpoint ep;
  773. for(unsigned int pi=0;pi<numPaths;++pi) {
  774. /*const uint8_t flags = pkt.rI8(ptr);*/ ++ptr; // flags are not presently used
  775. const int xas = (int)pkt.rI16(ptr);
  776. //const uint8_t *const extendedAttrs = pkt.rBnc(ptr,xas);
  777. ptr += xas;
  778. const unsigned int addrType = pkt.rI8(ptr);
  779. const unsigned int addrRecordLen = pkt.rI8(ptr);
  780. if (addrRecordLen == 0) {
  781. RR->t->incomingPacketDropped(tPtr,0xaed00118,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  782. return false;
  783. }
  784. if (Buf::readOverflow(ptr,packetSize)) {
  785. RR->t->incomingPacketDropped(tPtr,0xb450e10f,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  786. return false;
  787. }
  788. const void *addrBytes = nullptr;
  789. unsigned int addrLen = 0;
  790. unsigned int addrPort = 0;
  791. switch(addrType) {
  792. case 0:
  793. addrBytes = pkt.rBnc(ptr,addrRecordLen);
  794. addrLen = addrRecordLen;
  795. break;
  796. case 4:
  797. addrBytes = pkt.rBnc(ptr,4);
  798. addrLen = 4;
  799. addrPort = pkt.rI16(ptr);
  800. break;
  801. case 6:
  802. addrBytes = pkt.rBnc(ptr,16);
  803. addrLen = 16;
  804. addrPort = pkt.rI16(ptr);
  805. break;
  806. //case 200:
  807. // TODO: this would be a WebRTC SDP offer contained in the extended attrs field
  808. //break;
  809. default: break;
  810. }
  811. if (Buf::readOverflow(ptr,packetSize)) {
  812. RR->t->incomingPacketDropped(tPtr,0xb4d0f10f,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  813. return false;
  814. }
  815. if (addrPort) {
  816. a.set(addrBytes,addrLen,addrPort);
  817. } else if (addrLen) {
  818. if (ep.unmarshal(reinterpret_cast<const uint8_t *>(addrBytes),(int)addrLen) <= 0) {
  819. RR->t->incomingPacketDropped(tPtr,0x00e0f00d,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
  820. return false;
  821. }
  822. switch(ep.type()) {
  823. case Endpoint::TYPE_INETADDR_V4:
  824. case Endpoint::TYPE_INETADDR_V6:
  825. a = ep.inetAddr();
  826. break;
  827. default: // other types are not supported yet
  828. break;
  829. }
  830. }
  831. if (a) {
  832. RR->t->tryingNewPath(tPtr,0xa5ab1a43,peer->identity(),a,path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RECEIVED_PUSH_DIRECT_PATHS);
  833. }
  834. ptr += (int)addrRecordLen;
  835. }
  836. return true;
  837. }
  838. bool VL1::_USER_MESSAGE(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  839. {
  840. // TODO
  841. return true;
  842. }
  843. bool VL1::_ENCAP(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer,Buf &pkt,int packetSize)
  844. {
  845. // TODO: not implemented yet
  846. return true;
  847. }
  848. } // namespace ZeroTier