Cluster.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_CLUSTER
  28. #include <stdint.h>
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include <math.h>
  33. #include <algorithm>
  34. #include <utility>
  35. #include "../version.h"
  36. #include "Cluster.hpp"
  37. #include "RuntimeEnvironment.hpp"
  38. #include "MulticastGroup.hpp"
  39. #include "CertificateOfMembership.hpp"
  40. #include "Salsa20.hpp"
  41. #include "Poly1305.hpp"
  42. #include "Identity.hpp"
  43. #include "Topology.hpp"
  44. #include "Packet.hpp"
  45. #include "Switch.hpp"
  46. namespace ZeroTier {
  47. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  48. throw()
  49. {
  50. double dx = ((double)x2 - (double)x1);
  51. double dy = ((double)y2 - (double)y1);
  52. double dz = ((double)z2 - (double)z1);
  53. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  54. }
  55. Cluster::Cluster(
  56. const RuntimeEnvironment *renv,
  57. uint16_t id,
  58. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  59. int32_t x,
  60. int32_t y,
  61. int32_t z,
  62. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  63. void *sendFunctionArg,
  64. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  65. void *addressToLocationFunctionArg) :
  66. RR(renv),
  67. _sendFunction(sendFunction),
  68. _sendFunctionArg(sendFunctionArg),
  69. _addressToLocationFunction(addressToLocationFunction),
  70. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  71. _x(x),
  72. _y(y),
  73. _z(z),
  74. _id(id),
  75. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  76. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS])
  77. {
  78. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  79. // Generate master secret by hashing the secret from our Identity key pair
  80. RR->identity.sha512PrivateKey(_masterSecret);
  81. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  82. memcpy(stmp,_masterSecret,sizeof(stmp));
  83. stmp[0] ^= Utils::hton(id);
  84. SHA512::hash(stmp,stmp,sizeof(stmp));
  85. SHA512::hash(stmp,stmp,sizeof(stmp));
  86. memcpy(_key,stmp,sizeof(_key));
  87. Utils::burn(stmp,sizeof(stmp));
  88. }
  89. Cluster::~Cluster()
  90. {
  91. Utils::burn(_masterSecret,sizeof(_masterSecret));
  92. Utils::burn(_key,sizeof(_key));
  93. delete [] _members;
  94. }
  95. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  96. {
  97. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  98. {
  99. // FORMAT: <[16] iv><[8] MAC><... data>
  100. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  101. return;
  102. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  103. char keytmp[32];
  104. memcpy(keytmp,_key,32);
  105. for(int i=0;i<8;++i)
  106. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  107. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  108. Utils::burn(keytmp,sizeof(keytmp));
  109. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  110. char polykey[ZT_POLY1305_KEY_LEN];
  111. memset(polykey,0,sizeof(polykey));
  112. s20.encrypt12(polykey,polykey,sizeof(polykey));
  113. // Compute 16-byte MAC
  114. char mac[ZT_POLY1305_MAC_LEN];
  115. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  116. // Check first 8 bytes of MAC against 64-bit MAC in stream
  117. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  118. return;
  119. // Decrypt!
  120. dmsg.setSize(len - 24);
  121. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  122. }
  123. if (dmsg.size() < 4)
  124. return;
  125. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  126. unsigned int ptr = 2;
  127. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  128. return;
  129. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  130. ptr += 2;
  131. if (toMemberId != _id) // sanity check: message not for us?
  132. return;
  133. { // make sure sender is actually considered a member
  134. Mutex::Lock _l3(_memberIds_m);
  135. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  136. return;
  137. }
  138. {
  139. _Member &m = _members[fromMemberId];
  140. Mutex::Lock mlck(m.lock);
  141. try {
  142. while (ptr < dmsg.size()) {
  143. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  144. const unsigned int nextPtr = ptr + mlen;
  145. if (nextPtr > dmsg.size())
  146. break;
  147. int mtype = -1;
  148. try {
  149. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  150. default:
  151. break;
  152. case STATE_MESSAGE_ALIVE: {
  153. ptr += 7; // skip version stuff, not used yet
  154. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  155. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  156. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  157. ptr += 8; // skip local clock, not used
  158. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  159. ptr += 8; // skip flags, unused
  160. #ifdef ZT_TRACE
  161. std::string addrs;
  162. #endif
  163. unsigned int physicalAddressCount = dmsg[ptr++];
  164. m.zeroTierPhysicalEndpoints.clear();
  165. for(unsigned int i=0;i<physicalAddressCount;++i) {
  166. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  167. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  168. if (!(m.zeroTierPhysicalEndpoints.back())) {
  169. m.zeroTierPhysicalEndpoints.pop_back();
  170. }
  171. #ifdef ZT_TRACE
  172. else {
  173. if (addrs.length() > 0)
  174. addrs.push_back(',');
  175. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  176. }
  177. #endif
  178. }
  179. #ifdef ZT_TRACE
  180. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  181. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  182. }
  183. #endif
  184. m.lastReceivedAliveAnnouncement = RR->node->now();
  185. } break;
  186. case STATE_MESSAGE_HAVE_PEER: {
  187. try {
  188. Identity id;
  189. ptr += id.deserialize(dmsg,ptr);
  190. if (id) {
  191. RR->topology->saveIdentity(id);
  192. { // Add or update peer affinity entry
  193. _PeerAffinity pa(id.address(),fromMemberId,RR->node->now());
  194. Mutex::Lock _l2(_peerAffinities_m);
  195. std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
  196. if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
  197. i->timestamp = pa.timestamp;
  198. } else {
  199. _peerAffinities.push_back(pa);
  200. std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
  201. }
  202. }
  203. TRACE("[%u] has %s",(unsigned int)fromMemberId,id.address().toString().c_str());
  204. }
  205. } catch ( ... ) {
  206. // ignore invalid identities
  207. }
  208. } break;
  209. case STATE_MESSAGE_MULTICAST_LIKE: {
  210. const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
  211. const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  212. const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
  213. const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
  214. RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
  215. TRACE("[%u] %s likes %s/%.8x on %.16llx",(unsigned int)fromMemberId,address.toString().c_str(),mac.toString().c_str(),(unsigned int)adi,nwid);
  216. } break;
  217. case STATE_MESSAGE_COM: {
  218. CertificateOfMembership com;
  219. ptr += com.deserialize(dmsg,ptr);
  220. if (com) {
  221. TRACE("[%u] COM for %s on %.16llu rev %llu",(unsigned int)fromMemberId,com.issuedTo().toString().c_str(),com.networkId(),com.revision());
  222. }
  223. } break;
  224. case STATE_MESSAGE_PROXY_UNITE: {
  225. const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  226. const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  227. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  228. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  229. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  230. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  231. TRACE("[%u] requested proxy unite between local peer %s and remote peer %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
  232. SharedPtr<Peer> localPeer(RR->topology->getPeer(localPeerAddress));
  233. if ((localPeer)&&(numRemotePeerPaths > 0)) {
  234. InetAddress bestLocalV4,bestLocalV6;
  235. localPeer->getBestActiveAddresses(RR->node->now(),bestLocalV4,bestLocalV6);
  236. InetAddress bestRemoteV4,bestRemoteV6;
  237. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  238. if ((bestRemoteV4)&&(bestRemoteV6))
  239. break;
  240. switch(remotePeerPaths[i].ss_family) {
  241. case AF_INET:
  242. if (!bestRemoteV4)
  243. bestRemoteV4 = remotePeerPaths[i];
  244. break;
  245. case AF_INET6:
  246. if (!bestRemoteV6)
  247. bestRemoteV6 = remotePeerPaths[i];
  248. break;
  249. }
  250. }
  251. Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  252. rendezvousForLocal.append((uint8_t)0);
  253. remotePeerAddress.appendTo(rendezvousForLocal);
  254. Buffer<2048> rendezvousForRemote;
  255. remotePeerAddress.appendTo(rendezvousForRemote);
  256. rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
  257. const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForRemote.size();
  258. rendezvousForRemote.addSize(2); // space for actual packet payload length
  259. rendezvousForRemote.append((uint8_t)0); // flags == 0
  260. localPeerAddress.appendTo(rendezvousForRemote);
  261. bool haveMatch = false;
  262. if ((bestLocalV6)&&(bestRemoteV6)) {
  263. haveMatch = true;
  264. rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
  265. rendezvousForLocal.append((uint8_t)16);
  266. rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
  267. rendezvousForRemote.append((uint16_t)bestLocalV6.port());
  268. rendezvousForRemote.append((uint8_t)16);
  269. rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
  270. rendezvousForRemote.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
  271. } else if ((bestLocalV4)&&(bestRemoteV4)) {
  272. haveMatch = true;
  273. rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
  274. rendezvousForLocal.append((uint8_t)4);
  275. rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
  276. rendezvousForRemote.append((uint16_t)bestLocalV4.port());
  277. rendezvousForRemote.append((uint8_t)4);
  278. rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
  279. rendezvousForRemote.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
  280. }
  281. if (haveMatch) {
  282. _send(fromMemberId,STATE_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
  283. RR->sw->send(rendezvousForLocal,true,0);
  284. }
  285. }
  286. } break;
  287. case STATE_MESSAGE_PROXY_SEND: {
  288. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  289. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  290. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  291. Packet outp(rcpt,RR->identity.address(),verb);
  292. outp.append(dmsg.field(ptr,len),len); ptr += len;
  293. RR->sw->send(outp,true,0);
  294. TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  295. } break;
  296. }
  297. } catch ( ... ) {
  298. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  299. // drop invalids
  300. }
  301. ptr = nextPtr;
  302. }
  303. } catch ( ... ) {
  304. TRACE("invalid message (outer loop), discarding");
  305. // drop invalids
  306. }
  307. }
  308. }
  309. bool Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
  310. {
  311. if (len > 16384) // sanity check
  312. return false;
  313. uint64_t mostRecentTimestamp = 0;
  314. unsigned int canHasPeer = 0;
  315. { // Anyone got this peer?
  316. Mutex::Lock _l2(_peerAffinities_m);
  317. std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),_PeerAffinity(toPeerAddress,0,0))); // O(log(n))
  318. while ((i != _peerAffinities.end())&&(i->address() == toPeerAddress)) {
  319. const uint16_t mid = i->clusterMemberId();
  320. if ((mid != _id)&&(i->timestamp > mostRecentTimestamp)) {
  321. mostRecentTimestamp = i->timestamp;
  322. canHasPeer = mid;
  323. }
  324. ++i;
  325. }
  326. }
  327. const uint64_t now = RR->node->now();
  328. if ((now - mostRecentTimestamp) < ZT_PEER_ACTIVITY_TIMEOUT) {
  329. Buffer<2048> buf;
  330. if (unite) {
  331. InetAddress v4,v6;
  332. if (fromPeerAddress) {
  333. SharedPtr<Peer> fromPeer(RR->topology->getPeer(fromPeerAddress));
  334. if (fromPeer)
  335. fromPeer->getBestActiveAddresses(now,v4,v6);
  336. }
  337. uint8_t addrCount = 0;
  338. if (v4)
  339. ++addrCount;
  340. if (v6)
  341. ++addrCount;
  342. if (addrCount) {
  343. toPeerAddress.appendTo(buf);
  344. fromPeerAddress.appendTo(buf);
  345. buf.append(addrCount);
  346. if (v4)
  347. v4.serialize(buf);
  348. if (v6)
  349. v6.serialize(buf);
  350. }
  351. }
  352. {
  353. Mutex::Lock _l2(_members[canHasPeer].lock);
  354. if (buf.size() > 0)
  355. _send(canHasPeer,STATE_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
  356. if (_members[canHasPeer].zeroTierPhysicalEndpoints.size() > 0)
  357. RR->node->putPacket(InetAddress(),_members[canHasPeer].zeroTierPhysicalEndpoints.front(),data,len);
  358. }
  359. TRACE("sendViaCluster(): relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)canHasPeer);
  360. return true;
  361. } else {
  362. TRACE("sendViaCluster(): unable to relay %u bytes from %s to %s since no cluster members seem to have it!",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
  363. return false;
  364. }
  365. }
  366. void Cluster::replicateHavePeer(const Identity &peerId)
  367. {
  368. { // Use peer affinity table to track our own last announce time for peers
  369. _PeerAffinity pa(peerId.address(),_id,RR->node->now());
  370. Mutex::Lock _l2(_peerAffinities_m);
  371. std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
  372. if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
  373. if ((pa.timestamp - i->timestamp) >= ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD) {
  374. i->timestamp = pa.timestamp;
  375. // continue to announcement
  376. } else {
  377. // we've already announced this peer recently, so skip
  378. return;
  379. }
  380. } else {
  381. _peerAffinities.push_back(pa);
  382. std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
  383. // continue to announcement
  384. }
  385. }
  386. // announcement
  387. Buffer<4096> buf;
  388. peerId.serialize(buf,false);
  389. {
  390. Mutex::Lock _l(_memberIds_m);
  391. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  392. Mutex::Lock _l2(_members[*mid].lock);
  393. _send(*mid,STATE_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  394. }
  395. }
  396. }
  397. void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
  398. {
  399. Buffer<2048> buf;
  400. buf.append((uint64_t)nwid);
  401. peerAddress.appendTo(buf);
  402. group.mac().appendTo(buf);
  403. buf.append((uint32_t)group.adi());
  404. TRACE("replicating %s MULTICAST_LIKE %.16llx/%s/%u to all members",peerAddress.toString().c_str(),nwid,group.mac().toString().c_str(),(unsigned int)group.adi());
  405. {
  406. Mutex::Lock _l(_memberIds_m);
  407. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  408. Mutex::Lock _l2(_members[*mid].lock);
  409. _send(*mid,STATE_MESSAGE_MULTICAST_LIKE,buf.data(),buf.size());
  410. }
  411. }
  412. }
  413. void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
  414. {
  415. Buffer<2048> buf;
  416. com.serialize(buf);
  417. TRACE("replicating %s COM for %.16llx to all members",com.issuedTo().toString().c_str(),com.networkId());
  418. {
  419. Mutex::Lock _l(_memberIds_m);
  420. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  421. Mutex::Lock _l2(_members[*mid].lock);
  422. _send(*mid,STATE_MESSAGE_COM,buf.data(),buf.size());
  423. }
  424. }
  425. }
  426. void Cluster::doPeriodicTasks()
  427. {
  428. const uint64_t now = RR->node->now();
  429. {
  430. Mutex::Lock _l(_memberIds_m);
  431. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  432. Mutex::Lock _l2(_members[*mid].lock);
  433. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  434. Buffer<2048> alive;
  435. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  436. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  437. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  438. alive.append((uint8_t)ZT_PROTO_VERSION);
  439. if (_addressToLocationFunction) {
  440. alive.append((int32_t)_x);
  441. alive.append((int32_t)_y);
  442. alive.append((int32_t)_z);
  443. } else {
  444. alive.append((int32_t)0);
  445. alive.append((int32_t)0);
  446. alive.append((int32_t)0);
  447. }
  448. alive.append((uint64_t)now);
  449. alive.append((uint64_t)0); // TODO: compute and send load average
  450. alive.append((uint64_t)0); // unused/reserved flags
  451. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  452. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  453. pe->serialize(alive);
  454. _send(*mid,STATE_MESSAGE_ALIVE,alive.data(),alive.size());
  455. _members[*mid].lastAnnouncedAliveTo = now;
  456. }
  457. _flush(*mid); // does nothing if nothing to flush
  458. }
  459. }
  460. }
  461. void Cluster::addMember(uint16_t memberId)
  462. {
  463. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  464. return;
  465. Mutex::Lock _l2(_members[memberId].lock);
  466. {
  467. Mutex::Lock _l(_memberIds_m);
  468. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  469. return;
  470. _memberIds.push_back(memberId);
  471. std::sort(_memberIds.begin(),_memberIds.end());
  472. }
  473. _members[memberId].clear();
  474. // Generate this member's message key from the master and its ID
  475. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  476. memcpy(stmp,_masterSecret,sizeof(stmp));
  477. stmp[0] ^= Utils::hton(memberId);
  478. SHA512::hash(stmp,stmp,sizeof(stmp));
  479. SHA512::hash(stmp,stmp,sizeof(stmp));
  480. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  481. Utils::burn(stmp,sizeof(stmp));
  482. // Prepare q
  483. _members[memberId].q.clear();
  484. char iv[16];
  485. Utils::getSecureRandom(iv,16);
  486. _members[memberId].q.append(iv,16);
  487. _members[memberId].q.addSize(8); // room for MAC
  488. _members[memberId].q.append((uint16_t)_id);
  489. _members[memberId].q.append((uint16_t)memberId);
  490. }
  491. void Cluster::removeMember(uint16_t memberId)
  492. {
  493. Mutex::Lock _l(_memberIds_m);
  494. std::vector<uint16_t> newMemberIds;
  495. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  496. if (*mid != memberId)
  497. newMemberIds.push_back(*mid);
  498. }
  499. _memberIds = newMemberIds;
  500. }
  501. bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
  502. {
  503. if (_addressToLocationFunction) {
  504. // Pick based on location if it can be determined
  505. int px = 0,py = 0,pz = 0;
  506. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  507. TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
  508. return false;
  509. }
  510. // Find member closest to this peer
  511. const uint64_t now = RR->node->now();
  512. std::vector<InetAddress> best; // initial "best" is for peer to stay put
  513. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  514. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  515. unsigned int bestMember = _id;
  516. {
  517. Mutex::Lock _l(_memberIds_m);
  518. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  519. _Member &m = _members[*mid];
  520. Mutex::Lock _ml(m.lock);
  521. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  522. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  523. double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  524. if (mdist < bestDistance) {
  525. bestDistance = mdist;
  526. bestMember = *mid;
  527. best = m.zeroTierPhysicalEndpoints;
  528. }
  529. }
  530. }
  531. }
  532. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  533. if (a->ss_family == peerPhysicalAddress.ss_family) {
  534. TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
  535. redirectTo = *a;
  536. return true;
  537. }
  538. }
  539. TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
  540. return false;
  541. } else {
  542. // TODO: pick based on load if no location info?
  543. return false;
  544. }
  545. }
  546. void Cluster::status(ZT_ClusterStatus &status) const
  547. {
  548. const uint64_t now = RR->node->now();
  549. memset(&status,0,sizeof(ZT_ClusterStatus));
  550. ZT_ClusterMemberStatus *ms[ZT_CLUSTER_MAX_MEMBERS];
  551. memset(ms,0,sizeof(ms));
  552. status.myId = _id;
  553. ms[_id] = &(status.members[status.clusterSize++]);
  554. ms[_id]->id = _id;
  555. ms[_id]->alive = 1;
  556. ms[_id]->x = _x;
  557. ms[_id]->y = _y;
  558. ms[_id]->z = _z;
  559. ms[_id]->peers = RR->topology->countAlive();
  560. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  561. if (ms[_id]->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  562. break;
  563. memcpy(&(ms[_id]->zeroTierPhysicalEndpoints[ms[_id]->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  564. }
  565. {
  566. Mutex::Lock _l1(_memberIds_m);
  567. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  568. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  569. break;
  570. ZT_ClusterMemberStatus *s = ms[*mid] = &(status.members[status.clusterSize++]);
  571. _Member &m = _members[*mid];
  572. Mutex::Lock ml(m.lock);
  573. s->id = *mid;
  574. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  575. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  576. s->x = m.x;
  577. s->y = m.y;
  578. s->z = m.z;
  579. s->load = m.load;
  580. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  581. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  582. break;
  583. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  584. }
  585. }
  586. }
  587. {
  588. Mutex::Lock _l2(_peerAffinities_m);
  589. for(std::vector<_PeerAffinity>::const_iterator pi(_peerAffinities.begin());pi!=_peerAffinities.end();++pi) {
  590. unsigned int mid = pi->clusterMemberId();
  591. if ((ms[mid])&&(mid != _id)&&((now - pi->timestamp) < ZT_PEER_ACTIVITY_TIMEOUT))
  592. ++ms[mid]->peers;
  593. }
  594. }
  595. }
  596. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  597. {
  598. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  599. return;
  600. _Member &m = _members[memberId];
  601. // assumes m.lock is locked!
  602. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  603. _flush(memberId);
  604. m.q.append((uint16_t)(len + 1));
  605. m.q.append((uint8_t)type);
  606. m.q.append(msg,len);
  607. }
  608. void Cluster::_flush(uint16_t memberId)
  609. {
  610. _Member &m = _members[memberId];
  611. // assumes m.lock is locked!
  612. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  613. // Create key from member's key and IV
  614. char keytmp[32];
  615. memcpy(keytmp,m.key,32);
  616. for(int i=0;i<8;++i)
  617. keytmp[i] ^= m.q[i];
  618. Salsa20 s20(keytmp,256,m.q.field(8,8));
  619. Utils::burn(keytmp,sizeof(keytmp));
  620. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  621. char polykey[ZT_POLY1305_KEY_LEN];
  622. memset(polykey,0,sizeof(polykey));
  623. s20.encrypt12(polykey,polykey,sizeof(polykey));
  624. // Encrypt m.q in place
  625. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  626. // Add MAC for authentication (encrypt-then-MAC)
  627. char mac[ZT_POLY1305_MAC_LEN];
  628. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  629. memcpy(m.q.field(16,8),mac,8);
  630. // Send!
  631. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  632. // Prepare for more
  633. m.q.clear();
  634. char iv[16];
  635. Utils::getSecureRandom(iv,16);
  636. m.q.append(iv,16);
  637. m.q.addSize(8); // room for MAC
  638. m.q.append((uint16_t)_id); // from member ID
  639. m.q.append((uint16_t)memberId); // to member ID
  640. }
  641. }
  642. } // namespace ZeroTier
  643. #endif // ZT_ENABLE_CLUSTER