Cluster.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_CLUSTER
  28. #include <stdint.h>
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include <math.h>
  33. #include <map>
  34. #include <algorithm>
  35. #include <set>
  36. #include <utility>
  37. #include <list>
  38. #include <stdexcept>
  39. #include "../version.h"
  40. #include "Cluster.hpp"
  41. #include "RuntimeEnvironment.hpp"
  42. #include "MulticastGroup.hpp"
  43. #include "CertificateOfMembership.hpp"
  44. #include "Salsa20.hpp"
  45. #include "Poly1305.hpp"
  46. #include "Identity.hpp"
  47. #include "Topology.hpp"
  48. #include "Packet.hpp"
  49. #include "Switch.hpp"
  50. #include "Node.hpp"
  51. #include "Array.hpp"
  52. /**
  53. * Chunk size for allocating queue entries
  54. *
  55. * Queue entries are allocated in chunks of this many and are added to a pool.
  56. * ZT_CLUSTER_MAX_QUEUE_GLOBAL must be evenly divisible by this.
  57. */
  58. #define ZT_CLUSTER_QUEUE_CHUNK_SIZE 32
  59. /**
  60. * Maximum number of chunks to ever allocate
  61. *
  62. * This is a global sanity limit to prevent resource exhaustion attacks. It
  63. * works out to about 600mb of RAM. You'll never see this on a normal edge
  64. * node. We're unlikely to see this on a root server unless someone is DOSing
  65. * us. In that case cluster relaying will be affected but other functions
  66. * should continue to operate normally.
  67. */
  68. #define ZT_CLUSTER_MAX_QUEUE_CHUNKS 8194
  69. /**
  70. * Max data per queue entry
  71. *
  72. * If we ever support larger transport MTUs this must be increased. The plus
  73. * 16 is just a small margin and has no special meaning.
  74. */
  75. #define ZT_CLUSTER_SEND_QUEUE_DATA_MAX (ZT_UDP_DEFAULT_PAYLOAD_MTU + 16)
  76. namespace ZeroTier {
  77. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  78. throw()
  79. {
  80. double dx = ((double)x2 - (double)x1);
  81. double dy = ((double)y2 - (double)y1);
  82. double dz = ((double)z2 - (double)z1);
  83. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  84. }
  85. // An entry in _ClusterSendQueue
  86. struct _ClusterSendQueueEntry
  87. {
  88. uint64_t timestamp;
  89. Address fromPeerAddress;
  90. Address toPeerAddress;
  91. // if we ever support larger transport MTUs this must be increased
  92. unsigned char data[ZT_CLUSTER_SEND_QUEUE_DATA_MAX];
  93. unsigned int len;
  94. bool unite;
  95. };
  96. // A multi-index map with entry memory pooling -- this allows our queue to
  97. // be O(log(N)) and is complex enough that it makes the code a lot cleaner
  98. // to break it out from Cluster.
  99. class _ClusterSendQueue
  100. {
  101. public:
  102. _ClusterSendQueue() :
  103. _poolCount(0) {}
  104. ~_ClusterSendQueue() {} // memory is automatically freed when _chunks is destroyed
  105. inline void enqueue(uint64_t now,const Address &from,const Address &to,const void *data,unsigned int len,bool unite)
  106. {
  107. if (len > ZT_CLUSTER_SEND_QUEUE_DATA_MAX)
  108. return;
  109. Mutex::Lock _l(_lock);
  110. // Delete oldest queue entry for this sender if this enqueue() would take them over the per-sender limit
  111. {
  112. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(from,(_ClusterSendQueueEntry *)0)));
  113. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator oldest(qi);
  114. unsigned long countForSender = 0;
  115. while ((qi != _bySrc.end())&&(qi->first == from)) {
  116. if (qi->second->timestamp < oldest->second->timestamp)
  117. oldest = qi;
  118. ++countForSender;
  119. ++qi;
  120. }
  121. if (countForSender >= ZT_CLUSTER_MAX_QUEUE_PER_SENDER) {
  122. _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(oldest->second->toPeerAddress,oldest->second));
  123. _pool[_poolCount++] = oldest->second;
  124. _bySrc.erase(oldest);
  125. }
  126. }
  127. _ClusterSendQueueEntry *e;
  128. if (_poolCount > 0) {
  129. e = _pool[--_poolCount];
  130. } else {
  131. if (_chunks.size() >= ZT_CLUSTER_MAX_QUEUE_CHUNKS)
  132. return; // queue is totally full!
  133. _chunks.push_back(Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE>());
  134. e = &(_chunks.back().data[0]);
  135. for(unsigned int i=1;i<ZT_CLUSTER_QUEUE_CHUNK_SIZE;++i)
  136. _pool[_poolCount++] = &(_chunks.back().data[i]);
  137. }
  138. e->timestamp = now;
  139. e->fromPeerAddress = from;
  140. e->toPeerAddress = to;
  141. memcpy(e->data,data,len);
  142. e->len = len;
  143. e->unite = unite;
  144. _bySrc.insert(std::pair<Address,_ClusterSendQueueEntry *>(from,e));
  145. _byDest.insert(std::pair<Address,_ClusterSendQueueEntry *>(to,e));
  146. }
  147. inline void expire(uint64_t now)
  148. {
  149. Mutex::Lock _l(_lock);
  150. for(std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.begin());qi!=_bySrc.end();) {
  151. if ((now - qi->second->timestamp) > ZT_CLUSTER_QUEUE_EXPIRATION) {
  152. _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->toPeerAddress,qi->second));
  153. _pool[_poolCount++] = qi->second;
  154. _bySrc.erase(qi++);
  155. } else ++qi;
  156. }
  157. }
  158. /**
  159. * Get and dequeue entries for a given destination address
  160. *
  161. * After use these entries must be returned with returnToPool()!
  162. *
  163. * @param dest Destination address
  164. * @param results Array to fill with results
  165. * @param maxResults Size of results[] in pointers
  166. * @return Number of actual results returned
  167. */
  168. inline unsigned int getByDest(const Address &dest,_ClusterSendQueueEntry **results,unsigned int maxResults)
  169. {
  170. unsigned int count = 0;
  171. Mutex::Lock _l(_lock);
  172. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_byDest.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(dest,(_ClusterSendQueueEntry *)0)));
  173. while ((qi != _byDest.end())&&(qi->first == dest)) {
  174. _bySrc.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->fromPeerAddress,qi->second));
  175. results[count++] = qi->second;
  176. if (count == maxResults)
  177. break;
  178. _byDest.erase(qi++);
  179. }
  180. return count;
  181. }
  182. /**
  183. * Return entries to pool after use
  184. *
  185. * @param entries Array of entries
  186. * @param count Number of entries
  187. */
  188. inline void returnToPool(_ClusterSendQueueEntry **entries,unsigned int count)
  189. {
  190. Mutex::Lock _l(_lock);
  191. for(unsigned int i=0;i<count;++i)
  192. _pool[_poolCount++] = entries[i];
  193. }
  194. private:
  195. std::list< Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE> > _chunks;
  196. _ClusterSendQueueEntry *_pool[ZT_CLUSTER_QUEUE_CHUNK_SIZE * ZT_CLUSTER_MAX_QUEUE_CHUNKS];
  197. unsigned long _poolCount;
  198. std::set< std::pair<Address,_ClusterSendQueueEntry *> > _bySrc;
  199. std::set< std::pair<Address,_ClusterSendQueueEntry *> > _byDest;
  200. Mutex _lock;
  201. };
  202. Cluster::Cluster(
  203. const RuntimeEnvironment *renv,
  204. uint16_t id,
  205. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  206. int32_t x,
  207. int32_t y,
  208. int32_t z,
  209. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  210. void *sendFunctionArg,
  211. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  212. void *addressToLocationFunctionArg) :
  213. RR(renv),
  214. _sendQueue(new _ClusterSendQueue()),
  215. _sendFunction(sendFunction),
  216. _sendFunctionArg(sendFunctionArg),
  217. _addressToLocationFunction(addressToLocationFunction),
  218. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  219. _x(x),
  220. _y(y),
  221. _z(z),
  222. _id(id),
  223. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  224. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
  225. _lastFlushed(0),
  226. _lastCleanedRemotePeers(0),
  227. _lastCleanedQueue(0)
  228. {
  229. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  230. // Generate master secret by hashing the secret from our Identity key pair
  231. RR->identity.sha512PrivateKey(_masterSecret);
  232. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  233. memcpy(stmp,_masterSecret,sizeof(stmp));
  234. stmp[0] ^= Utils::hton(id);
  235. SHA512::hash(stmp,stmp,sizeof(stmp));
  236. SHA512::hash(stmp,stmp,sizeof(stmp));
  237. memcpy(_key,stmp,sizeof(_key));
  238. Utils::burn(stmp,sizeof(stmp));
  239. }
  240. Cluster::~Cluster()
  241. {
  242. Utils::burn(_masterSecret,sizeof(_masterSecret));
  243. Utils::burn(_key,sizeof(_key));
  244. delete [] _members;
  245. delete _sendQueue;
  246. }
  247. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  248. {
  249. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  250. {
  251. // FORMAT: <[16] iv><[8] MAC><... data>
  252. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  253. return;
  254. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  255. char keytmp[32];
  256. memcpy(keytmp,_key,32);
  257. for(int i=0;i<8;++i)
  258. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  259. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  260. Utils::burn(keytmp,sizeof(keytmp));
  261. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  262. char polykey[ZT_POLY1305_KEY_LEN];
  263. memset(polykey,0,sizeof(polykey));
  264. s20.encrypt12(polykey,polykey,sizeof(polykey));
  265. // Compute 16-byte MAC
  266. char mac[ZT_POLY1305_MAC_LEN];
  267. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  268. // Check first 8 bytes of MAC against 64-bit MAC in stream
  269. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  270. return;
  271. // Decrypt!
  272. dmsg.setSize(len - 24);
  273. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  274. }
  275. if (dmsg.size() < 4)
  276. return;
  277. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  278. unsigned int ptr = 2;
  279. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  280. return;
  281. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  282. ptr += 2;
  283. if (toMemberId != _id) // sanity check: message not for us?
  284. return;
  285. { // make sure sender is actually considered a member
  286. Mutex::Lock _l3(_memberIds_m);
  287. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  288. return;
  289. }
  290. try {
  291. while (ptr < dmsg.size()) {
  292. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  293. const unsigned int nextPtr = ptr + mlen;
  294. if (nextPtr > dmsg.size())
  295. break;
  296. int mtype = -1;
  297. try {
  298. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  299. default:
  300. break;
  301. case CLUSTER_MESSAGE_ALIVE: {
  302. _Member &m = _members[fromMemberId];
  303. Mutex::Lock mlck(m.lock);
  304. ptr += 7; // skip version stuff, not used yet
  305. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  306. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  307. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  308. ptr += 8; // skip local clock, not used
  309. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  310. m.peers = dmsg.at<uint64_t>(ptr); ptr += 8;
  311. ptr += 8; // skip flags, unused
  312. #ifdef ZT_TRACE
  313. std::string addrs;
  314. #endif
  315. unsigned int physicalAddressCount = dmsg[ptr++];
  316. m.zeroTierPhysicalEndpoints.clear();
  317. for(unsigned int i=0;i<physicalAddressCount;++i) {
  318. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  319. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  320. if (!(m.zeroTierPhysicalEndpoints.back())) {
  321. m.zeroTierPhysicalEndpoints.pop_back();
  322. }
  323. #ifdef ZT_TRACE
  324. else {
  325. if (addrs.length() > 0)
  326. addrs.push_back(',');
  327. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  328. }
  329. #endif
  330. }
  331. #ifdef ZT_TRACE
  332. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  333. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  334. }
  335. #endif
  336. m.lastReceivedAliveAnnouncement = RR->node->now();
  337. } break;
  338. case CLUSTER_MESSAGE_HAVE_PEER: {
  339. Identity id;
  340. ptr += id.deserialize(dmsg,ptr);
  341. if (id) {
  342. RR->topology->saveIdentity(id);
  343. {
  344. Mutex::Lock _l(_remotePeers_m);
  345. _remotePeers[std::pair<Address,unsigned int>(id.address(),(unsigned int)fromMemberId)] = RR->node->now();
  346. }
  347. _ClusterSendQueueEntry *q[16384]; // 16384 is "tons"
  348. unsigned int qc = _sendQueue->getByDest(id.address(),q,16384);
  349. for(unsigned int i=0;i<qc;++i)
  350. this->sendViaCluster(q[i]->fromPeerAddress,q[i]->toPeerAddress,q[i]->data,q[i]->len,q[i]->unite);
  351. _sendQueue->returnToPool(q,qc);
  352. TRACE("[%u] has %s (retried %u queued sends)",(unsigned int)fromMemberId,id.address().toString().c_str(),qc);
  353. }
  354. } break;
  355. case CLUSTER_MESSAGE_WANT_PEER: {
  356. const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  357. SharedPtr<Peer> peer(RR->topology->getPeerNoCache(zeroTierAddress));
  358. if ( (peer) && (peer->hasClusterOptimalPath(RR->node->now())) ) {
  359. Buffer<1024> buf;
  360. peer->identity().serialize(buf);
  361. Mutex::Lock _l2(_members[fromMemberId].lock);
  362. _send(fromMemberId,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  363. }
  364. } break;
  365. case CLUSTER_MESSAGE_REMOTE_PACKET: {
  366. const unsigned int plen = dmsg.at<uint16_t>(ptr); ptr += 2;
  367. if (plen) {
  368. Packet remotep(dmsg.field(ptr,plen),plen); ptr += plen;
  369. //TRACE("remote %s from %s via %u (%u bytes)",Packet::verbString(remotep.verb()),remotep.source().toString().c_str(),fromMemberId,plen);
  370. switch(remotep.verb()) {
  371. case Packet::VERB_WHOIS: _doREMOTE_WHOIS(fromMemberId,remotep); break;
  372. case Packet::VERB_MULTICAST_GATHER: _doREMOTE_MULTICAST_GATHER(fromMemberId,remotep); break;
  373. default: break; // ignore things we don't care about across cluster
  374. }
  375. }
  376. } break;
  377. case CLUSTER_MESSAGE_PROXY_UNITE: {
  378. const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  379. const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  380. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  381. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  382. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  383. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  384. TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
  385. const uint64_t now = RR->node->now();
  386. SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress));
  387. if ((localPeer)&&(numRemotePeerPaths > 0)) {
  388. InetAddress bestLocalV4,bestLocalV6;
  389. localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);
  390. InetAddress bestRemoteV4,bestRemoteV6;
  391. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  392. if ((bestRemoteV4)&&(bestRemoteV6))
  393. break;
  394. switch(remotePeerPaths[i].ss_family) {
  395. case AF_INET:
  396. if (!bestRemoteV4)
  397. bestRemoteV4 = remotePeerPaths[i];
  398. break;
  399. case AF_INET6:
  400. if (!bestRemoteV6)
  401. bestRemoteV6 = remotePeerPaths[i];
  402. break;
  403. }
  404. }
  405. Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  406. rendezvousForLocal.append((uint8_t)0);
  407. remotePeerAddress.appendTo(rendezvousForLocal);
  408. Buffer<2048> rendezvousForRemote;
  409. remotePeerAddress.appendTo(rendezvousForRemote);
  410. rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
  411. rendezvousForRemote.addSize(2); // space for actual packet payload length
  412. rendezvousForRemote.append((uint8_t)0); // flags == 0
  413. localPeerAddress.appendTo(rendezvousForRemote);
  414. bool haveMatch = false;
  415. if ((bestLocalV6)&&(bestRemoteV6)) {
  416. haveMatch = true;
  417. rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
  418. rendezvousForLocal.append((uint8_t)16);
  419. rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
  420. rendezvousForRemote.append((uint16_t)bestLocalV6.port());
  421. rendezvousForRemote.append((uint8_t)16);
  422. rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
  423. rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 16));
  424. } else if ((bestLocalV4)&&(bestRemoteV4)) {
  425. haveMatch = true;
  426. rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
  427. rendezvousForLocal.append((uint8_t)4);
  428. rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
  429. rendezvousForRemote.append((uint16_t)bestLocalV4.port());
  430. rendezvousForRemote.append((uint8_t)4);
  431. rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
  432. rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 4));
  433. }
  434. if (haveMatch) {
  435. {
  436. Mutex::Lock _l2(_members[fromMemberId].lock);
  437. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
  438. }
  439. RR->sw->send(rendezvousForLocal,true,0);
  440. }
  441. }
  442. } break;
  443. case CLUSTER_MESSAGE_PROXY_SEND: {
  444. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  445. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  446. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  447. Packet outp(rcpt,RR->identity.address(),verb);
  448. outp.append(dmsg.field(ptr,len),len); ptr += len;
  449. RR->sw->send(outp,true,0);
  450. //TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  451. } break;
  452. }
  453. } catch ( ... ) {
  454. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  455. // drop invalids
  456. }
  457. ptr = nextPtr;
  458. }
  459. } catch ( ... ) {
  460. TRACE("invalid message (outer loop), discarding");
  461. // drop invalids
  462. }
  463. }
  464. void Cluster::broadcastHavePeer(const Identity &id)
  465. {
  466. Buffer<1024> buf;
  467. id.serialize(buf);
  468. Mutex::Lock _l(_memberIds_m);
  469. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  470. Mutex::Lock _l2(_members[*mid].lock);
  471. _send(*mid,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  472. }
  473. }
  474. void Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
  475. {
  476. if (len > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check
  477. return;
  478. const uint64_t now = RR->node->now();
  479. uint64_t mostRecentTs = 0;
  480. unsigned int mostRecentMemberId = 0xffffffff;
  481. {
  482. Mutex::Lock _l2(_remotePeers_m);
  483. std::map< std::pair<Address,unsigned int>,uint64_t >::const_iterator rpe(_remotePeers.lower_bound(std::pair<Address,unsigned int>(toPeerAddress,0)));
  484. for(;;) {
  485. if ((rpe == _remotePeers.end())||(rpe->first.first != toPeerAddress))
  486. break;
  487. else if (rpe->second > mostRecentTs) {
  488. mostRecentTs = rpe->second;
  489. mostRecentMemberId = rpe->first.second;
  490. }
  491. ++rpe;
  492. }
  493. }
  494. const uint64_t age = now - mostRecentTs;
  495. if (age >= (ZT_PEER_ACTIVITY_TIMEOUT / 3)) {
  496. const bool enqueueAndWait = ((age >= ZT_PEER_ACTIVITY_TIMEOUT)||(mostRecentMemberId > 0xffff));
  497. // Poll everyone with WANT_PEER if the age of our most recent entry is
  498. // approaching expiration (or has expired, or does not exist).
  499. char tmp[ZT_ADDRESS_LENGTH];
  500. toPeerAddress.copyTo(tmp,ZT_ADDRESS_LENGTH);
  501. {
  502. Mutex::Lock _l(_memberIds_m);
  503. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  504. Mutex::Lock _l2(_members[*mid].lock);
  505. _send(*mid,CLUSTER_MESSAGE_WANT_PEER,tmp,ZT_ADDRESS_LENGTH);
  506. }
  507. }
  508. // If there isn't a good place to send via, then enqueue this for retrying
  509. // later and return after having broadcasted a WANT_PEER.
  510. if (enqueueAndWait) {
  511. TRACE("sendViaCluster %s -> %s enqueueing to wait for HAVE_PEER",fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
  512. _sendQueue->enqueue(now,fromPeerAddress,toPeerAddress,data,len,unite);
  513. return;
  514. }
  515. }
  516. Buffer<1024> buf;
  517. if (unite) {
  518. InetAddress v4,v6;
  519. if (fromPeerAddress) {
  520. SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress));
  521. if (fromPeer)
  522. fromPeer->getBestActiveAddresses(now,v4,v6);
  523. }
  524. uint8_t addrCount = 0;
  525. if (v4)
  526. ++addrCount;
  527. if (v6)
  528. ++addrCount;
  529. if (addrCount) {
  530. toPeerAddress.appendTo(buf);
  531. fromPeerAddress.appendTo(buf);
  532. buf.append(addrCount);
  533. if (v4)
  534. v4.serialize(buf);
  535. if (v6)
  536. v6.serialize(buf);
  537. }
  538. }
  539. {
  540. Mutex::Lock _l2(_members[mostRecentMemberId].lock);
  541. if (buf.size() > 0)
  542. _send(mostRecentMemberId,CLUSTER_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
  543. if (_members[mostRecentMemberId].zeroTierPhysicalEndpoints.size() > 0) {
  544. TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId);
  545. RR->node->putPacket(InetAddress(),_members[mostRecentMemberId].zeroTierPhysicalEndpoints.front(),data,len);
  546. }
  547. }
  548. }
  549. void Cluster::sendDistributedQuery(const Packet &pkt)
  550. {
  551. Buffer<4096> buf;
  552. buf.append((uint16_t)pkt.size());
  553. buf.append(pkt.data(),pkt.size());
  554. Mutex::Lock _l(_memberIds_m);
  555. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  556. Mutex::Lock _l2(_members[*mid].lock);
  557. _send(*mid,CLUSTER_MESSAGE_REMOTE_PACKET,buf.data(),buf.size());
  558. }
  559. }
  560. void Cluster::doPeriodicTasks()
  561. {
  562. const uint64_t now = RR->node->now();
  563. if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
  564. _lastFlushed = now;
  565. Mutex::Lock _l(_memberIds_m);
  566. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  567. Mutex::Lock _l2(_members[*mid].lock);
  568. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  569. _members[*mid].lastAnnouncedAliveTo = now;
  570. Buffer<2048> alive;
  571. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  572. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  573. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  574. alive.append((uint8_t)ZT_PROTO_VERSION);
  575. if (_addressToLocationFunction) {
  576. alive.append((int32_t)_x);
  577. alive.append((int32_t)_y);
  578. alive.append((int32_t)_z);
  579. } else {
  580. alive.append((int32_t)0);
  581. alive.append((int32_t)0);
  582. alive.append((int32_t)0);
  583. }
  584. alive.append((uint64_t)now);
  585. alive.append((uint64_t)0); // TODO: compute and send load average
  586. alive.append((uint64_t)RR->topology->countActive());
  587. alive.append((uint64_t)0); // unused/reserved flags
  588. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  589. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  590. pe->serialize(alive);
  591. _send(*mid,CLUSTER_MESSAGE_ALIVE,alive.data(),alive.size());
  592. }
  593. _flush(*mid);
  594. }
  595. }
  596. if ((now - _lastCleanedRemotePeers) >= (ZT_PEER_ACTIVITY_TIMEOUT * 2)) {
  597. _lastCleanedRemotePeers = now;
  598. Mutex::Lock _l(_remotePeers_m);
  599. for(std::map< std::pair<Address,unsigned int>,uint64_t >::iterator rp(_remotePeers.begin());rp!=_remotePeers.end();) {
  600. if ((now - rp->second) >= ZT_PEER_ACTIVITY_TIMEOUT)
  601. _remotePeers.erase(rp++);
  602. else ++rp;
  603. }
  604. }
  605. if ((now - _lastCleanedQueue) >= ZT_CLUSTER_QUEUE_EXPIRATION) {
  606. _lastCleanedQueue = now;
  607. _sendQueue->expire(now);
  608. }
  609. }
  610. void Cluster::addMember(uint16_t memberId)
  611. {
  612. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  613. return;
  614. Mutex::Lock _l2(_members[memberId].lock);
  615. {
  616. Mutex::Lock _l(_memberIds_m);
  617. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  618. return;
  619. _memberIds.push_back(memberId);
  620. std::sort(_memberIds.begin(),_memberIds.end());
  621. }
  622. _members[memberId].clear();
  623. // Generate this member's message key from the master and its ID
  624. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  625. memcpy(stmp,_masterSecret,sizeof(stmp));
  626. stmp[0] ^= Utils::hton(memberId);
  627. SHA512::hash(stmp,stmp,sizeof(stmp));
  628. SHA512::hash(stmp,stmp,sizeof(stmp));
  629. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  630. Utils::burn(stmp,sizeof(stmp));
  631. // Prepare q
  632. _members[memberId].q.clear();
  633. char iv[16];
  634. Utils::getSecureRandom(iv,16);
  635. _members[memberId].q.append(iv,16);
  636. _members[memberId].q.addSize(8); // room for MAC
  637. _members[memberId].q.append((uint16_t)_id);
  638. _members[memberId].q.append((uint16_t)memberId);
  639. }
  640. void Cluster::removeMember(uint16_t memberId)
  641. {
  642. Mutex::Lock _l(_memberIds_m);
  643. std::vector<uint16_t> newMemberIds;
  644. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  645. if (*mid != memberId)
  646. newMemberIds.push_back(*mid);
  647. }
  648. _memberIds = newMemberIds;
  649. }
  650. bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
  651. {
  652. if (_addressToLocationFunction) {
  653. // Pick based on location if it can be determined
  654. int px = 0,py = 0,pz = 0;
  655. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  656. TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
  657. return false;
  658. }
  659. // Find member closest to this peer
  660. const uint64_t now = RR->node->now();
  661. std::vector<InetAddress> best;
  662. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  663. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  664. unsigned int bestMember = _id;
  665. {
  666. Mutex::Lock _l(_memberIds_m);
  667. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  668. _Member &m = _members[*mid];
  669. Mutex::Lock _ml(m.lock);
  670. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  671. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  672. const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  673. if (mdist < bestDistance) {
  674. bestDistance = mdist;
  675. bestMember = *mid;
  676. best = m.zeroTierPhysicalEndpoints;
  677. }
  678. }
  679. }
  680. }
  681. // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
  682. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  683. if (a->ss_family == peerPhysicalAddress.ss_family) {
  684. TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
  685. redirectTo = *a;
  686. return true;
  687. }
  688. }
  689. TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
  690. return false;
  691. } else {
  692. // TODO: pick based on load if no location info?
  693. return false;
  694. }
  695. }
  696. void Cluster::status(ZT_ClusterStatus &status) const
  697. {
  698. const uint64_t now = RR->node->now();
  699. memset(&status,0,sizeof(ZT_ClusterStatus));
  700. status.myId = _id;
  701. {
  702. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  703. s->id = _id;
  704. s->alive = 1;
  705. s->x = _x;
  706. s->y = _y;
  707. s->z = _z;
  708. s->load = 0; // TODO
  709. s->peers = RR->topology->countActive();
  710. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  711. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  712. break;
  713. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  714. }
  715. }
  716. {
  717. Mutex::Lock _l1(_memberIds_m);
  718. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  719. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  720. break;
  721. _Member &m = _members[*mid];
  722. Mutex::Lock ml(m.lock);
  723. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  724. s->id = *mid;
  725. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  726. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  727. s->x = m.x;
  728. s->y = m.y;
  729. s->z = m.z;
  730. s->load = m.load;
  731. s->peers = m.peers;
  732. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  733. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  734. break;
  735. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  736. }
  737. }
  738. }
  739. }
  740. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  741. {
  742. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  743. return;
  744. _Member &m = _members[memberId];
  745. // assumes m.lock is locked!
  746. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  747. _flush(memberId);
  748. m.q.append((uint16_t)(len + 1));
  749. m.q.append((uint8_t)type);
  750. m.q.append(msg,len);
  751. }
  752. void Cluster::_flush(uint16_t memberId)
  753. {
  754. _Member &m = _members[memberId];
  755. // assumes m.lock is locked!
  756. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  757. // Create key from member's key and IV
  758. char keytmp[32];
  759. memcpy(keytmp,m.key,32);
  760. for(int i=0;i<8;++i)
  761. keytmp[i] ^= m.q[i];
  762. Salsa20 s20(keytmp,256,m.q.field(8,8));
  763. Utils::burn(keytmp,sizeof(keytmp));
  764. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  765. char polykey[ZT_POLY1305_KEY_LEN];
  766. memset(polykey,0,sizeof(polykey));
  767. s20.encrypt12(polykey,polykey,sizeof(polykey));
  768. // Encrypt m.q in place
  769. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  770. // Add MAC for authentication (encrypt-then-MAC)
  771. char mac[ZT_POLY1305_MAC_LEN];
  772. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  773. memcpy(m.q.field(16,8),mac,8);
  774. // Send!
  775. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  776. // Prepare for more
  777. m.q.clear();
  778. char iv[16];
  779. Utils::getSecureRandom(iv,16);
  780. m.q.append(iv,16);
  781. m.q.addSize(8); // room for MAC
  782. m.q.append((uint16_t)_id); // from member ID
  783. m.q.append((uint16_t)memberId); // to member ID
  784. }
  785. }
  786. void Cluster::_doREMOTE_WHOIS(uint64_t fromMemberId,const Packet &remotep)
  787. {
  788. if (remotep.payloadLength() >= ZT_ADDRESS_LENGTH) {
  789. Identity queried(RR->topology->getIdentity(Address(remotep.payload(),ZT_ADDRESS_LENGTH)));
  790. if (queried) {
  791. Buffer<1024> routp;
  792. remotep.source().appendTo(routp);
  793. routp.append((uint8_t)Packet::VERB_OK);
  794. routp.addSize(2); // space for length
  795. routp.append((uint8_t)Packet::VERB_WHOIS);
  796. routp.append(remotep.packetId());
  797. queried.serialize(routp);
  798. routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
  799. TRACE("responding to remote WHOIS from %s @ %u with identity of %s",remotep.source().toString().c_str(),(unsigned int)fromMemberId,queried.address().toString().c_str());
  800. Mutex::Lock _l2(_members[fromMemberId].lock);
  801. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
  802. }
  803. }
  804. }
  805. void Cluster::_doREMOTE_MULTICAST_GATHER(uint64_t fromMemberId,const Packet &remotep)
  806. {
  807. const uint64_t nwid = remotep.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
  808. const MulticastGroup mg(MAC(remotep.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
  809. unsigned int gatherLimit = remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
  810. const Address remotePeerAddress(remotep.source());
  811. if (gatherLimit) {
  812. Buffer<ZT_PROTO_MAX_PACKET_LENGTH> routp;
  813. remotePeerAddress.appendTo(routp);
  814. routp.append((uint8_t)Packet::VERB_OK);
  815. routp.addSize(2); // space for length
  816. routp.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
  817. routp.append(remotep.packetId());
  818. routp.append(nwid);
  819. mg.mac().appendTo(routp);
  820. routp.append((uint32_t)mg.adi());
  821. if (gatherLimit > ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5))
  822. gatherLimit = ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5);
  823. if (RR->mc->gather(remotePeerAddress,nwid,mg,routp,gatherLimit)) {
  824. routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
  825. TRACE("responding to remote MULTICAST_GATHER from %s @ %u with %u bytes",remotePeerAddress.toString().c_str(),(unsigned int)fromMemberId,routp.size());
  826. Mutex::Lock _l2(_members[fromMemberId].lock);
  827. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
  828. }
  829. }
  830. }
  831. } // namespace ZeroTier
  832. #endif // ZT_ENABLE_CLUSTER