AES.hpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764
  1. /*
  2. * Copyright (c)2019 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2023-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_AES_HPP
  14. #define ZT_AES_HPP
  15. #include "Constants.hpp"
  16. #include "Utils.hpp"
  17. #include "SHA512.hpp"
  18. #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
  19. #include <wmmintrin.h>
  20. #include <emmintrin.h>
  21. #include <smmintrin.h>
  22. #define ZT_AES_AESNI 1
  23. #endif
  24. #define ZT_AES_KEY_SIZE 32
  25. #define ZT_AES_BLOCK_SIZE 16
  26. namespace ZeroTier {
  27. /**
  28. * AES-256 and AES-GCM AEAD
  29. */
  30. class AES
  31. {
  32. public:
  33. /**
  34. * This will be true if your platform's type of AES acceleration is supported on this machine
  35. */
  36. static const bool HW_ACCEL;
  37. ZT_ALWAYS_INLINE AES() {}
  38. ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }
  39. ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); }
  40. /**
  41. * Set (or re-set) this AES256 cipher's key
  42. */
  43. ZT_ALWAYS_INLINE void init(const uint8_t key[32])
  44. {
  45. #ifdef ZT_AES_AESNI
  46. if (likely(HW_ACCEL)) {
  47. _init_aesni(key);
  48. return;
  49. }
  50. #endif
  51. _initSW(key);
  52. }
  53. /**
  54. * Encrypt a single AES block (ECB mode)
  55. *
  56. * @param in Input block
  57. * @param out Output block (can be same as input)
  58. */
  59. ZT_ALWAYS_INLINE void encrypt(const uint8_t in[16],uint8_t out[16]) const
  60. {
  61. #ifdef ZT_AES_AESNI
  62. if (likely(HW_ACCEL)) {
  63. _encrypt_aesni(in,out);
  64. return;
  65. }
  66. #endif
  67. _encryptSW(in,out);
  68. }
  69. /**
  70. * Compute GMAC-AES256 (GCM without ciphertext)
  71. *
  72. * @param iv 96-bit IV
  73. * @param in Input data
  74. * @param len Length of input
  75. * @param out 128-bit authorization tag from GMAC
  76. */
  77. ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const
  78. {
  79. #ifdef ZT_AES_AESNI
  80. if (likely(HW_ACCEL)) {
  81. _gmac_aesni(iv,(const uint8_t *)in,len,out);
  82. return;
  83. }
  84. #endif
  85. _gmacSW(iv,(const uint8_t *)in,len,out);
  86. }
  87. /**
  88. * Encrypt or decrypt (they're the same) using AES256-CTR
  89. *
  90. * The counter here is a 128-bit big-endian that starts at the IV. The code only
  91. * increments the least significant 64 bits, making it only safe to use for a
  92. * maximum of 2^64-1 bytes (much larger than we ever do).
  93. *
  94. * @param iv 128-bit CTR IV
  95. * @param in Input plaintext or ciphertext
  96. * @param len Length of input
  97. * @param out Output plaintext or ciphertext
  98. */
  99. ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
  100. {
  101. #ifdef ZT_AES_AESNI
  102. if (likely(HW_ACCEL)) {
  103. _crypt_ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out);
  104. return;
  105. }
  106. #endif
  107. uint64_t ctr[2],cenc[2];
  108. memcpy(ctr,iv,16);
  109. uint64_t bctr = Utils::ntoh(ctr[1]);
  110. const uint8_t *i = (const uint8_t *)in;
  111. uint8_t *o = (uint8_t *)out;
  112. while (len >= 16) {
  113. _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
  114. ctr[1] = Utils::hton(++bctr);
  115. #ifdef ZT_NO_TYPE_PUNNING
  116. for(unsigned int k=0;k<16;++k)
  117. *(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
  118. #else
  119. *((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[0];
  120. o += 8;
  121. i += 8;
  122. *((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[1];
  123. o += 8;
  124. i += 8;
  125. #endif
  126. len -= 16;
  127. }
  128. if (len) {
  129. _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
  130. for(unsigned int k=0;k<len;++k)
  131. *(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
  132. }
  133. }
  134. /**
  135. * Perform AES-GMAC-CTR encryption
  136. *
  137. * This is an AES mode built from GMAC and AES-CTR that is similar to the
  138. * various SIV (synthetic IV) modes for AES and is resistant to nonce
  139. * re-use. It's specifically tweaked for ZeroTier's packet structure with
  140. * a 64-bit IV (extended to 96 bits by including packet size and other info)
  141. * and a 64-bit auth tag.
  142. *
  143. * The use of separate keys for MAC and encrypt is precautionary. It
  144. * ensures that the CTR IV (and CTR output) are always secrets regardless
  145. * of what an attacker might do with accumulated IVs and auth tags.
  146. *
  147. * @param k1 GMAC key
  148. * @param k2 GMAC auth tag masking (ECB encryption) key
  149. * @param k3 CTR IV masking (ECB encryption) key
  150. * @param k4 AES-CTR key
  151. * @param iv 96-bit message IV
  152. * @param in Message plaintext
  153. * @param len Length of plaintext
  154. * @param out Output buffer to receive ciphertext
  155. * @param tag Output buffer to receive 64-bit authentication tag
  156. */
  157. static ZT_ALWAYS_INLINE void ztGmacCtrEncrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[12],const void *in,const unsigned int len,void *out,uint8_t tag[8])
  158. {
  159. uint8_t ctrIv[16];
  160. // Compute AES[k2](GMAC[k1](iv,plaintext))
  161. k1.gmac(iv,in,len,ctrIv);
  162. k2.encrypt(ctrIv,ctrIv); // ECB mode encrypt step is because GMAC is not a PRF
  163. // Auth tag for packet is first 64 bits of AES(GMAC) (rest is discarded)
  164. #ifdef ZT_NO_TYPE_PUNNING
  165. for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i];
  166. #else
  167. *((uint64_t *)tag) = *((uint64_t *)ctrIv);
  168. #endif
  169. // Create synthetic CTR IV
  170. #ifdef ZT_NO_TYPE_PUNNING
  171. for(unsigned int i=0;i<4;++i) ctrIv[i+8] = iv[i];
  172. for(unsigned int i=4;i<8;++i) ctrIv[i+8] = iv[i] ^ iv[i+4];
  173. #else
  174. ((uint32_t *)ctrIv)[2] = ((const uint32_t *)iv)[0];
  175. ((uint32_t *)ctrIv)[3] = ((const uint32_t *)iv)[1] ^ ((const uint32_t *)iv)[2];
  176. #endif
  177. k3.encrypt(ctrIv,ctrIv);
  178. // Encrypt with AES[k4]-CTR
  179. k4.ctr(ctrIv,in,len,out);
  180. }
  181. /**
  182. * Decrypt a message encrypted with AES-GMAC-CTR and check its authenticity
  183. *
  184. * @param k1 GMAC key
  185. * @param k2 GMAC auth tag masking (ECB encryption) key
  186. * @param k3 CTR IV masking (ECB encryption) key
  187. * @param k4 AES-CTR key
  188. * @param iv 96-bit message IV
  189. * @param in Message ciphertext
  190. * @param len Length of ciphertext
  191. * @param out Output buffer to receive plaintext
  192. * @param tag Authentication tag supplied with message
  193. * @return True if authentication tags match and message appears authentic
  194. */
  195. static ZT_ALWAYS_INLINE bool ztGmacCtrDecrypt(const AES &k1,const AES &k2,const AES &k3,const AES &k4,const uint8_t iv[12],const void *in,const unsigned int len,void *out,const uint8_t tag[8])
  196. {
  197. uint8_t ctrIv[16],gmacOut[16];
  198. // Recover synthetic and secret CTR IV from auth tag and packet IV
  199. #ifdef ZT_NO_TYPE_PUNNING
  200. for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i];
  201. for(unsigned int i=0;i<4;++i) ctrIv[i+8] = iv[i];
  202. for(unsigned int i=4;i<8;++i) ctrIv[i+8] = iv[i] ^ iv[i+4];
  203. #else
  204. *((uint64_t *)ctrIv) = *((const uint64_t *)tag);
  205. ((uint32_t *)ctrIv)[2] = ((const uint32_t *)iv)[0];
  206. ((uint32_t *)ctrIv)[3] = ((const uint32_t *)iv)[1] ^ ((const uint32_t *)iv)[2];
  207. #endif
  208. k3.encrypt(ctrIv,ctrIv);
  209. // Decrypt with AES[k4]-CTR
  210. k4.ctr(ctrIv,in,len,out);
  211. // Compute AES[k2](GMAC[k1](iv,plaintext))
  212. k1.gmac(iv,out,len,gmacOut);
  213. k2.encrypt(gmacOut,gmacOut);
  214. // Check that packet's auth tag matches first 64 bits of AES(GMAC)
  215. #ifdef ZT_NO_TYPE_PUNNING
  216. return Utils::secureEq(gmacOut,tag,8);
  217. #else
  218. return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag));
  219. #endif
  220. }
  221. /**
  222. * Use KBKDF with HMAC-SHA-384 to derive four sub-keys for AES-GMAC-CTR from a single master key
  223. *
  224. * See section 5.1 at https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-108.pdf
  225. *
  226. * @param masterKey Master 256-bit key
  227. * @param k1 GMAC key
  228. * @param k2 GMAC auth tag masking (ECB encryption) key
  229. * @param k3 CTR IV masking (ECB encryption) key
  230. * @param k4 AES-CTR key
  231. */
  232. static ZT_ALWAYS_INLINE void initGmacCtrKeys(const uint8_t masterKey[32],AES &k1,AES &k2,AES &k3,AES &k4)
  233. {
  234. uint8_t kbuf[48];
  235. uint8_t kbkdfMsg[16];
  236. kbkdfMsg[0] = 0; // key iterator, incremented for each key
  237. for(unsigned int i=0;i<12;++i)
  238. kbkdfMsg[i+1] = (uint8_t)("AES-GMAC-CTR"[i]); // KBKDF "label" indicating the use for these keys
  239. kbkdfMsg[13] = 0; // 0x00
  240. kbkdfMsg[14] = 0; // KBKDF "context", just 0 as it's not used in this protocol
  241. kbkdfMsg[15] = 32; // bits used in resulting key
  242. while (kbkdfMsg[0] < 4) {
  243. HMACSHA384(masterKey,&kbkdfMsg,sizeof(kbkdfMsg),kbuf);
  244. k1.init(kbuf);
  245. ++kbkdfMsg[0];
  246. }
  247. }
  248. private:
  249. static const uint32_t Te0[256];
  250. static const uint32_t Te1[256];
  251. static const uint32_t Te2[256];
  252. static const uint32_t Te3[256];
  253. static const uint32_t rcon[10];
  254. void _initSW(const uint8_t key[32]);
  255. void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
  256. void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
  257. /**************************************************************************/
  258. union {
  259. #ifdef ZT_AES_ARMNEON
  260. struct {
  261. uint32x4_t k[15];
  262. } neon;
  263. #endif
  264. #ifdef ZT_AES_AESNI
  265. struct {
  266. __m128i k[15];
  267. __m128i h,hh,hhh,hhhh;
  268. } ni;
  269. #endif
  270. struct {
  271. uint64_t h[2];
  272. uint32_t ek[60];
  273. } sw;
  274. } _k;
  275. /**************************************************************************/
  276. #ifdef ZT_AES_ARMNEON /******************************************************/
  277. static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)
  278. {
  279. uint32_t round1[4], round2[4], prv1[4], prv2[4];
  280. vst1q_u32(prv1, prev1);
  281. vst1q_u32(prv2, prev2);
  282. round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
  283. round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
  284. round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
  285. round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
  286. round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
  287. round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
  288. round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
  289. round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
  290. *e1 = vld1q_u3(round1);
  291. *e2 = vld1q_u3(round2);
  292. //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
  293. //return expansion;
  294. }
  295. inline void _init_armneon(uint8x16_t encKey)
  296. {
  297. uint32x4_t *schedule = _k.neon.k;
  298. uint32x4_t e1,e2;
  299. (*schedule)[0] = vld1q_u32(encKey);
  300. (*schedule)[1] = vld1q_u32(encKey + 16);
  301. _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);
  302. (*schedule)[2] = e1; (*schedule)[3] = e2;
  303. _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);
  304. (*schedule)[4] = e1; (*schedule)[5] = e2;
  305. _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);
  306. (*schedule)[6] = e1; (*schedule)[7] = e2;
  307. _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);
  308. (*schedule)[8] = e1; (*schedule)[9] = e2;
  309. _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);
  310. (*schedule)[10] = e1; (*schedule)[11] = e2;
  311. _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);
  312. (*schedule)[12] = e1; (*schedule)[13] = e2;
  313. _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);
  314. (*schedule)[14] = e1;
  315. /*
  316. doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
  317. (*schedule)[2] = doubleRound[0];
  318. (*schedule)[3] = doubleRound[1];
  319. doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
  320. (*schedule)[4] = doubleRound[0];
  321. (*schedule)[5] = doubleRound[1];
  322. doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
  323. (*schedule)[6] = doubleRound[0];
  324. (*schedule)[7] = doubleRound[1];
  325. doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
  326. (*schedule)[8] = doubleRound[0];
  327. (*schedule)[9] = doubleRound[1];
  328. doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
  329. (*schedule)[10] = doubleRound[0];
  330. (*schedule)[11] = doubleRound[1];
  331. doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
  332. (*schedule)[12] = doubleRound[0];
  333. (*schedule)[13] = doubleRound[1];
  334. doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
  335. (*schedule)[14] = doubleRound[0];
  336. */
  337. }
  338. inline void _encrypt_armneon(uint8x16_t *data) const
  339. {
  340. *data = veorq_u8(*data, _k.neon.k[0]);
  341. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  342. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  343. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  344. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  345. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  346. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  347. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  348. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  349. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  350. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  351. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  352. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  353. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  354. *data = vaeseq_u8(*data, _k.neon.k[14]);
  355. }
  356. #endif /*********************************************************************/
  357. #ifdef ZT_AES_AESNI /********************************************************/
  358. static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b)
  359. {
  360. __m128i x,y;
  361. b = _mm_shuffle_epi32(b,0xff);
  362. y = _mm_slli_si128(a,0x04);
  363. x = _mm_xor_si128(a,y);
  364. y = _mm_slli_si128(y,0x04);
  365. x = _mm_xor_si128(x,y);
  366. y = _mm_slli_si128(y,0x04);
  367. x = _mm_xor_si128(x,y);
  368. x = _mm_xor_si128(x,b);
  369. return x;
  370. }
  371. static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b)
  372. {
  373. __m128i x,y,z;
  374. y = _mm_aeskeygenassist_si128(a,0x00);
  375. z = _mm_shuffle_epi32(y,0xaa);
  376. y = _mm_slli_si128(b,0x04);
  377. x = _mm_xor_si128(b,y);
  378. y = _mm_slli_si128(y,0x04);
  379. x = _mm_xor_si128(x,y);
  380. y = _mm_slli_si128(y,0x04);
  381. x = _mm_xor_si128(x,y);
  382. x = _mm_xor_si128(x,z);
  383. return x;
  384. }
  385. ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32])
  386. {
  387. __m128i t1,t2;
  388. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  389. _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
  390. _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
  391. _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
  392. _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
  393. _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
  394. _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
  395. _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
  396. _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
  397. _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
  398. _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
  399. _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
  400. _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
  401. _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
  402. _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
  403. __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  404. h = _mm_aesenc_si128(h,_k.ni.k[1]);
  405. h = _mm_aesenc_si128(h,_k.ni.k[2]);
  406. h = _mm_aesenc_si128(h,_k.ni.k[3]);
  407. h = _mm_aesenc_si128(h,_k.ni.k[4]);
  408. h = _mm_aesenc_si128(h,_k.ni.k[5]);
  409. h = _mm_aesenc_si128(h,_k.ni.k[6]);
  410. h = _mm_aesenc_si128(h,_k.ni.k[7]);
  411. h = _mm_aesenc_si128(h,_k.ni.k[8]);
  412. h = _mm_aesenc_si128(h,_k.ni.k[9]);
  413. h = _mm_aesenc_si128(h,_k.ni.k[10]);
  414. h = _mm_aesenc_si128(h,_k.ni.k[11]);
  415. h = _mm_aesenc_si128(h,_k.ni.k[12]);
  416. h = _mm_aesenc_si128(h,_k.ni.k[13]);
  417. h = _mm_aesenclast_si128(h,_k.ni.k[14]);
  418. const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  419. __m128i hswap = _mm_shuffle_epi8(h,shuf);
  420. __m128i hh = _mult_block_aesni(shuf,hswap,h);
  421. __m128i hhh = _mult_block_aesni(shuf,hswap,hh);
  422. __m128i hhhh = _mult_block_aesni(shuf,hswap,hhh);
  423. _k.ni.h = hswap;
  424. _k.ni.hh = _mm_shuffle_epi8(hh,shuf);
  425. _k.ni.hhh = _mm_shuffle_epi8(hhh,shuf);
  426. _k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf);
  427. }
  428. ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const
  429. {
  430. __m128i tmp;
  431. tmp = _mm_loadu_si128((const __m128i *)in);
  432. tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
  433. tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
  434. tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
  435. tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
  436. tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
  437. tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
  438. tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
  439. tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
  440. tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
  441. tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
  442. tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
  443. tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
  444. tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
  445. tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
  446. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
  447. }
  448. ZT_ALWAYS_INLINE void _crypt_ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const
  449. {
  450. const __m64 iv0 = (__m64)(*((const uint64_t *)iv));
  451. uint64_t ctr = Utils::ntoh(*((const uint64_t *)(iv+8)));
  452. const __m128i k0 = _k.ni.k[0];
  453. const __m128i k1 = _k.ni.k[1];
  454. const __m128i k2 = _k.ni.k[2];
  455. const __m128i k3 = _k.ni.k[3];
  456. const __m128i k4 = _k.ni.k[4];
  457. const __m128i k5 = _k.ni.k[5];
  458. const __m128i k6 = _k.ni.k[6];
  459. const __m128i k7 = _k.ni.k[7];
  460. const __m128i k8 = _k.ni.k[8];
  461. const __m128i k9 = _k.ni.k[9];
  462. const __m128i k10 = _k.ni.k[10];
  463. const __m128i k11 = _k.ni.k[11];
  464. const __m128i k12 = _k.ni.k[12];
  465. const __m128i k13 = _k.ni.k[13];
  466. const __m128i k14 = _k.ni.k[14];
  467. #define ZT_AES_CTR_AESNI_ROUND(k) \
  468. c0 = _mm_aesenc_si128(c0,k); \
  469. c1 = _mm_aesenc_si128(c1,k); \
  470. c2 = _mm_aesenc_si128(c2,k); \
  471. c3 = _mm_aesenc_si128(c3,k); \
  472. c4 = _mm_aesenc_si128(c4,k); \
  473. c5 = _mm_aesenc_si128(c5,k); \
  474. c6 = _mm_aesenc_si128(c6,k); \
  475. c7 = _mm_aesenc_si128(c7,k)
  476. while (len >= 128) {
  477. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr),iv0),k0);
  478. __m128i c1 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+1ULL)),iv0),k0);
  479. __m128i c2 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+2ULL)),iv0),k0);
  480. __m128i c3 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+3ULL)),iv0),k0);
  481. __m128i c4 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+4ULL)),iv0),k0);
  482. __m128i c5 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+5ULL)),iv0),k0);
  483. __m128i c6 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+6ULL)),iv0),k0);
  484. __m128i c7 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+7ULL)),iv0),k0);
  485. ctr += 8;
  486. ZT_AES_CTR_AESNI_ROUND(k1);
  487. ZT_AES_CTR_AESNI_ROUND(k2);
  488. ZT_AES_CTR_AESNI_ROUND(k3);
  489. ZT_AES_CTR_AESNI_ROUND(k4);
  490. ZT_AES_CTR_AESNI_ROUND(k5);
  491. ZT_AES_CTR_AESNI_ROUND(k6);
  492. ZT_AES_CTR_AESNI_ROUND(k7);
  493. ZT_AES_CTR_AESNI_ROUND(k8);
  494. ZT_AES_CTR_AESNI_ROUND(k9);
  495. ZT_AES_CTR_AESNI_ROUND(k10);
  496. ZT_AES_CTR_AESNI_ROUND(k11);
  497. ZT_AES_CTR_AESNI_ROUND(k12);
  498. ZT_AES_CTR_AESNI_ROUND(k13);
  499. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14)));
  500. _mm_storeu_si128((__m128i *)(out + 16),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 16)),_mm_aesenclast_si128(c1,k14)));
  501. _mm_storeu_si128((__m128i *)(out + 32),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 32)),_mm_aesenclast_si128(c2,k14)));
  502. _mm_storeu_si128((__m128i *)(out + 48),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 48)),_mm_aesenclast_si128(c3,k14)));
  503. _mm_storeu_si128((__m128i *)(out + 64),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 64)),_mm_aesenclast_si128(c4,k14)));
  504. _mm_storeu_si128((__m128i *)(out + 80),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 80)),_mm_aesenclast_si128(c5,k14)));
  505. _mm_storeu_si128((__m128i *)(out + 96),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 96)),_mm_aesenclast_si128(c6,k14)));
  506. _mm_storeu_si128((__m128i *)(out + 112),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 112)),_mm_aesenclast_si128(c7,k14)));
  507. in += 128;
  508. out += 128;
  509. len -= 128;
  510. }
  511. #undef ZT_AES_CTR_AESNI_ROUND
  512. while (len >= 16) {
  513. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0);
  514. c0 = _mm_aesenc_si128(c0,k1);
  515. c0 = _mm_aesenc_si128(c0,k2);
  516. c0 = _mm_aesenc_si128(c0,k3);
  517. c0 = _mm_aesenc_si128(c0,k4);
  518. c0 = _mm_aesenc_si128(c0,k5);
  519. c0 = _mm_aesenc_si128(c0,k6);
  520. c0 = _mm_aesenc_si128(c0,k7);
  521. c0 = _mm_aesenc_si128(c0,k8);
  522. c0 = _mm_aesenc_si128(c0,k9);
  523. c0 = _mm_aesenc_si128(c0,k10);
  524. c0 = _mm_aesenc_si128(c0,k11);
  525. c0 = _mm_aesenc_si128(c0,k12);
  526. c0 = _mm_aesenc_si128(c0,k13);
  527. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14)));
  528. in += 16;
  529. out += 16;
  530. len -= 16;
  531. }
  532. if (len) {
  533. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0);
  534. c0 = _mm_aesenc_si128(c0,k1);
  535. c0 = _mm_aesenc_si128(c0,k2);
  536. c0 = _mm_aesenc_si128(c0,k3);
  537. c0 = _mm_aesenc_si128(c0,k4);
  538. c0 = _mm_aesenc_si128(c0,k5);
  539. c0 = _mm_aesenc_si128(c0,k6);
  540. c0 = _mm_aesenc_si128(c0,k7);
  541. c0 = _mm_aesenc_si128(c0,k8);
  542. c0 = _mm_aesenc_si128(c0,k9);
  543. c0 = _mm_aesenc_si128(c0,k10);
  544. c0 = _mm_aesenc_si128(c0,k11);
  545. c0 = _mm_aesenc_si128(c0,k12);
  546. c0 = _mm_aesenc_si128(c0,k13);
  547. c0 = _mm_aesenclast_si128(c0,k14);
  548. for(unsigned int i=0;i<len;++i)
  549. out[i] = in[i] ^ ((const uint8_t *)&c0)[i];
  550. }
  551. }
  552. static ZT_ALWAYS_INLINE __m128i _mult_block_aesni(__m128i shuf,__m128i h,__m128i y)
  553. {
  554. y = _mm_shuffle_epi8(y,shuf);
  555. __m128i t1 = _mm_clmulepi64_si128(h,y,0x00);
  556. __m128i t2 = _mm_clmulepi64_si128(h,y,0x01);
  557. __m128i t3 = _mm_clmulepi64_si128(h,y,0x10);
  558. __m128i t4 = _mm_clmulepi64_si128(h,y,0x11);
  559. t2 = _mm_xor_si128(t2,t3);
  560. t3 = _mm_slli_si128(t2,8);
  561. t2 = _mm_srli_si128(t2,8);
  562. t1 = _mm_xor_si128(t1,t3);
  563. t4 = _mm_xor_si128(t4,t2);
  564. __m128i t5 = _mm_srli_epi32(t1,31);
  565. t1 = _mm_slli_epi32(t1,1);
  566. __m128i t6 = _mm_srli_epi32(t4,31);
  567. t4 = _mm_slli_epi32(t4,1);
  568. t3 = _mm_srli_si128(t5,12);
  569. t6 = _mm_slli_si128(t6,4);
  570. t5 = _mm_slli_si128(t5,4);
  571. t1 = _mm_or_si128(t1,t5);
  572. t4 = _mm_or_si128(t4,t6);
  573. t4 = _mm_or_si128(t4,t3);
  574. t5 = _mm_slli_epi32(t1,31);
  575. t6 = _mm_slli_epi32(t1,30);
  576. t3 = _mm_slli_epi32(t1,25);
  577. t5 = _mm_xor_si128(t5,t6);
  578. t5 = _mm_xor_si128(t5,t3);
  579. t6 = _mm_srli_si128(t5,4);
  580. t4 = _mm_xor_si128(t4,t6);
  581. t5 = _mm_slli_si128(t5,12);
  582. t1 = _mm_xor_si128(t1,t5);
  583. t4 = _mm_xor_si128(t4,t1);
  584. t5 = _mm_srli_epi32(t1,1);
  585. t2 = _mm_srli_epi32(t1,2);
  586. t3 = _mm_srli_epi32(t1,7);
  587. t4 = _mm_xor_si128(t4,t2);
  588. t4 = _mm_xor_si128(t4,t3);
  589. t4 = _mm_xor_si128(t4,t5);
  590. return _mm_shuffle_epi8(t4,shuf);
  591. }
  592. static ZT_ALWAYS_INLINE __m128i _ghash_aesni(__m128i shuf,__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(shuf,h,_mm_xor_si128(y,x)); }
  593. ZT_ALWAYS_INLINE void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int len,uint8_t out[16]) const
  594. {
  595. const __m128i *ab = (const __m128i *)in;
  596. unsigned int blocks = len / 16;
  597. unsigned int pblocks = blocks - (blocks % 4);
  598. unsigned int rem = len % 16;
  599. const __m128i h1 = _k.ni.hhhh;
  600. const __m128i h2 = _k.ni.hhh;
  601. const __m128i h3 = _k.ni.hh;
  602. const __m128i h4 = _k.ni.h;
  603. const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  604. __m128i y = _mm_setzero_si128();
  605. unsigned int i = 0;
  606. for (;i<pblocks;i+=4) {
  607. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y,_mm_loadu_si128(ab + i + 0)),shuf);
  608. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 1),shuf);
  609. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 2),shuf);
  610. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 3),shuf);
  611. __m128i t0 = _mm_clmulepi64_si128(h1,d1,0x00);
  612. __m128i t1 = _mm_clmulepi64_si128(h2,d2,0x00);
  613. __m128i t2 = _mm_clmulepi64_si128(h3,d3,0x00);
  614. __m128i t3 = _mm_clmulepi64_si128(h4,d4,0x00);
  615. __m128i t8 = _mm_xor_si128(t0,t1);
  616. t8 = _mm_xor_si128(t8,t2);
  617. t8 = _mm_xor_si128(t8,t3);
  618. __m128i t4 = _mm_clmulepi64_si128(h1,d1,0x11);
  619. __m128i t5 = _mm_clmulepi64_si128(h2,d2,0x11);
  620. __m128i t6 = _mm_clmulepi64_si128(h3,d3,0x11);
  621. __m128i t7 = _mm_clmulepi64_si128(h4,d4,0x11);
  622. __m128i t9 = _mm_xor_si128(t4,t5);
  623. t9 = _mm_xor_si128(t9,t6);
  624. t9 = _mm_xor_si128(t9,t7);
  625. t0 = _mm_shuffle_epi32(h1,78);
  626. t4 = _mm_shuffle_epi32(d1,78);
  627. t0 = _mm_xor_si128(t0,h1);
  628. t4 = _mm_xor_si128(t4,d1);
  629. t1 = _mm_shuffle_epi32(h2,78);
  630. t5 = _mm_shuffle_epi32(d2,78);
  631. t1 = _mm_xor_si128(t1,h2);
  632. t5 = _mm_xor_si128(t5,d2);
  633. t2 = _mm_shuffle_epi32(h3,78);
  634. t6 = _mm_shuffle_epi32(d3,78);
  635. t2 = _mm_xor_si128(t2,h3);
  636. t6 = _mm_xor_si128(t6,d3);
  637. t3 = _mm_shuffle_epi32(h4,78);
  638. t7 = _mm_shuffle_epi32(d4,78);
  639. t3 = _mm_xor_si128(t3,h4);
  640. t7 = _mm_xor_si128(t7,d4);
  641. t0 = _mm_clmulepi64_si128(t0,t4,0x00);
  642. t1 = _mm_clmulepi64_si128(t1,t5,0x00);
  643. t2 = _mm_clmulepi64_si128(t2,t6,0x00);
  644. t3 = _mm_clmulepi64_si128(t3,t7,0x00);
  645. t0 = _mm_xor_si128(t0,t8);
  646. t0 = _mm_xor_si128(t0,t9);
  647. t0 = _mm_xor_si128(t1,t0);
  648. t0 = _mm_xor_si128(t2,t0);
  649. t0 = _mm_xor_si128(t3,t0);
  650. t4 = _mm_slli_si128(t0,8);
  651. t0 = _mm_srli_si128(t0,8);
  652. t3 = _mm_xor_si128(t4,t8);
  653. t6 = _mm_xor_si128(t0,t9);
  654. t7 = _mm_srli_epi32(t3,31);
  655. t8 = _mm_srli_epi32(t6,31);
  656. t3 = _mm_slli_epi32(t3,1);
  657. t6 = _mm_slli_epi32(t6,1);
  658. t9 = _mm_srli_si128(t7,12);
  659. t8 = _mm_slli_si128(t8,4);
  660. t7 = _mm_slli_si128(t7,4);
  661. t3 = _mm_or_si128(t3,t7);
  662. t6 = _mm_or_si128(t6,t8);
  663. t6 = _mm_or_si128(t6,t9);
  664. t7 = _mm_slli_epi32(t3,31);
  665. t8 = _mm_slli_epi32(t3,30);
  666. t9 = _mm_slli_epi32(t3,25);
  667. t7 = _mm_xor_si128(t7,t8);
  668. t7 = _mm_xor_si128(t7,t9);
  669. t8 = _mm_srli_si128(t7,4);
  670. t7 = _mm_slli_si128(t7,12);
  671. t3 = _mm_xor_si128(t3,t7);
  672. t2 = _mm_srli_epi32(t3,1);
  673. t4 = _mm_srli_epi32(t3,2);
  674. t5 = _mm_srli_epi32(t3,7);
  675. t2 = _mm_xor_si128(t2,t4);
  676. t2 = _mm_xor_si128(t2,t5);
  677. t2 = _mm_xor_si128(t2,t8);
  678. t3 = _mm_xor_si128(t3,t2);
  679. t6 = _mm_xor_si128(t6,t3);
  680. y = _mm_shuffle_epi8(t6,shuf);
  681. }
  682. for (;i<blocks;++i)
  683. y = _ghash_aesni(shuf,h4,y,_mm_loadu_si128(ab + i));
  684. if (rem) {
  685. __m128i last = _mm_setzero_si128();
  686. memcpy(&last,ab + blocks,rem);
  687. y = _ghash_aesni(shuf,h4,y,last);
  688. }
  689. y = _ghash_aesni(shuf,h4,y,_mm_set_epi64((__m64)0LL,(__m64)Utils::hton((uint64_t)len * (uint64_t)8)));
  690. __m128i t = _mm_xor_si128(_mm_set_epi32(0x01000000,(int)*((const uint32_t *)(iv+8)),(int)*((const uint32_t *)(iv+4)),(int)*((const uint32_t *)(iv))),_k.ni.k[0]);
  691. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  692. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  693. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  694. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  695. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  696. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  697. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  698. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  699. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  700. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  701. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  702. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  703. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  704. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  705. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));
  706. }
  707. #endif /* ZT_AES_AESNI ******************************************************/
  708. };
  709. } // namespace ZeroTier
  710. #endif