Switch.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2018 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #include <stdio.h>
  27. #include <stdlib.h>
  28. #include <algorithm>
  29. #include <utility>
  30. #include <stdexcept>
  31. #include "../version.h"
  32. #include "../include/ZeroTierOne.h"
  33. #include "Constants.hpp"
  34. #include "RuntimeEnvironment.hpp"
  35. #include "Switch.hpp"
  36. #include "Node.hpp"
  37. #include "InetAddress.hpp"
  38. #include "Topology.hpp"
  39. #include "Peer.hpp"
  40. #include "SelfAwareness.hpp"
  41. #include "Packet.hpp"
  42. #include "Trace.hpp"
  43. namespace ZeroTier {
  44. Switch::Switch(const RuntimeEnvironment *renv) :
  45. RR(renv),
  46. _lastBeaconResponse(0),
  47. _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine
  48. {
  49. }
  50. void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddress &fromAddr,const void *data,unsigned int len)
  51. {
  52. try {
  53. const int64_t now = RR->node->now();
  54. const SharedPtr<Path> path(RR->topology->getPath(localSocket,fromAddr));
  55. path->received(now);
  56. if (len == 13) {
  57. /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
  58. * announcements on the LAN to solve the 'same network problem.' We
  59. * no longer send these, but we'll listen for them for a while to
  60. * locate peers with versions <1.0.4. */
  61. const Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
  62. if (beaconAddr == RR->identity.address())
  63. return;
  64. if (!RR->node->shouldUsePathForZeroTierTraffic(tPtr,beaconAddr,localSocket,fromAddr))
  65. return;
  66. const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,beaconAddr));
  67. if (peer) { // we'll only respond to beacons from known peers
  68. if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses
  69. _lastBeaconResponse = now;
  70. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  71. outp.armor(peer->key(),true);
  72. path->send(RR,tPtr,outp.data(),outp.size(),now);
  73. }
  74. }
  75. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below!
  76. if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  77. // Handle fragment ----------------------------------------------------
  78. Packet::Fragment fragment(data,len);
  79. const Address destination(fragment.destination());
  80. if (destination != RR->identity.address()) {
  81. if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) )
  82. return;
  83. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  84. fragment.incrementHops();
  85. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  86. // It wouldn't hurt anything, just redundant and unnecessary.
  87. SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
  88. if ((!relayTo)||(!relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,false))) {
  89. // Don't know peer or no direct path -- so relay via someone upstream
  90. relayTo = RR->topology->getUpstreamPeer();
  91. if (relayTo)
  92. relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,true);
  93. }
  94. }
  95. } else {
  96. // Fragment looks like ours
  97. const uint64_t fragmentPacketId = fragment.packetId();
  98. const unsigned int fragmentNumber = fragment.fragmentNumber();
  99. const unsigned int totalFragments = fragment.totalFragments();
  100. if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) {
  101. // Fragment appears basically sane. Its fragment number must be
  102. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  103. // Total fragments must be more than 1, otherwise why are we
  104. // seeing a Packet::Fragment?
  105. RXQueueEntry *const rq = _findRXQueueEntry(fragmentPacketId);
  106. if (rq->packetId != fragmentPacketId) {
  107. // No packet found, so we received a fragment without its head.
  108. rq->timestamp = now;
  109. rq->packetId = fragmentPacketId;
  110. rq->frags[fragmentNumber - 1] = fragment;
  111. rq->totalFragments = totalFragments; // total fragment count is known
  112. rq->haveFragments = 1 << fragmentNumber; // we have only this fragment
  113. rq->complete = false;
  114. } else if (!(rq->haveFragments & (1 << fragmentNumber))) {
  115. // We have other fragments and maybe the head, so add this one and check
  116. rq->frags[fragmentNumber - 1] = fragment;
  117. rq->totalFragments = totalFragments;
  118. if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) {
  119. // We have all fragments -- assemble and process full Packet
  120. for(unsigned int f=1;f<totalFragments;++f)
  121. rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
  122. if (rq->frag0.tryDecode(RR,tPtr)) {
  123. rq->timestamp = 0; // packet decoded, free entry
  124. } else {
  125. rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
  126. }
  127. }
  128. } // else this is a duplicate fragment, ignore
  129. }
  130. }
  131. // --------------------------------------------------------------------
  132. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important!
  133. // Handle packet head -------------------------------------------------
  134. const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH);
  135. const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH);
  136. if (source == RR->identity.address())
  137. return;
  138. if (destination != RR->identity.address()) {
  139. if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) )
  140. return;
  141. Packet packet(data,len);
  142. if (packet.hops() < ZT_RELAY_MAX_HOPS) {
  143. packet.incrementHops();
  144. SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
  145. if ((relayTo)&&(relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,false))) {
  146. if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) {
  147. const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
  148. if (sourcePeer)
  149. relayTo->introduce(tPtr,now,sourcePeer);
  150. }
  151. } else {
  152. relayTo = RR->topology->getUpstreamPeer();
  153. if ((relayTo)&&(relayTo->address() != source)) {
  154. if (relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,true)) {
  155. const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
  156. if (sourcePeer)
  157. relayTo->introduce(tPtr,now,sourcePeer);
  158. }
  159. }
  160. }
  161. }
  162. } else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
  163. // Packet is the head of a fragmented packet series
  164. const uint64_t packetId = (
  165. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) |
  166. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) |
  167. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) |
  168. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) |
  169. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) |
  170. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) |
  171. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) |
  172. ((uint64_t)reinterpret_cast<const uint8_t *>(data)[7])
  173. );
  174. RXQueueEntry *const rq = _findRXQueueEntry(packetId);
  175. if (rq->packetId != packetId) {
  176. // If we have no other fragments yet, create an entry and save the head
  177. rq->timestamp = now;
  178. rq->packetId = packetId;
  179. rq->frag0.init(data,len,path,now);
  180. rq->totalFragments = 0;
  181. rq->haveFragments = 1;
  182. rq->complete = false;
  183. } else if (!(rq->haveFragments & 1)) {
  184. // If we have other fragments but no head, see if we are complete with the head
  185. if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) {
  186. // We have all fragments -- assemble and process full Packet
  187. rq->frag0.init(data,len,path,now);
  188. for(unsigned int f=1;f<rq->totalFragments;++f)
  189. rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
  190. if (rq->frag0.tryDecode(RR,tPtr)) {
  191. rq->timestamp = 0; // packet decoded, free entry
  192. } else {
  193. rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
  194. }
  195. } else {
  196. // Still waiting on more fragments, but keep the head
  197. rq->frag0.init(data,len,path,now);
  198. }
  199. } // else this is a duplicate head, ignore
  200. } else {
  201. // Packet is unfragmented, so just process it
  202. IncomingPacket packet(data,len,path,now);
  203. if (!packet.tryDecode(RR,tPtr)) {
  204. RXQueueEntry *const rq = _nextRXQueueEntry();
  205. rq->timestamp = now;
  206. rq->packetId = packet.packetId();
  207. rq->frag0 = packet;
  208. rq->totalFragments = 1;
  209. rq->haveFragments = 1;
  210. rq->complete = true;
  211. }
  212. }
  213. // --------------------------------------------------------------------
  214. }
  215. }
  216. } catch ( ... ) {} // sanity check, should be caught elsewhere
  217. }
  218. void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  219. {
  220. if (!network->hasConfig())
  221. return;
  222. // Check if this packet is from someone other than the tap -- i.e. bridged in
  223. bool fromBridged;
  224. if ((fromBridged = (from != network->mac()))) {
  225. if (!network->config().permitsBridging(RR->identity.address())) {
  226. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"not a bridge");
  227. return;
  228. }
  229. }
  230. if (to.isMulticast()) {
  231. MulticastGroup multicastGroup(to,0);
  232. if (to.isBroadcast()) {
  233. if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) {
  234. /* IPv4 ARP is one of the few special cases that we impose upon what is
  235. * otherwise a straightforward Ethernet switch emulation. Vanilla ARP
  236. * is dumb old broadcast and simply doesn't scale. ZeroTier multicast
  237. * groups have an additional field called ADI (additional distinguishing
  238. * information) which was added specifically for ARP though it could
  239. * be used for other things too. We then take ARP broadcasts and turn
  240. * them into multicasts by stuffing the IP address being queried into
  241. * the 32-bit ADI field. In practice this uses our multicast pub/sub
  242. * system to implement a kind of extended/distributed ARP table. */
  243. multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  244. } else if (!network->config().enableBroadcast()) {
  245. // Don't transmit broadcasts if this network doesn't want them
  246. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"broadcast disabled");
  247. return;
  248. }
  249. } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) {
  250. // IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled
  251. if ((network->config().ndpEmulation())&&(reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
  252. Address v6EmbeddedAddress;
  253. const uint8_t *const pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8;
  254. const uint8_t *my6 = (const uint8_t *)0;
  255. // ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host)
  256. // ZT-6PLANE address: fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host)
  257. // (XX - lower 32 bits of network ID XORed with higher 32 bits)
  258. // For these to work, we must have a ZT-managed address assigned in one of the
  259. // above formats, and the query must match its prefix.
  260. for(unsigned int sipk=0;sipk<network->config().staticIpCount;++sipk) {
  261. const InetAddress *const sip = &(network->config().staticIps[sipk]);
  262. if (sip->ss_family == AF_INET6) {
  263. my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr);
  264. const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port);
  265. if ((sipNetmaskBits == 88)&&(my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 /88 ???
  266. unsigned int ptr = 0;
  267. while (ptr != 11) {
  268. if (pkt6[ptr] != my6[ptr])
  269. break;
  270. ++ptr;
  271. }
  272. if (ptr == 11) { // prefix match!
  273. v6EmbeddedAddress.setTo(pkt6 + ptr,5);
  274. break;
  275. }
  276. } else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ???
  277. const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff);
  278. if ( (my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) {
  279. unsigned int ptr = 0;
  280. while (ptr != 5) {
  281. if (pkt6[ptr] != my6[ptr])
  282. break;
  283. ++ptr;
  284. }
  285. if (ptr == 5) { // prefix match!
  286. v6EmbeddedAddress.setTo(pkt6 + ptr,5);
  287. break;
  288. }
  289. }
  290. }
  291. }
  292. }
  293. if ((v6EmbeddedAddress)&&(v6EmbeddedAddress != RR->identity.address())) {
  294. const MAC peerMac(v6EmbeddedAddress,network->id());
  295. uint8_t adv[72];
  296. adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00;
  297. adv[4] = 0x00; adv[5] = 0x20;
  298. adv[6] = 0x3a; adv[7] = 0xff;
  299. for(int i=0;i<16;++i) adv[8 + i] = pkt6[i];
  300. for(int i=0;i<16;++i) adv[24 + i] = my6[i];
  301. adv[40] = 0x88; adv[41] = 0x00;
  302. adv[42] = 0x00; adv[43] = 0x00; // future home of checksum
  303. adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00;
  304. for(int i=0;i<16;++i) adv[48 + i] = pkt6[i];
  305. adv[64] = 0x02; adv[65] = 0x01;
  306. adv[66] = peerMac[0]; adv[67] = peerMac[1]; adv[68] = peerMac[2]; adv[69] = peerMac[3]; adv[70] = peerMac[4]; adv[71] = peerMac[5];
  307. uint16_t pseudo_[36];
  308. uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_);
  309. for(int i=0;i<32;++i) pseudo[i] = adv[8 + i];
  310. pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20;
  311. pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a;
  312. for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i];
  313. uint32_t checksum = 0;
  314. for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]);
  315. while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16);
  316. checksum = ~checksum;
  317. adv[42] = (checksum >> 8) & 0xff;
  318. adv[43] = checksum & 0xff;
  319. RR->node->putFrame(tPtr,network->id(),network->userPtr(),peerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72);
  320. return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query.
  321. } // else no NDP emulation
  322. } // else no NDP emulation
  323. }
  324. // Check this after NDP emulation, since that has to be allowed in exactly this case
  325. if (network->config().multicastLimit == 0) {
  326. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"multicast disabled");
  327. return;
  328. }
  329. /* Learn multicast groups for bridged-in hosts.
  330. * Note that some OSes, most notably Linux, do this for you by learning
  331. * multicast addresses on bridge interfaces and subscribing each slave.
  332. * But in that case this does no harm, as the sets are just merged. */
  333. if (fromBridged)
  334. network->learnBridgedMulticastGroup(tPtr,multicastGroup,RR->node->now());
  335. // First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates.
  336. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
  337. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  338. return;
  339. }
  340. RR->mc->send(
  341. tPtr,
  342. network->config().multicastLimit,
  343. RR->node->now(),
  344. network->id(),
  345. network->config().disableCompression(),
  346. network->config().activeBridges(),
  347. multicastGroup,
  348. (fromBridged) ? from : MAC(),
  349. etherType,
  350. data,
  351. len);
  352. } else if (to == network->mac()) {
  353. // Destination is this node, so just reinject it
  354. RR->node->putFrame(tPtr,network->id(),network->userPtr(),from,to,etherType,vlanId,data,len);
  355. } else if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  356. // Destination is another ZeroTier peer on the same network
  357. Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
  358. SharedPtr<Peer> toPeer(RR->topology->getPeer(tPtr,toZT));
  359. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId)) {
  360. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  361. return;
  362. }
  363. if (fromBridged) {
  364. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  365. outp.append(network->id());
  366. outp.append((unsigned char)0x00);
  367. to.appendTo(outp);
  368. from.appendTo(outp);
  369. outp.append((uint16_t)etherType);
  370. outp.append(data,len);
  371. if (!network->config().disableCompression())
  372. outp.compress();
  373. send(tPtr,outp,true);
  374. } else {
  375. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  376. outp.append(network->id());
  377. outp.append((uint16_t)etherType);
  378. outp.append(data,len);
  379. if (!network->config().disableCompression())
  380. outp.compress();
  381. send(tPtr,outp,true);
  382. }
  383. } else {
  384. // Destination is bridged behind a remote peer
  385. // We filter with a NULL destination ZeroTier address first. Filtrations
  386. // for each ZT destination are also done below. This is the same rationale
  387. // and design as for multicast.
  388. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
  389. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  390. return;
  391. }
  392. Address bridges[ZT_MAX_BRIDGE_SPAM];
  393. unsigned int numBridges = 0;
  394. /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
  395. bridges[0] = network->findBridgeTo(to);
  396. std::vector<Address> activeBridges(network->config().activeBridges());
  397. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) {
  398. /* We have a known bridge route for this MAC, send it there. */
  399. ++numBridges;
  400. } else if (!activeBridges.empty()) {
  401. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  402. * bridges. If someone responds, we'll learn the route. */
  403. std::vector<Address>::const_iterator ab(activeBridges.begin());
  404. if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) {
  405. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  406. while (ab != activeBridges.end()) {
  407. bridges[numBridges++] = *ab;
  408. ++ab;
  409. }
  410. } else {
  411. // Otherwise pick a random set of them
  412. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  413. if (ab == activeBridges.end())
  414. ab = activeBridges.begin();
  415. if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) {
  416. bridges[numBridges++] = *ab;
  417. ++ab;
  418. } else ++ab;
  419. }
  420. }
  421. }
  422. for(unsigned int b=0;b<numBridges;++b) {
  423. if (network->filterOutgoingPacket(tPtr,true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId)) {
  424. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  425. outp.append(network->id());
  426. outp.append((uint8_t)0x00);
  427. to.appendTo(outp);
  428. from.appendTo(outp);
  429. outp.append((uint16_t)etherType);
  430. outp.append(data,len);
  431. if (!network->config().disableCompression())
  432. outp.compress();
  433. send(tPtr,outp,true);
  434. } else {
  435. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked (bridge replication)");
  436. }
  437. }
  438. }
  439. }
  440. void Switch::send(void *tPtr,Packet &packet,bool encrypt)
  441. {
  442. const Address dest(packet.destination());
  443. if (dest == RR->identity.address())
  444. return;
  445. if (!_trySend(tPtr,packet,encrypt)) {
  446. {
  447. Mutex::Lock _l(_txQueue_m);
  448. _txQueue.push_back(TXQueueEntry(dest,RR->node->now(),packet,encrypt));
  449. }
  450. if (!RR->topology->getPeer(tPtr,dest))
  451. requestWhois(tPtr,RR->node->now(),dest);
  452. }
  453. }
  454. void Switch::requestWhois(void *tPtr,const int64_t now,const Address &addr)
  455. {
  456. if (addr == RR->identity.address())
  457. return;
  458. {
  459. Mutex::Lock _l(_lastSentWhoisRequest_m);
  460. int64_t &last = _lastSentWhoisRequest[addr];
  461. if ((now - last) < ZT_WHOIS_RETRY_DELAY)
  462. return;
  463. else last = now;
  464. }
  465. const SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer());
  466. if (upstream) {
  467. Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
  468. addr.appendTo(outp);
  469. RR->node->expectReplyTo(outp.packetId());
  470. send(tPtr,outp,true);
  471. }
  472. }
  473. void Switch::doAnythingWaitingForPeer(void *tPtr,const SharedPtr<Peer> &peer)
  474. {
  475. {
  476. Mutex::Lock _l(_lastSentWhoisRequest_m);
  477. _lastSentWhoisRequest.erase(peer->address());
  478. }
  479. const int64_t now = RR->node->now();
  480. for(unsigned int ptr=0;ptr<ZT_RX_QUEUE_SIZE;++ptr) {
  481. RXQueueEntry *const rq = &(_rxQueue[ptr]);
  482. if ((rq->timestamp)&&(rq->complete)) {
  483. if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT))
  484. rq->timestamp = 0;
  485. }
  486. }
  487. {
  488. Mutex::Lock _l(_txQueue_m);
  489. for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
  490. if (txi->dest == peer->address()) {
  491. if (_trySend(tPtr,txi->packet,txi->encrypt)) {
  492. _txQueue.erase(txi++);
  493. } else {
  494. ++txi;
  495. }
  496. } else {
  497. ++txi;
  498. }
  499. }
  500. }
  501. }
  502. unsigned long Switch::doTimerTasks(void *tPtr,int64_t now)
  503. {
  504. const uint64_t timeSinceLastCheck = now - _lastCheckedQueues;
  505. if (timeSinceLastCheck < ZT_WHOIS_RETRY_DELAY)
  506. return (unsigned long)(ZT_WHOIS_RETRY_DELAY - timeSinceLastCheck);
  507. _lastCheckedQueues = now;
  508. std::vector<Address> needWhois;
  509. {
  510. Mutex::Lock _l(_txQueue_m);
  511. for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
  512. if (_trySend(tPtr,txi->packet,txi->encrypt)) {
  513. _txQueue.erase(txi++);
  514. } else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  515. _txQueue.erase(txi++);
  516. } else {
  517. if (!RR->topology->getPeer(tPtr,txi->dest))
  518. needWhois.push_back(txi->dest);
  519. ++txi;
  520. }
  521. }
  522. }
  523. for(std::vector<Address>::const_iterator i(needWhois.begin());i!=needWhois.end();++i)
  524. requestWhois(tPtr,now,*i);
  525. for(unsigned int ptr=0;ptr<ZT_RX_QUEUE_SIZE;++ptr) {
  526. RXQueueEntry *const rq = &(_rxQueue[ptr]);
  527. if ((rq->timestamp)&&(rq->complete)) {
  528. if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT)) {
  529. rq->timestamp = 0;
  530. } else {
  531. const Address src(rq->frag0.source());
  532. if (!RR->topology->getPeer(tPtr,src))
  533. requestWhois(tPtr,now,src);
  534. }
  535. }
  536. }
  537. {
  538. Mutex::Lock _l(_lastUniteAttempt_m);
  539. Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt);
  540. _LastUniteKey *k = (_LastUniteKey *)0;
  541. uint64_t *v = (uint64_t *)0;
  542. while (i.next(k,v)) {
  543. if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8))
  544. _lastUniteAttempt.erase(*k);
  545. }
  546. }
  547. {
  548. Mutex::Lock _l(_lastSentWhoisRequest_m);
  549. Hashtable< Address,int64_t >::Iterator i(_lastSentWhoisRequest);
  550. Address *a = (Address *)0;
  551. int64_t *ts = (int64_t *)0;
  552. while (i.next(a,ts)) {
  553. if ((now - *ts) > (ZT_WHOIS_RETRY_DELAY * 2))
  554. _lastSentWhoisRequest.erase(*a);
  555. }
  556. }
  557. return ZT_WHOIS_RETRY_DELAY;
  558. }
  559. bool Switch::_shouldUnite(const int64_t now,const Address &source,const Address &destination)
  560. {
  561. Mutex::Lock _l(_lastUniteAttempt_m);
  562. uint64_t &ts = _lastUniteAttempt[_LastUniteKey(source,destination)];
  563. if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) {
  564. ts = now;
  565. return true;
  566. }
  567. return false;
  568. }
  569. bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt)
  570. {
  571. SharedPtr<Path> viaPath;
  572. const int64_t now = RR->node->now();
  573. const Address destination(packet.destination());
  574. const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,destination));
  575. if (peer) {
  576. viaPath = peer->getBestPath(now,false);
  577. if (!viaPath) {
  578. peer->tryMemorizedPath(tPtr,now); // periodically attempt memorized or statically defined paths, if any are known
  579. const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
  580. if ( (!relay) || (!(viaPath = relay->getBestPath(now,false))) ) {
  581. if (!(viaPath = peer->getBestPath(now,true)))
  582. return false;
  583. }
  584. }
  585. } else {
  586. return false;
  587. }
  588. unsigned int mtu = ZT_DEFAULT_PHYSMTU;
  589. uint64_t trustedPathId = 0;
  590. RR->topology->getOutboundPathInfo(viaPath->address(),mtu,trustedPathId);
  591. unsigned int chunkSize = std::min(packet.size(),mtu);
  592. packet.setFragmented(chunkSize < packet.size());
  593. if (trustedPathId) {
  594. packet.setTrusted(trustedPathId);
  595. } else {
  596. packet.armor(peer->key(),encrypt);
  597. }
  598. if (viaPath->send(RR,tPtr,packet.data(),chunkSize,now)) {
  599. if (chunkSize < packet.size()) {
  600. // Too big for one packet, fragment the rest
  601. unsigned int fragStart = chunkSize;
  602. unsigned int remaining = packet.size() - chunkSize;
  603. unsigned int fragsRemaining = (remaining / (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  604. if ((fragsRemaining * (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  605. ++fragsRemaining;
  606. const unsigned int totalFragments = fragsRemaining + 1;
  607. for(unsigned int fno=1;fno<totalFragments;++fno) {
  608. chunkSize = std::min(remaining,(unsigned int)(mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  609. Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments);
  610. viaPath->send(RR,tPtr,frag.data(),frag.size(),now);
  611. fragStart += chunkSize;
  612. remaining -= chunkSize;
  613. }
  614. }
  615. }
  616. return true;
  617. }
  618. } // namespace ZeroTier