Switch.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2011-2014 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "Constants.hpp"
  33. #ifdef __WINDOWS__
  34. #include <WinSock2.h>
  35. #include <Windows.h>
  36. #endif
  37. #include "Switch.hpp"
  38. #include "Node.hpp"
  39. #include "EthernetTap.hpp"
  40. #include "InetAddress.hpp"
  41. #include "Topology.hpp"
  42. #include "RuntimeEnvironment.hpp"
  43. #include "Peer.hpp"
  44. #include "NodeConfig.hpp"
  45. #include "CMWC4096.hpp"
  46. #include "AntiRecursion.hpp"
  47. #include "../version.h"
  48. namespace ZeroTier {
  49. Switch::Switch(const RuntimeEnvironment *renv) :
  50. _r(renv),
  51. _lastBeacon(0),
  52. _multicastIdCounter((unsigned int)renv->prng->next32()) // start a random spot to minimize possible collisions on startup
  53. {
  54. }
  55. Switch::~Switch()
  56. {
  57. }
  58. void Switch::onRemotePacket(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,Buffer<ZT_SOCKET_MAX_MESSAGE_LEN> &data)
  59. {
  60. try {
  61. if (data.size() == ZT_PROTO_BEACON_LENGTH) {
  62. _handleBeacon(fromSock,fromAddr,data);
  63. } else if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  64. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  65. _handleRemotePacketFragment(fromSock,fromAddr,data);
  66. else if (data.size() >= ZT_PROTO_MIN_PACKET_LENGTH)
  67. _handleRemotePacketHead(fromSock,fromAddr,data);
  68. }
  69. } catch (std::exception &ex) {
  70. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  71. } catch ( ... ) {
  72. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  73. }
  74. }
  75. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  76. {
  77. SharedPtr<NetworkConfig> nconf(network->config2());
  78. if (!nconf)
  79. return;
  80. // Sanity check -- bridge loop? OS problem?
  81. if (to == network->mac())
  82. return;
  83. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  84. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  85. * still happen because Windows likes to send broadcasts over interfaces that have little
  86. * to do with their intended target audience. :P */
  87. if (!_r->antiRec->checkEthernetFrame(data.data(),data.size())) {
  88. TRACE("%s: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->tapDeviceName().c_str(),etherTypeName(etherType),data.size());
  89. return;
  90. }
  91. // Check to make sure this protocol is allowed on this network
  92. if (!nconf->permitsEtherType(etherType)) {
  93. TRACE("%s: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->tapDeviceName().c_str(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  94. return;
  95. }
  96. // Check if this packet is from someone other than the tap -- i.e. bridged in
  97. bool fromBridged = false;
  98. if (from != network->mac()) {
  99. if (!network->permitsBridging(_r->identity.address())) {
  100. LOG("%s: %s -> %s %s not forwarded, bridging disabled on %.16llx or this peer not a bridge",network->tapDeviceName().c_str(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id());
  101. return;
  102. }
  103. fromBridged = true;
  104. }
  105. if (to.isMulticast()) {
  106. // Destination is a multicast address (including broadcast)
  107. uint64_t now = Utils::now();
  108. MulticastGroup mg(to,0);
  109. if (to.isBroadcast()) {
  110. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() >= 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01)) {
  111. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  112. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  113. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  114. } else if (!nconf->enableBroadcast()) {
  115. // Don't transmit broadcasts if this network doesn't want them
  116. TRACE("%s: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled on network %.16llx",network->tapDeviceName().c_str(),network->id());
  117. return;
  118. }
  119. }
  120. /* Learn multicast groups for bridged-in hosts.
  121. * Note that some OSes, most notably Linux, do this for you by learning
  122. * multicast addresses on bridge interfaces and subscribing each slave.
  123. * But in that case this does no harm, as the sets are just merged. */
  124. if (fromBridged)
  125. network->learnBridgedMulticastGroup(mg,now);
  126. // Check multicast/broadcast bandwidth quotas and reject if quota exceeded
  127. if (!network->updateAndCheckMulticastBalance(_r->identity.address(),mg,data.size())) {
  128. TRACE("%s: didn't multicast %d bytes, quota exceeded for multicast group %s",network->tapDeviceName().c_str(),(int)data.size(),mg.toString().c_str());
  129. return;
  130. }
  131. TRACE("%s: MULTICAST %s -> %s %s %d",network->tapDeviceName().c_str(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),(int)data.size());
  132. const unsigned int mcid = ++_multicastIdCounter & 0xffffff;
  133. const uint16_t bloomNonce = (uint16_t)(_r->prng->next32() & 0xffff); // doesn't need to be cryptographically strong
  134. unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM];
  135. unsigned char fifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH]; // extra ZT_ADDRESS_LENGTH is for first hop, not put in packet but serves as destination for packet
  136. unsigned char *const fifoEnd = fifo + sizeof(fifo);
  137. const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + data.size();
  138. const SharedPtr<Peer> supernode(_r->topology->getBestSupernode());
  139. // For each bit prefix send a packet to a list of destinations within it
  140. for(unsigned int prefix=0,np=((unsigned int)2 << (nconf->multicastPrefixBits() - 1));prefix<np;++prefix) {
  141. memset(bloom,0,sizeof(bloom));
  142. unsigned char *fifoPtr = fifo;
  143. // All multicasts visit all active bridges first -- this is one of the two active/passive bridge differences
  144. for(std::set<Address>::const_iterator ab(nconf->activeBridges().begin());ab!=nconf->activeBridges().end();++ab) {
  145. if ((*ab != _r->identity.address())&&(ab->withinMulticastPropagationPrefix(prefix,nconf->multicastPrefixBits()))) {
  146. SharedPtr<Peer> abPeer(_r->topology->getPeer(*ab));
  147. if ((abPeer)&&(abPeer->hasActiveDirectPath(now))) {
  148. ab->copyTo(fifoPtr,ZT_ADDRESS_LENGTH);
  149. if ((fifoPtr += ZT_ADDRESS_LENGTH) == fifoEnd)
  150. break;
  151. }
  152. }
  153. }
  154. // Then visit next hops according to multicaster (if there's room... almost certainly will be)
  155. if (fifoPtr != fifoEnd) {
  156. _r->mc->getNextHops(network->id(),mg,Multicaster::AddToPropagationQueue(&fifoPtr,fifoEnd,bloom,bloomNonce,_r->identity.address(),nconf->multicastPrefixBits(),prefix));
  157. // Pad remainder of FIFO with zeroes
  158. while (fifoPtr != fifoEnd)
  159. *(fifoPtr++) = (unsigned char)0;
  160. }
  161. // First element in FIFO is first hop, rest of FIFO is sent in packet *to* first hop
  162. Address firstHop(fifo,ZT_ADDRESS_LENGTH);
  163. if (!firstHop) {
  164. if (supernode)
  165. firstHop = supernode->address();
  166. else continue; // nowhere to go
  167. }
  168. Packet outp(firstHop,_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
  169. outp.append((uint16_t)0);
  170. outp.append(fifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); // remainder of fifo is loaded into packet
  171. outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM);
  172. outp.append((nconf->com()) ? (unsigned char)ZT_PROTO_VERB_MULTICAST_FRAME_FLAGS_HAS_MEMBERSHIP_CERTIFICATE : (unsigned char)0);
  173. outp.append(network->id());
  174. outp.append(bloomNonce);
  175. outp.append((unsigned char)nconf->multicastPrefixBits());
  176. outp.append((unsigned char)prefix);
  177. _r->identity.address().appendTo(outp); // lower 40 bits of MCID are my address
  178. outp.append((unsigned char)((mcid >> 16) & 0xff));
  179. outp.append((unsigned char)((mcid >> 8) & 0xff));
  180. outp.append((unsigned char)(mcid & 0xff)); // upper 24 bits of MCID are from our counter
  181. from.appendTo(outp);
  182. mg.mac().appendTo(outp);
  183. outp.append(mg.adi());
  184. outp.append((uint16_t)etherType);
  185. outp.append((uint16_t)data.size());
  186. outp.append(data);
  187. C25519::Signature sig(_r->identity.sign(outp.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen));
  188. outp.append((uint16_t)sig.size());
  189. outp.append(sig.data,(unsigned int)sig.size());
  190. // FIXME: now we send the netconf cert with every single multicast,
  191. // which pretty much ensures everyone has it ahead of time but adds
  192. // some redundant payload. Maybe think abouut this in the future.
  193. if (nconf->com())
  194. nconf->com().serialize(outp);
  195. outp.compress();
  196. send(outp,true);
  197. }
  198. return;
  199. }
  200. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  201. // Destination is another ZeroTier node
  202. Address toZT(to.toAddress(network->id()));
  203. if (network->isAllowed(toZT)) {
  204. network->pushMembershipCertificate(toZT,false,Utils::now());
  205. if (fromBridged) {
  206. // Must use EXT_FRAME if source is not myself
  207. Packet outp(toZT,_r->identity.address(),Packet::VERB_EXT_FRAME);
  208. outp.append(network->id());
  209. outp.append((unsigned char)0);
  210. to.appendTo(outp);
  211. from.appendTo(outp);
  212. outp.append((uint16_t)etherType);
  213. outp.append(data);
  214. outp.compress();
  215. send(outp,true);
  216. } else {
  217. // VERB_FRAME is really just lighter weight EXT_FRAME, can use for direct-to-direct (before bridging this was the only unicast method)
  218. Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
  219. outp.append(network->id());
  220. outp.append((uint16_t)etherType);
  221. outp.append(data);
  222. outp.compress();
  223. send(outp,true);
  224. }
  225. } else {
  226. TRACE("%s: UNICAST: %s -> %s %s dropped, destination not a member of closed network %.16llx",network->tapDeviceName().c_str(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id());
  227. }
  228. return;
  229. }
  230. {
  231. // Destination is behind another bridge
  232. Address bridges[ZT_MAX_BRIDGE_SPAM];
  233. unsigned int numBridges = 0;
  234. bridges[0] = network->findBridgeTo(to);
  235. if ((bridges[0])&&(bridges[0] != _r->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) {
  236. // We have a known bridge route for this MAC.
  237. ++numBridges;
  238. } else if (!nconf->activeBridges().empty()) {
  239. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  240. * bridges. This is similar to what many switches do -- if they do not
  241. * know which port corresponds to a MAC, they send it to all ports. If
  242. * there aren't any active bridges, numBridges will stay 0 and packet
  243. * is dropped. */
  244. std::set<Address>::const_iterator ab(nconf->activeBridges().begin());
  245. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  246. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  247. while (ab != nconf->activeBridges().end()) {
  248. if (network->isAllowed(*ab)) // config sanity check
  249. bridges[numBridges++] = *ab;
  250. ++ab;
  251. }
  252. } else {
  253. // Otherwise pick a random set of them
  254. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  255. if (ab == nconf->activeBridges().end())
  256. ab = nconf->activeBridges().begin();
  257. if (((unsigned long)_r->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
  258. if (network->isAllowed(*ab)) // config sanity check
  259. bridges[numBridges++] = *ab;
  260. ++ab;
  261. } else ++ab;
  262. }
  263. }
  264. }
  265. for(unsigned int b=0;b<numBridges;++b) {
  266. Packet outp(bridges[b],_r->identity.address(),Packet::VERB_EXT_FRAME);
  267. outp.append(network->id());
  268. outp.append((unsigned char)0);
  269. to.appendTo(outp);
  270. from.appendTo(outp);
  271. outp.append((uint16_t)etherType);
  272. outp.append(data);
  273. outp.compress();
  274. send(outp,true);
  275. }
  276. }
  277. }
  278. void Switch::send(const Packet &packet,bool encrypt)
  279. {
  280. if (packet.destination() == _r->identity.address()) {
  281. TRACE("BUG: caught attempt to send() to self, ignored");
  282. return;
  283. }
  284. if (!_trySend(packet,encrypt)) {
  285. Mutex::Lock _l(_txQueue_m);
  286. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
  287. }
  288. }
  289. void Switch::sendHELLO(const Address &dest)
  290. {
  291. Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
  292. outp.append((unsigned char)ZT_PROTO_VERSION);
  293. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  294. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  295. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  296. outp.append(Utils::now());
  297. _r->identity.serialize(outp,false);
  298. send(outp,false);
  299. }
  300. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,const Path &path)
  301. {
  302. uint64_t now = Utils::now();
  303. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  304. outp.append((unsigned char)ZT_PROTO_VERSION);
  305. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  306. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  307. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  308. outp.append(now);
  309. _r->identity.serialize(outp,false);
  310. outp.armor(dest->key(),false);
  311. _r->antiRec->logOutgoingZT(outp.data(),outp.size());
  312. return _r->sm->send(path.address(),path.tcp(),path.type() == Path::PATH_TYPE_TCP_OUT,outp.data(),outp.size());
  313. }
  314. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,const InetAddress &destUdp)
  315. {
  316. uint64_t now = Utils::now();
  317. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  318. outp.append((unsigned char)ZT_PROTO_VERSION);
  319. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  320. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  321. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  322. outp.append(now);
  323. _r->identity.serialize(outp,false);
  324. outp.armor(dest->key(),false);
  325. _r->antiRec->logOutgoingZT(outp.data(),outp.size());
  326. return _r->sm->send(destUdp,false,false,outp.data(),outp.size());
  327. }
  328. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  329. {
  330. if ((p1 == _r->identity.address())||(p2 == _r->identity.address()))
  331. return false;
  332. SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
  333. if (!p1p)
  334. return false;
  335. SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
  336. if (!p2p)
  337. return false;
  338. uint64_t now = Utils::now();
  339. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  340. if (!(cg.first))
  341. return false;
  342. // Addresses are sorted in key for last unite attempt map for order
  343. // invariant lookup: (p1,p2) == (p2,p1)
  344. Array<Address,2> uniteKey;
  345. if (p1 >= p2) {
  346. uniteKey[0] = p2;
  347. uniteKey[1] = p1;
  348. } else {
  349. uniteKey[0] = p1;
  350. uniteKey[1] = p2;
  351. }
  352. {
  353. Mutex::Lock _l(_lastUniteAttempt_m);
  354. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  355. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  356. return false;
  357. else _lastUniteAttempt[uniteKey] = now;
  358. }
  359. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  360. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  361. * P2 in randomized order in terms of which gets sent first. This is done
  362. * since in a few cases NAT-t can be sensitive to slight timing differences
  363. * in terms of when the two peers initiate. Normally this is accounted for
  364. * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
  365. * given that supernodes are hosted on cloud providers this can in some
  366. * cases have a few ms of latency between packet departures. By randomizing
  367. * the order we make each attempted NAT-t favor one or the other going
  368. * first, meaning if it doesn't succeed the first time it might the second
  369. * and so forth. */
  370. unsigned int alt = _r->prng->next32() & 1;
  371. unsigned int completed = alt + 2;
  372. while (alt != completed) {
  373. if ((alt & 1) == 0) {
  374. // Tell p1 where to find p2.
  375. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  376. outp.append((unsigned char)0);
  377. p2.appendTo(outp);
  378. outp.append((uint16_t)cg.first.port());
  379. if (cg.first.isV6()) {
  380. outp.append((unsigned char)16);
  381. outp.append(cg.first.rawIpData(),16);
  382. } else {
  383. outp.append((unsigned char)4);
  384. outp.append(cg.first.rawIpData(),4);
  385. }
  386. outp.armor(p1p->key(),true);
  387. p1p->send(_r,outp.data(),outp.size(),now);
  388. } else {
  389. // Tell p2 where to find p1.
  390. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  391. outp.append((unsigned char)0);
  392. p1.appendTo(outp);
  393. outp.append((uint16_t)cg.second.port());
  394. if (cg.second.isV6()) {
  395. outp.append((unsigned char)16);
  396. outp.append(cg.second.rawIpData(),16);
  397. } else {
  398. outp.append((unsigned char)4);
  399. outp.append(cg.second.rawIpData(),4);
  400. }
  401. outp.armor(p2p->key(),true);
  402. p2p->send(_r,outp.data(),outp.size(),now);
  403. }
  404. ++alt; // counts up and also flips LSB
  405. }
  406. return true;
  407. }
  408. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  409. {
  410. _r->sm->sendFirewallOpener(atAddr,ZT_FIREWALL_OPENER_HOPS);
  411. {
  412. Mutex::Lock _l(_contactQueue_m);
  413. _contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,atAddr));
  414. }
  415. // Kick main loop out of wait so that it can pick up this
  416. // change to our scheduled timer tasks.
  417. _r->sm->whack();
  418. }
  419. unsigned long Switch::doTimerTasks()
  420. {
  421. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  422. uint64_t now = Utils::now();
  423. {
  424. Mutex::Lock _l(_contactQueue_m);
  425. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  426. if (now >= qi->fireAtTime) {
  427. TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str());
  428. sendHELLO(qi->peer,qi->inaddr);
  429. _contactQueue.erase(qi++);
  430. } else {
  431. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  432. ++qi;
  433. }
  434. }
  435. }
  436. {
  437. Mutex::Lock _l(_outstandingWhoisRequests_m);
  438. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  439. unsigned long since = (unsigned long)(now - i->second.lastSent);
  440. if (since >= ZT_WHOIS_RETRY_DELAY) {
  441. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  442. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  443. _outstandingWhoisRequests.erase(i++);
  444. continue;
  445. } else {
  446. i->second.lastSent = now;
  447. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  448. ++i->second.retries;
  449. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  450. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  451. }
  452. } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  453. ++i;
  454. }
  455. }
  456. {
  457. Mutex::Lock _l(_txQueue_m);
  458. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  459. if (_trySend(i->second.packet,i->second.encrypt))
  460. _txQueue.erase(i++);
  461. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  462. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  463. _txQueue.erase(i++);
  464. } else ++i;
  465. }
  466. }
  467. {
  468. Mutex::Lock _l(_rxQueue_m);
  469. for(std::list< SharedPtr<PacketDecoder> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  470. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  471. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  472. _rxQueue.erase(i++);
  473. } else ++i;
  474. }
  475. }
  476. {
  477. Mutex::Lock _l(_defragQueue_m);
  478. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  479. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  480. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  481. _defragQueue.erase(i++);
  482. } else ++i;
  483. }
  484. }
  485. return std::max(nextDelay,(unsigned long)10); // minimum delay
  486. }
  487. void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
  488. {
  489. std::vector< SharedPtr<Peer> > directPeers;
  490. _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers,Utils::now()));
  491. #ifdef ZT_TRACE
  492. unsigned int totalMulticastGroups = 0;
  493. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
  494. totalMulticastGroups += (unsigned int)i->second.size();
  495. TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
  496. #endif
  497. uint64_t now = Utils::now();
  498. for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
  499. Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  500. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
  501. nwmgs->first->pushMembershipCertificate((*p)->address(),false,now);
  502. if ((_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isAllowed((*p)->address()))) {
  503. for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
  504. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  505. send(outp,true);
  506. outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  507. }
  508. // network ID, MAC, ADI
  509. outp.append((uint64_t)nwmgs->first->id());
  510. mg->mac().appendTo(outp);
  511. outp.append((uint32_t)mg->adi());
  512. }
  513. }
  514. }
  515. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  516. send(outp,true);
  517. }
  518. }
  519. void Switch::announceMulticastGroups(const SharedPtr<Peer> &peer)
  520. {
  521. Packet outp(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  522. std::vector< SharedPtr<Network> > networks(_r->nc->networks());
  523. uint64_t now = Utils::now();
  524. for(std::vector< SharedPtr<Network> >::iterator n(networks.begin());n!=networks.end();++n) {
  525. if (((*n)->isAllowed(peer->address()))||(_r->topology->isSupernode(peer->address()))) {
  526. (*n)->pushMembershipCertificate(peer->address(),false,now);
  527. std::set<MulticastGroup> mgs((*n)->multicastGroups());
  528. for(std::set<MulticastGroup>::iterator mg(mgs.begin());mg!=mgs.end();++mg) {
  529. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  530. send(outp,true);
  531. outp.reset(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  532. }
  533. // network ID, MAC, ADI
  534. outp.append((uint64_t)(*n)->id());
  535. mg->mac().appendTo(outp);
  536. outp.append((uint32_t)mg->adi());
  537. }
  538. }
  539. }
  540. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  541. send(outp,true);
  542. }
  543. void Switch::requestWhois(const Address &addr)
  544. {
  545. //TRACE("requesting WHOIS for %s",addr.toString().c_str());
  546. bool inserted = false;
  547. {
  548. Mutex::Lock _l(_outstandingWhoisRequests_m);
  549. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  550. if ((inserted = entry.second))
  551. entry.first->second.lastSent = Utils::now();
  552. entry.first->second.retries = 0; // reset retry count if entry already existed
  553. }
  554. if (inserted)
  555. _sendWhoisRequest(addr,(const Address *)0,0);
  556. }
  557. void Switch::cancelWhoisRequest(const Address &addr)
  558. {
  559. Mutex::Lock _l(_outstandingWhoisRequests_m);
  560. _outstandingWhoisRequests.erase(addr);
  561. }
  562. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  563. {
  564. {
  565. Mutex::Lock _l(_outstandingWhoisRequests_m);
  566. _outstandingWhoisRequests.erase(peer->address());
  567. }
  568. {
  569. Mutex::Lock _l(_rxQueue_m);
  570. for(std::list< SharedPtr<PacketDecoder> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  571. if ((*rxi)->tryDecode(_r))
  572. _rxQueue.erase(rxi++);
  573. else ++rxi;
  574. }
  575. }
  576. {
  577. Mutex::Lock _l(_txQueue_m);
  578. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  579. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  580. if (_trySend(txi->second.packet,txi->second.encrypt))
  581. _txQueue.erase(txi++);
  582. else ++txi;
  583. }
  584. }
  585. }
  586. const char *Switch::etherTypeName(const unsigned int etherType)
  587. throw()
  588. {
  589. switch(etherType) {
  590. case ZT_ETHERTYPE_IPV4: return "IPV4";
  591. case ZT_ETHERTYPE_ARP: return "ARP";
  592. case ZT_ETHERTYPE_RARP: return "RARP";
  593. case ZT_ETHERTYPE_ATALK: return "ATALK";
  594. case ZT_ETHERTYPE_AARP: return "AARP";
  595. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  596. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  597. case ZT_ETHERTYPE_IPV6: return "IPV6";
  598. }
  599. return "UNKNOWN";
  600. }
  601. void Switch::_handleRemotePacketFragment(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  602. {
  603. Packet::Fragment fragment(data);
  604. Address destination(fragment.destination());
  605. if (destination != _r->identity.address()) {
  606. // Fragment is not for us, so try to relay it
  607. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  608. fragment.incrementHops();
  609. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  610. if ((!relayTo)||(relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()) == Path::PATH_TYPE_NULL)) {
  611. relayTo = _r->topology->getBestSupernode();
  612. if (relayTo)
  613. relayTo->send(_r,fragment.data(),fragment.size(),Utils::now());
  614. }
  615. } else {
  616. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  617. }
  618. } else {
  619. // Fragment looks like ours
  620. uint64_t pid = fragment.packetId();
  621. unsigned int fno = fragment.fragmentNumber();
  622. unsigned int tf = fragment.totalFragments();
  623. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  624. // Fragment appears basically sane. Its fragment number must be
  625. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  626. // Total fragments must be more than 1, otherwise why are we
  627. // seeing a Packet::Fragment?
  628. Mutex::Lock _l(_defragQueue_m);
  629. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  630. if (dqe == _defragQueue.end()) {
  631. // We received a Packet::Fragment without its head, so queue it and wait
  632. DefragQueueEntry &dq = _defragQueue[pid];
  633. dq.creationTime = Utils::now();
  634. dq.frags[fno - 1] = fragment;
  635. dq.totalFragments = tf; // total fragment count is known
  636. dq.haveFragments = 1 << fno; // we have only this fragment
  637. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  638. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  639. // We have other fragments and maybe the head, so add this one and check
  640. dqe->second.frags[fno - 1] = fragment;
  641. dqe->second.totalFragments = tf;
  642. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  643. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  644. // We have all fragments -- assemble and process full Packet
  645. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  646. SharedPtr<PacketDecoder> packet(dqe->second.frag0);
  647. for(unsigned int f=1;f<tf;++f)
  648. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  649. _defragQueue.erase(dqe);
  650. if (!packet->tryDecode(_r)) {
  651. Mutex::Lock _l(_rxQueue_m);
  652. _rxQueue.push_back(packet);
  653. }
  654. }
  655. } // else this is a duplicate fragment, ignore
  656. }
  657. }
  658. }
  659. void Switch::_handleRemotePacketHead(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  660. {
  661. SharedPtr<PacketDecoder> packet(new PacketDecoder(data,fromSock,fromAddr));
  662. Address source(packet->source());
  663. Address destination(packet->destination());
  664. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  665. if (destination != _r->identity.address()) {
  666. // Packet is not for us, so try to relay it
  667. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  668. packet->incrementHops();
  669. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  670. Path::Type relayedVia;
  671. if ((relayTo)&&((relayedVia = relayTo->send(_r,packet->data(),packet->size(),Utils::now())) != Path::PATH_TYPE_NULL)) {
  672. /* If both paths are UDP, attempt to invoke UDP NAT-t between peers
  673. * by sending VERB_RENDEZVOUS. Do not do this for TCP due to GitHub
  674. * issue #63. */
  675. if ((fromSock->udp())&&(relayedVia == Path::PATH_TYPE_UDP))
  676. unite(source,destination,false);
  677. } else {
  678. // If we've received a packet not for us and we don't have
  679. // a direct path to its recipient, pass it to (another)
  680. // supernode. This can happen due to Internet weather -- the
  681. // most direct supernode may not be reachable, yet another
  682. // further away may be.
  683. relayTo = _r->topology->getBestSupernode(&source,1,true);
  684. if (relayTo)
  685. relayTo->send(_r,packet->data(),packet->size(),Utils::now());
  686. }
  687. } else {
  688. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  689. }
  690. } else if (packet->fragmented()) {
  691. // Packet is the head of a fragmented packet series
  692. uint64_t pid = packet->packetId();
  693. Mutex::Lock _l(_defragQueue_m);
  694. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  695. if (dqe == _defragQueue.end()) {
  696. // If we have no other fragments yet, create an entry and save the head
  697. DefragQueueEntry &dq = _defragQueue[pid];
  698. dq.creationTime = Utils::now();
  699. dq.frag0 = packet;
  700. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  701. dq.haveFragments = 1; // head is first bit (left to right)
  702. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  703. } else if (!(dqe->second.haveFragments & 1)) {
  704. // If we have other fragments but no head, see if we are complete with the head
  705. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  706. // We have all fragments -- assemble and process full Packet
  707. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  708. // packet already contains head, so append fragments
  709. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  710. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  711. _defragQueue.erase(dqe);
  712. if (!packet->tryDecode(_r)) {
  713. Mutex::Lock _l(_rxQueue_m);
  714. _rxQueue.push_back(packet);
  715. }
  716. } else {
  717. // Still waiting on more fragments, so queue the head
  718. dqe->second.frag0 = packet;
  719. }
  720. } // else this is a duplicate head, ignore
  721. } else {
  722. // Packet is unfragmented, so just process it
  723. if (!packet->tryDecode(_r)) {
  724. Mutex::Lock _l(_rxQueue_m);
  725. _rxQueue.push_back(packet);
  726. }
  727. }
  728. }
  729. void Switch::_handleBeacon(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  730. {
  731. Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  732. if (beaconAddr == _r->identity.address())
  733. return;
  734. SharedPtr<Peer> peer(_r->topology->getPeer(beaconAddr));
  735. if (peer) {
  736. uint64_t now = Utils::now();
  737. if (peer->haveUdpPath(fromAddr)) {
  738. if ((now - peer->lastDirectReceive()) >= ZT_PEER_DIRECT_PING_DELAY)
  739. peer->sendPing(_r,now);
  740. } else {
  741. if ((now - _lastBeacon) < ZT_MIN_BEACON_RESPONSE_INTERVAL)
  742. return;
  743. _lastBeacon = now;
  744. sendHELLO(peer,fromAddr);
  745. }
  746. }
  747. }
  748. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  749. {
  750. SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  751. if (supernode) {
  752. Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
  753. addr.appendTo(outp);
  754. outp.armor(supernode->key(),true);
  755. uint64_t now = Utils::now();
  756. if (supernode->send(_r,outp.data(),outp.size(),now) != Path::PATH_TYPE_NULL)
  757. return supernode->address();
  758. }
  759. return Address();
  760. }
  761. bool Switch::_trySend(const Packet &packet,bool encrypt)
  762. {
  763. SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
  764. if (peer) {
  765. uint64_t now = Utils::now();
  766. SharedPtr<Peer> via;
  767. if (peer->hasActiveDirectPath(now)) {
  768. via = peer;
  769. } else {
  770. via = _r->topology->getBestSupernode();
  771. if (!via)
  772. return false;
  773. }
  774. Packet tmp(packet);
  775. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  776. tmp.setFragmented(chunkSize < tmp.size());
  777. tmp.armor(peer->key(),encrypt);
  778. if (via->send(_r,tmp.data(),chunkSize,now) != Path::PATH_TYPE_NULL) {
  779. if (chunkSize < tmp.size()) {
  780. // Too big for one bite, fragment the rest
  781. unsigned int fragStart = chunkSize;
  782. unsigned int remaining = tmp.size() - chunkSize;
  783. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  784. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  785. ++fragsRemaining;
  786. unsigned int totalFragments = fragsRemaining + 1;
  787. for(unsigned int f=0;f<fragsRemaining;++f) {
  788. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  789. Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
  790. via->send(_r,frag.data(),frag.size(),now);
  791. fragStart += chunkSize;
  792. remaining -= chunkSize;
  793. }
  794. }
  795. /* #ifdef ZT_TRACE
  796. if (via != peer) {
  797. TRACE(">> %s to %s via %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),via->address().toString().c_str(),(int)packet.size());
  798. } else {
  799. TRACE(">> %s to %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),(int)packet.size());
  800. }
  801. #endif */
  802. return true;
  803. }
  804. return false;
  805. }
  806. requestWhois(packet.destination());
  807. return false;
  808. }
  809. } // namespace ZeroTier