tcp-proxy.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <string.h>
  30. #include <time.h>
  31. #include <stdint.h>
  32. #include <unistd.h>
  33. #include <signal.h>
  34. #include <map>
  35. #include <set>
  36. #include <string>
  37. #include <algorithm>
  38. #include <vector>
  39. #include "../osdep/Phy.hpp"
  40. #define ZT_TCP_PROXY_UDP_POOL_SIZE 1024
  41. #define ZT_TCP_PROXY_UDP_POOL_START_PORT 10000
  42. #define ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS 300
  43. using namespace ZeroTier;
  44. /*
  45. * ZeroTier TCP Proxy Server
  46. *
  47. * This implements a simple packet encapsulation that is designed to look like
  48. * a TLS connection. It's not a TLS connection, but it sends TLS format record
  49. * headers. It could be extended in the future to implement a fake TLS
  50. * handshake.
  51. *
  52. * At the moment, each packet is just made to look like TLS application data:
  53. * <[1] TLS content type> - currently 0x17 for "application data"
  54. * <[1] TLS major version> - currently 0x03 for TLS 1.2
  55. * <[1] TLS minor version> - currently 0x03 for TLS 1.2
  56. * <[2] payload length> - 16-bit length of payload in bytes
  57. * <[...] payload> - Message payload
  58. *
  59. * TCP is inherently inefficient for encapsulating Ethernet, since TCP and TCP
  60. * like protocols over TCP lead to double-ACKs. So this transport is only used
  61. * to enable access when UDP or other datagram protocols are not available.
  62. *
  63. * Clients send a greeting, which is a four-byte message that contains:
  64. * <[1] ZeroTier major version>
  65. * <[1] minor version>
  66. * <[2] revision>
  67. *
  68. * If a client has sent a greeting, it uses the new version of this protocol
  69. * in which every encapsulated ZT packet is prepended by an IP address where
  70. * it should be forwarded (or where it came from for replies). This causes
  71. * this proxy to act as a remote UDP socket similar to a socks proxy, which
  72. * will allow us to move this function off the supernodes and onto dedicated
  73. * proxy nodes.
  74. *
  75. * Older ZT clients that do not send this message get their packets relayed
  76. * to/from 127.0.0.1:9993, which will allow them to talk to and relay via
  77. * the ZT node on the same machine as the proxy. We'll only support this for
  78. * as long as such nodes appear to be in the wild.
  79. */
  80. struct TcpProxyService;
  81. struct TcpProxyService
  82. {
  83. Phy<TcpProxyService *> *phy;
  84. PhySocket *udpPool[ZT_TCP_PROXY_UDP_POOL_SIZE];
  85. struct Client
  86. {
  87. char tcpReadBuf[131072];
  88. char tcpWriteBuf[131072];
  89. unsigned long tcpWritePtr;
  90. unsigned long tcpReadPtr;
  91. PhySocket *tcp;
  92. PhySocket *assignedUdp;
  93. time_t lastActivity;
  94. bool newVersion;
  95. };
  96. std::map< PhySocket *,Client > clients;
  97. struct ReverseMappingKey
  98. {
  99. uint64_t sourceZTAddress;
  100. PhySocket *sendingUdpSocket;
  101. uint32_t destIp;
  102. unsigned int destPort;
  103. ReverseMappingKey() {}
  104. ReverseMappingKey(uint64_t zt,PhySocket *s,uint32_t ip,unsigned int port) : sourceZTAddress(zt),sendingUdpSocket(s),destIp(ip),destPort(port) {}
  105. inline bool operator<(const ReverseMappingKey &k) const throw() { return (memcmp((const void *)this,(const void *)&k,sizeof(ReverseMappingKey)) < 0); }
  106. inline bool operator==(const ReverseMappingKey &k) const throw() { return (memcmp((const void *)this,(const void *)&k,sizeof(ReverseMappingKey)) == 0); }
  107. };
  108. std::map< ReverseMappingKey,Client * > reverseMappings;
  109. void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len)
  110. {
  111. if ((from->sa_family == AF_INET)&&(len > 16)&&(len < 2048)) {
  112. const uint64_t destZt = (
  113. (((uint64_t)(((const unsigned char *)data)[8])) << 32) |
  114. (((uint64_t)(((const unsigned char *)data)[9])) << 24) |
  115. (((uint64_t)(((const unsigned char *)data)[10])) << 16) |
  116. (((uint64_t)(((const unsigned char *)data)[11])) << 8) |
  117. ((uint64_t)(((const unsigned char *)data)[12])) );
  118. const uint32_t fromIp = ((const struct sockaddr_in *)from)->sin_addr.s_addr;
  119. const unsigned int fromPort = ntohs(((const struct sockaddr_in *)from)->sin_port);
  120. std::map< ReverseMappingKey,Client * >::iterator rm(reverseMappings.find(ReverseMappingKey(destZt,sock,fromIp,fromPort)));
  121. if (rm != reverseMappings.end()) {
  122. Client &c = *(rm->second);
  123. unsigned long mlen = len;
  124. if (c.newVersion)
  125. mlen += 7; // new clients get IP info
  126. if ((c.tcpWritePtr + 5 + mlen) <= sizeof(c.tcpWriteBuf)) {
  127. if (!c.tcpWritePtr)
  128. phy->tcpSetNotifyWritable(c.tcp,true);
  129. c.tcpWriteBuf[c.tcpWritePtr++] = 0x17; // look like TLS data
  130. c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2
  131. c.tcpWriteBuf[c.tcpWritePtr++] = 0x03; // look like TLS 1.2
  132. c.tcpWriteBuf[c.tcpWritePtr++] = (char)((mlen >> 8) & 0xff);
  133. c.tcpWriteBuf[c.tcpWritePtr++] = (char)(mlen & 0xff);
  134. if (c.newVersion) {
  135. c.tcpWriteBuf[c.tcpWritePtr++] = (char)4; // IPv4
  136. *((uint32_t *)(c.tcpWriteBuf + c.tcpWritePtr)) = fromIp;
  137. c.tcpWritePtr += 4;
  138. c.tcpWriteBuf[c.tcpWritePtr++] = (char)((fromPort >> 8) & 0xff);
  139. c.tcpWriteBuf[c.tcpWritePtr++] = (char)(fromPort & 0xff);
  140. }
  141. for(unsigned long i=0;i<len;++i)
  142. c.tcpWriteBuf[c.tcpWritePtr++] = ((const char *)data)[i];
  143. }
  144. }
  145. }
  146. }
  147. void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success)
  148. {
  149. // unused, we don't initiate
  150. }
  151. void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from)
  152. {
  153. Client &c = clients[sockN];
  154. c.tcpWritePtr = 0;
  155. c.tcpReadPtr = 0;
  156. c.tcp = sockN;
  157. c.assignedUdp = udpPool[rand() % ZT_TCP_PROXY_UDP_POOL_SIZE];
  158. c.lastActivity = time((time_t *)0);
  159. c.newVersion = false;
  160. *uptrN = (void *)&c;
  161. }
  162. void phyOnTcpClose(PhySocket *sock,void **uptr)
  163. {
  164. for(std::map< ReverseMappingKey,Client * >::iterator rm(reverseMappings.begin());rm!=reverseMappings.end();) {
  165. if (rm->second == (Client *)*uptr)
  166. reverseMappings.erase(rm++);
  167. else ++rm;
  168. }
  169. clients.erase(sock);
  170. }
  171. void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len)
  172. {
  173. Client &c = *((Client *)*uptr);
  174. c.lastActivity = time((time_t *)0);
  175. for(unsigned long i=0;i<len;++i) {
  176. if (c.tcpReadPtr >= sizeof(c.tcpReadBuf)) {
  177. phy->close(sock);
  178. return;
  179. }
  180. c.tcpReadBuf[c.tcpReadPtr++] = ((const char *)data)[i];
  181. if (c.tcpReadPtr >= 5) {
  182. unsigned long mlen = ( ((((unsigned long)c.tcpReadBuf[3]) & 0xff) << 8) | (((unsigned long)c.tcpReadBuf[4]) & 0xff) );
  183. if (c.tcpReadPtr >= (mlen + 5)) {
  184. if (mlen == 4) {
  185. // Right now just sending this means the client is 'new enough' for the IP header
  186. c.newVersion = true;
  187. } else if (mlen >= 7) {
  188. char *payload = c.tcpReadBuf + 5;
  189. unsigned long payloadLen = mlen;
  190. struct sockaddr_in dest;
  191. memset(&dest,0,sizeof(dest));
  192. if (c.newVersion) {
  193. if (*payload == (char)4) {
  194. // New clients tell us where their packets go.
  195. ++payload;
  196. dest.sin_family = AF_INET;
  197. dest.sin_addr.s_addr = *((uint32_t *)payload);
  198. payload += 4;
  199. dest.sin_port = *((uint16_t *)payload); // will be in network byte order already
  200. payload += 2;
  201. payloadLen -= 7;
  202. }
  203. } else {
  204. // For old clients we will just proxy everything to a local ZT instance. The
  205. // fact that this will come from 127.0.0.1 will in turn prevent that instance
  206. // from doing unite() with us. It'll just forward. There will not be many of
  207. // these.
  208. dest.sin_family = AF_INET;
  209. dest.sin_addr.s_addr = htonl(0x7f000001); // 127.0.0.1
  210. dest.sin_port = htons(9993);
  211. }
  212. // Note: we do not relay to privileged ports... just an abuse prevention rule.
  213. if ((ntohs(dest.sin_port) > 1024)&&(payloadLen >= 16)) {
  214. if ((payloadLen >= 28)&&(payload[13] != (char)0xff)) {
  215. // Learn reverse mappings -- we will route replies to these packets
  216. // back to their sending TCP socket. They're on a first come first
  217. // served basis.
  218. const uint64_t sourceZt = (
  219. (((uint64_t)(((const unsigned char *)payload)[13])) << 32) |
  220. (((uint64_t)(((const unsigned char *)payload)[14])) << 24) |
  221. (((uint64_t)(((const unsigned char *)payload)[15])) << 16) |
  222. (((uint64_t)(((const unsigned char *)payload)[16])) << 8) |
  223. ((uint64_t)(((const unsigned char *)payload)[17])) );
  224. ReverseMappingKey k(sourceZt,c.assignedUdp,dest.sin_addr.s_addr,ntohl(dest.sin_port));
  225. if (reverseMappings.count(k) == 0)
  226. reverseMappings[k] = &c;
  227. }
  228. phy->udpSend(c.assignedUdp,(const struct sockaddr *)&dest,payload,payloadLen);
  229. }
  230. }
  231. memmove(c.tcpReadBuf,c.tcpReadBuf + (mlen + 5),c.tcpReadPtr -= (mlen + 5));
  232. }
  233. }
  234. }
  235. }
  236. void phyOnTcpWritable(PhySocket *sock,void **uptr)
  237. {
  238. Client &c = *((Client *)*uptr);
  239. if (c.tcpWritePtr) {
  240. long n = phy->tcpSend(sock,c.tcpWriteBuf,c.tcpWritePtr);
  241. if (n > 0) {
  242. memmove(c.tcpWriteBuf,c.tcpWriteBuf + n,c.tcpWritePtr -= (unsigned long)n);
  243. if (!c.tcpWritePtr)
  244. phy->tcpSetNotifyWritable(sock,false);
  245. }
  246. } else phy->tcpSetNotifyWritable(sock,false);
  247. }
  248. void doHousekeeping()
  249. {
  250. std::vector<PhySocket *> toClose;
  251. time_t now = time((time_t *)0);
  252. for(std::map< PhySocket *,Client >::iterator c(clients.begin());c!=clients.end();++c) {
  253. if ((now - c->second.lastActivity) >= ZT_TCP_PROXY_CONNECTION_TIMEOUT_SECONDS)
  254. toClose.push_back(c->first);
  255. }
  256. for(std::vector<PhySocket *>::iterator s(toClose.begin());s!=toClose.end();++s)
  257. phy->close(*s); // will call phyOnTcpClose() which does cleanup
  258. }
  259. };
  260. int main(int argc,char **argv)
  261. {
  262. signal(SIGPIPE,SIG_IGN);
  263. signal(SIGHUP,SIG_IGN);
  264. srand(time((time_t *)0));
  265. TcpProxyService svc;
  266. Phy<TcpProxyService *> phy(&svc,true);
  267. svc.phy = &phy;
  268. {
  269. int poolSize = 0;
  270. for(unsigned int p=ZT_TCP_PROXY_UDP_POOL_START_PORT;((poolSize<ZT_TCP_PROXY_UDP_POOL_SIZE)&&(p<=65535));++p) {
  271. struct sockaddr_in laddr;
  272. memset(&laddr,0,sizeof(laddr));
  273. laddr.sin_family = AF_INET;
  274. laddr.sin_port = htons((uint16_t)p);
  275. PhySocket *s = phy.udpBind((const struct sockaddr *)&laddr);
  276. if (s)
  277. svc.udpPool[poolSize++] = s;
  278. }
  279. if (poolSize < ZT_TCP_PROXY_UDP_POOL_SIZE) {
  280. fprintf(stderr,"%s: fatal error: cannot bind %d UDP ports\n",argv[0],ZT_TCP_PROXY_UDP_POOL_SIZE);
  281. return 1;
  282. }
  283. }
  284. time_t lastDidHousekeeping = time((time_t *)0);
  285. for(;;) {
  286. phy.poll(120000);
  287. time_t now = time((time_t *)0);
  288. if ((now - lastDidHousekeeping) > 120) {
  289. lastDidHousekeeping = now;
  290. svc.doHousekeeping();
  291. }
  292. }
  293. }