AES.hpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. /*
  2. * Copyright (c)2019 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2023-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_AES_HPP
  14. #define ZT_AES_HPP
  15. #include "Constants.hpp"
  16. #include "Utils.hpp"
  17. #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
  18. #include <wmmintrin.h>
  19. #include <emmintrin.h>
  20. #include <smmintrin.h>
  21. #define ZT_AES_AESNI 1
  22. #endif
  23. #define ZT_AES_KEY_SIZE 32
  24. #define ZT_AES_BLOCK_SIZE 16
  25. namespace ZeroTier {
  26. /**
  27. * AES-256 and AES-GCM AEAD
  28. */
  29. class AES
  30. {
  31. public:
  32. /**
  33. * This will be true if your platform's type of AES acceleration is supported on this machine
  34. */
  35. static const bool HW_ACCEL;
  36. inline AES() {}
  37. inline AES(const uint8_t key[32]) { this->init(key); }
  38. inline ~AES() { Utils::burn(&_k,sizeof(_k)); }
  39. /**
  40. * Set (or re-set) this AES256 cipher's key
  41. */
  42. inline void init(const uint8_t key[32])
  43. {
  44. #ifdef ZT_AES_AESNI
  45. if (likely(HW_ACCEL)) {
  46. _init_aesni(key);
  47. return;
  48. }
  49. #endif
  50. _initSW(key);
  51. }
  52. /**
  53. * Encrypt a single AES block (ECB mode)
  54. *
  55. * @param in Input block
  56. * @param out Output block (can be same as input)
  57. */
  58. inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
  59. {
  60. #ifdef ZT_AES_AESNI
  61. if (likely(HW_ACCEL)) {
  62. _encrypt_aesni(in,out);
  63. return;
  64. }
  65. #endif
  66. _encryptSW(in,out);
  67. }
  68. /**
  69. * Compute GMAC-AES256 (GCM without ciphertext)
  70. *
  71. * @param iv 96-bit IV
  72. * @param in Input data
  73. * @param len Length of input
  74. * @param out 128-bit authorization tag from GMAC
  75. */
  76. inline void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const
  77. {
  78. #ifdef ZT_AES_AESNI
  79. if (likely(HW_ACCEL)) {
  80. _gmac_aesni(iv,(const uint8_t *)in,len,out);
  81. return;
  82. }
  83. #endif
  84. _gmacSW(iv,(const uint8_t *)in,len,out);
  85. }
  86. /**
  87. * Encrypt or decrypt (they're the same) using AES256-CTR
  88. *
  89. * The counter here is a 128-bit big-endian that starts at the IV. The code only
  90. * increments the least significant 64 bits, making it only safe to use for a
  91. * maximum of 2^64-1 bytes (much larger than we ever do).
  92. *
  93. * @param iv 128-bit CTR IV
  94. * @param in Input plaintext or ciphertext
  95. * @param len Length of input
  96. * @param out Output plaintext or ciphertext
  97. */
  98. inline void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
  99. {
  100. #ifdef ZT_AES_AESNI
  101. if (likely(HW_ACCEL)) {
  102. _crypt_ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out);
  103. return;
  104. }
  105. #endif
  106. uint64_t ctr[2],cenc[2];
  107. memcpy(ctr,iv,16);
  108. uint64_t bctr = Utils::ntoh(ctr[1]);
  109. const uint8_t *i = (const uint8_t *)in;
  110. uint8_t *o = (uint8_t *)out;
  111. while (len >= 16) {
  112. _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
  113. ctr[1] = Utils::hton(++bctr);
  114. #ifdef ZT_NO_TYPE_PUNNING
  115. for(unsigned int k=0;k<16;++k)
  116. *(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
  117. #else
  118. *((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[0];
  119. o += 8;
  120. i += 8;
  121. *((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[1];
  122. o += 8;
  123. i += 8;
  124. #endif
  125. len -= 16;
  126. }
  127. if (len) {
  128. _encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
  129. for(unsigned int k=0;k<len;++k)
  130. *(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
  131. }
  132. }
  133. /**
  134. * Perform AES-256-GMAC-CTR encryption
  135. *
  136. * This mode combines the two standard modes AES256-GMAC and AES256-CTR to
  137. * yield a mode similar to AES256-GCM-SIV that is resistant to accidental
  138. * message IV duplication. This is good because ZeroTier is stateless and
  139. * uses a small (64-bit) IV to reduce bandwidth overhead.
  140. *
  141. * @param iv 96-bit message IV
  142. * @param in Message plaintext
  143. * @param len Length of plaintext
  144. * @param out Output buffer to receive ciphertext
  145. * @param tag Output buffer to receive 64-bit authentication tag
  146. */
  147. inline void ztGmacCtrEncrypt(const uint8_t iv[12],const void *in,unsigned int len,void *out,uint8_t tag[8]) const
  148. {
  149. uint8_t ctrIv[16];
  150. gmac(iv,in,len,ctrIv);
  151. encrypt(ctrIv,ctrIv);
  152. for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i];
  153. for(unsigned int i=4;i<8;++i) ctrIv[i] ^= iv[i - 4];
  154. for(unsigned int i=8;i<16;++i) ctrIv[i] = iv[i - 4];
  155. encrypt(ctrIv,ctrIv);
  156. ctr(ctrIv,in,len,out);
  157. }
  158. /**
  159. * Decrypt a message encrypted with AES-256-GMAC-CTR and check its authenticity
  160. *
  161. * @param iv 96-bit message IV
  162. * @param in Message ciphertext
  163. * @param len Length of ciphertext
  164. * @param out Output buffer to receive plaintext
  165. * @param tag Authentication tag supplied with message
  166. * @return True if authentication tags match and message appears authentic
  167. */
  168. inline bool ztGmacCtrDecrypt(const uint8_t iv[12],const void *in,unsigned int len,void *out,const uint8_t tag[8]) const
  169. {
  170. uint8_t ctrIv[16],gmacOut[16];
  171. for(unsigned int i=0;i<8;++i) ctrIv[i] = tag[i];
  172. for(unsigned int i=4;i<8;++i) ctrIv[i] ^= iv[i - 4];
  173. for(unsigned int i=8;i<16;++i) ctrIv[i] = iv[i - 4];
  174. encrypt(ctrIv,ctrIv);
  175. ctr(ctrIv,in,len,out);
  176. gmac(iv,out,len,gmacOut);
  177. encrypt(gmacOut,gmacOut);
  178. #ifdef ZT_NO_TYPE_PUNNING
  179. return Utils::secureEq(gmacOut,tag,8);
  180. #else
  181. return (*((const uint64_t *)gmacOut) == *((const uint64_t *)tag));
  182. #endif
  183. }
  184. private:
  185. static const uint32_t Te0[256];
  186. static const uint32_t Te1[256];
  187. static const uint32_t Te2[256];
  188. static const uint32_t Te3[256];
  189. static const uint32_t rcon[10];
  190. void _initSW(const uint8_t key[32]);
  191. void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
  192. void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
  193. /**************************************************************************/
  194. union {
  195. #ifdef ZT_AES_ARMNEON
  196. struct {
  197. uint32x4_t k[15];
  198. } neon;
  199. #endif
  200. #ifdef ZT_AES_AESNI
  201. struct {
  202. __m128i k[15];
  203. __m128i h,hh,hhh,hhhh;
  204. } ni;
  205. #endif
  206. struct {
  207. uint64_t h[2];
  208. uint32_t ek[60];
  209. } sw;
  210. } _k;
  211. /**************************************************************************/
  212. #ifdef ZT_AES_ARMNEON /******************************************************/
  213. static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2)
  214. {
  215. uint32_t round1[4], round2[4], prv1[4], prv2[4];
  216. vst1q_u32(prv1, prev1);
  217. vst1q_u32(prv2, prev2);
  218. round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
  219. round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
  220. round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
  221. round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
  222. round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
  223. round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
  224. round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
  225. round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
  226. *e1 = vld1q_u3(round1);
  227. *e2 = vld1q_u3(round2);
  228. //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
  229. //return expansion;
  230. }
  231. inline void _init_armneon(uint8x16_t encKey)
  232. {
  233. uint32x4_t *schedule = _k.neon.k;
  234. uint32x4_t e1,e2;
  235. (*schedule)[0] = vld1q_u32(encKey);
  236. (*schedule)[1] = vld1q_u32(encKey + 16);
  237. _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2);
  238. (*schedule)[2] = e1; (*schedule)[3] = e2;
  239. _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2);
  240. (*schedule)[4] = e1; (*schedule)[5] = e2;
  241. _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2);
  242. (*schedule)[6] = e1; (*schedule)[7] = e2;
  243. _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2);
  244. (*schedule)[8] = e1; (*schedule)[9] = e2;
  245. _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2);
  246. (*schedule)[10] = e1; (*schedule)[11] = e2;
  247. _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2);
  248. (*schedule)[12] = e1; (*schedule)[13] = e2;
  249. _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2);
  250. (*schedule)[14] = e1;
  251. /*
  252. doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
  253. (*schedule)[2] = doubleRound[0];
  254. (*schedule)[3] = doubleRound[1];
  255. doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
  256. (*schedule)[4] = doubleRound[0];
  257. (*schedule)[5] = doubleRound[1];
  258. doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
  259. (*schedule)[6] = doubleRound[0];
  260. (*schedule)[7] = doubleRound[1];
  261. doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
  262. (*schedule)[8] = doubleRound[0];
  263. (*schedule)[9] = doubleRound[1];
  264. doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
  265. (*schedule)[10] = doubleRound[0];
  266. (*schedule)[11] = doubleRound[1];
  267. doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
  268. (*schedule)[12] = doubleRound[0];
  269. (*schedule)[13] = doubleRound[1];
  270. doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
  271. (*schedule)[14] = doubleRound[0];
  272. */
  273. }
  274. inline void _encrypt_armneon(uint8x16_t *data) const
  275. {
  276. *data = veorq_u8(*data, _k.neon.k[0]);
  277. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  278. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  279. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  280. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  281. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  282. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  283. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  284. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  285. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  286. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  287. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  288. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  289. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  290. *data = vaeseq_u8(*data, _k.neon.k[14]);
  291. }
  292. #endif /*********************************************************************/
  293. #ifdef ZT_AES_AESNI /********************************************************/
  294. static ZT_ALWAYS_INLINE __m128i _init256_1_aesni(__m128i a,__m128i b)
  295. {
  296. __m128i x,y;
  297. b = _mm_shuffle_epi32(b,0xff);
  298. y = _mm_slli_si128(a,0x04);
  299. x = _mm_xor_si128(a,y);
  300. y = _mm_slli_si128(y,0x04);
  301. x = _mm_xor_si128(x,y);
  302. y = _mm_slli_si128(y,0x04);
  303. x = _mm_xor_si128(x,y);
  304. x = _mm_xor_si128(x,b);
  305. return x;
  306. }
  307. static ZT_ALWAYS_INLINE __m128i _init256_2_aesni(__m128i a,__m128i b)
  308. {
  309. __m128i x,y,z;
  310. y = _mm_aeskeygenassist_si128(a,0x00);
  311. z = _mm_shuffle_epi32(y,0xaa);
  312. y = _mm_slli_si128(b,0x04);
  313. x = _mm_xor_si128(b,y);
  314. y = _mm_slli_si128(y,0x04);
  315. x = _mm_xor_si128(x,y);
  316. y = _mm_slli_si128(y,0x04);
  317. x = _mm_xor_si128(x,y);
  318. x = _mm_xor_si128(x,z);
  319. return x;
  320. }
  321. ZT_ALWAYS_INLINE void _init_aesni(const uint8_t key[32])
  322. {
  323. __m128i t1,t2;
  324. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  325. _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
  326. _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
  327. _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
  328. _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
  329. _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
  330. _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
  331. _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
  332. _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
  333. _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
  334. _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
  335. _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
  336. _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
  337. _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
  338. _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
  339. __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  340. h = _mm_aesenc_si128(h,_k.ni.k[1]);
  341. h = _mm_aesenc_si128(h,_k.ni.k[2]);
  342. h = _mm_aesenc_si128(h,_k.ni.k[3]);
  343. h = _mm_aesenc_si128(h,_k.ni.k[4]);
  344. h = _mm_aesenc_si128(h,_k.ni.k[5]);
  345. h = _mm_aesenc_si128(h,_k.ni.k[6]);
  346. h = _mm_aesenc_si128(h,_k.ni.k[7]);
  347. h = _mm_aesenc_si128(h,_k.ni.k[8]);
  348. h = _mm_aesenc_si128(h,_k.ni.k[9]);
  349. h = _mm_aesenc_si128(h,_k.ni.k[10]);
  350. h = _mm_aesenc_si128(h,_k.ni.k[11]);
  351. h = _mm_aesenc_si128(h,_k.ni.k[12]);
  352. h = _mm_aesenc_si128(h,_k.ni.k[13]);
  353. h = _mm_aesenclast_si128(h,_k.ni.k[14]);
  354. const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  355. __m128i hswap = _mm_shuffle_epi8(h,shuf);
  356. __m128i hh = _mult_block_aesni(shuf,hswap,h);
  357. __m128i hhh = _mult_block_aesni(shuf,hswap,hh);
  358. __m128i hhhh = _mult_block_aesni(shuf,hswap,hhh);
  359. _k.ni.h = hswap;
  360. _k.ni.hh = _mm_shuffle_epi8(hh,shuf);
  361. _k.ni.hhh = _mm_shuffle_epi8(hhh,shuf);
  362. _k.ni.hhhh = _mm_shuffle_epi8(hhhh,shuf);
  363. }
  364. ZT_ALWAYS_INLINE void _encrypt_aesni(const void *in,void *out) const
  365. {
  366. __m128i tmp;
  367. tmp = _mm_loadu_si128((const __m128i *)in);
  368. tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
  369. tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
  370. tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
  371. tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
  372. tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
  373. tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
  374. tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
  375. tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
  376. tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
  377. tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
  378. tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
  379. tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
  380. tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
  381. tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
  382. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
  383. }
  384. ZT_ALWAYS_INLINE void _crypt_ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const
  385. {
  386. const __m64 iv0 = (__m64)(*((const uint64_t *)iv));
  387. uint64_t ctr = Utils::ntoh(*((const uint64_t *)(iv+8)));
  388. const __m128i k0 = _k.ni.k[0];
  389. const __m128i k1 = _k.ni.k[1];
  390. const __m128i k2 = _k.ni.k[2];
  391. const __m128i k3 = _k.ni.k[3];
  392. const __m128i k4 = _k.ni.k[4];
  393. const __m128i k5 = _k.ni.k[5];
  394. const __m128i k6 = _k.ni.k[6];
  395. const __m128i k7 = _k.ni.k[7];
  396. const __m128i k8 = _k.ni.k[8];
  397. const __m128i k9 = _k.ni.k[9];
  398. const __m128i k10 = _k.ni.k[10];
  399. const __m128i k11 = _k.ni.k[11];
  400. const __m128i k12 = _k.ni.k[12];
  401. const __m128i k13 = _k.ni.k[13];
  402. const __m128i k14 = _k.ni.k[14];
  403. while (len >= 64) {
  404. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr),iv0),k0);
  405. __m128i c1 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+1ULL)),iv0),k0);
  406. __m128i c2 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+2ULL)),iv0),k0);
  407. __m128i c3 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton((uint64_t)(ctr+3ULL)),iv0),k0);
  408. ctr += 4;
  409. c0 = _mm_aesenc_si128(c0,k1);
  410. c1 = _mm_aesenc_si128(c1,k1);
  411. c2 = _mm_aesenc_si128(c2,k1);
  412. c3 = _mm_aesenc_si128(c3,k1);
  413. c0 = _mm_aesenc_si128(c0,k2);
  414. c1 = _mm_aesenc_si128(c1,k2);
  415. c2 = _mm_aesenc_si128(c2,k2);
  416. c3 = _mm_aesenc_si128(c3,k2);
  417. c0 = _mm_aesenc_si128(c0,k3);
  418. c1 = _mm_aesenc_si128(c1,k3);
  419. c2 = _mm_aesenc_si128(c2,k3);
  420. c3 = _mm_aesenc_si128(c3,k3);
  421. c0 = _mm_aesenc_si128(c0,k4);
  422. c1 = _mm_aesenc_si128(c1,k4);
  423. c2 = _mm_aesenc_si128(c2,k4);
  424. c3 = _mm_aesenc_si128(c3,k4);
  425. c0 = _mm_aesenc_si128(c0,k5);
  426. c1 = _mm_aesenc_si128(c1,k5);
  427. c2 = _mm_aesenc_si128(c2,k5);
  428. c3 = _mm_aesenc_si128(c3,k5);
  429. c0 = _mm_aesenc_si128(c0,k6);
  430. c1 = _mm_aesenc_si128(c1,k6);
  431. c2 = _mm_aesenc_si128(c2,k6);
  432. c3 = _mm_aesenc_si128(c3,k6);
  433. c0 = _mm_aesenc_si128(c0,k7);
  434. c1 = _mm_aesenc_si128(c1,k7);
  435. c2 = _mm_aesenc_si128(c2,k7);
  436. c3 = _mm_aesenc_si128(c3,k7);
  437. c0 = _mm_aesenc_si128(c0,k8);
  438. c1 = _mm_aesenc_si128(c1,k8);
  439. c2 = _mm_aesenc_si128(c2,k8);
  440. c3 = _mm_aesenc_si128(c3,k8);
  441. c0 = _mm_aesenc_si128(c0,k9);
  442. c1 = _mm_aesenc_si128(c1,k9);
  443. c2 = _mm_aesenc_si128(c2,k9);
  444. c3 = _mm_aesenc_si128(c3,k9);
  445. c0 = _mm_aesenc_si128(c0,k10);
  446. c1 = _mm_aesenc_si128(c1,k10);
  447. c2 = _mm_aesenc_si128(c2,k10);
  448. c3 = _mm_aesenc_si128(c3,k10);
  449. c0 = _mm_aesenc_si128(c0,k11);
  450. c1 = _mm_aesenc_si128(c1,k11);
  451. c2 = _mm_aesenc_si128(c2,k11);
  452. c3 = _mm_aesenc_si128(c3,k11);
  453. c0 = _mm_aesenc_si128(c0,k12);
  454. c1 = _mm_aesenc_si128(c1,k12);
  455. c2 = _mm_aesenc_si128(c2,k12);
  456. c3 = _mm_aesenc_si128(c3,k12);
  457. c0 = _mm_aesenc_si128(c0,k13);
  458. c1 = _mm_aesenc_si128(c1,k13);
  459. c2 = _mm_aesenc_si128(c2,k13);
  460. c3 = _mm_aesenc_si128(c3,k13);
  461. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14)));
  462. _mm_storeu_si128((__m128i *)(out + 16),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 16)),_mm_aesenclast_si128(c1,k14)));
  463. _mm_storeu_si128((__m128i *)(out + 32),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 32)),_mm_aesenclast_si128(c2,k14)));
  464. _mm_storeu_si128((__m128i *)(out + 48),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 48)),_mm_aesenclast_si128(c3,k14)));
  465. in += 64;
  466. out += 64;
  467. len -= 64;
  468. }
  469. while (len >= 16) {
  470. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0);
  471. c0 = _mm_aesenc_si128(c0,k1);
  472. c0 = _mm_aesenc_si128(c0,k2);
  473. c0 = _mm_aesenc_si128(c0,k3);
  474. c0 = _mm_aesenc_si128(c0,k4);
  475. c0 = _mm_aesenc_si128(c0,k5);
  476. c0 = _mm_aesenc_si128(c0,k6);
  477. c0 = _mm_aesenc_si128(c0,k7);
  478. c0 = _mm_aesenc_si128(c0,k8);
  479. c0 = _mm_aesenc_si128(c0,k9);
  480. c0 = _mm_aesenc_si128(c0,k10);
  481. c0 = _mm_aesenc_si128(c0,k11);
  482. c0 = _mm_aesenc_si128(c0,k12);
  483. c0 = _mm_aesenc_si128(c0,k13);
  484. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,k14)));
  485. in += 16;
  486. out += 16;
  487. len -= 16;
  488. }
  489. if (len) {
  490. __m128i c0 = _mm_xor_si128(_mm_set_epi64((__m64)Utils::hton(ctr++),(__m64)iv0),k0);
  491. c0 = _mm_aesenc_si128(c0,k1);
  492. c0 = _mm_aesenc_si128(c0,k2);
  493. c0 = _mm_aesenc_si128(c0,k3);
  494. c0 = _mm_aesenc_si128(c0,k4);
  495. c0 = _mm_aesenc_si128(c0,k5);
  496. c0 = _mm_aesenc_si128(c0,k6);
  497. c0 = _mm_aesenc_si128(c0,k7);
  498. c0 = _mm_aesenc_si128(c0,k8);
  499. c0 = _mm_aesenc_si128(c0,k9);
  500. c0 = _mm_aesenc_si128(c0,k10);
  501. c0 = _mm_aesenc_si128(c0,k11);
  502. c0 = _mm_aesenc_si128(c0,k12);
  503. c0 = _mm_aesenc_si128(c0,k13);
  504. c0 = _mm_aesenclast_si128(c0,k14);
  505. for(unsigned int i=0;i<len;++i)
  506. out[i] = in[i] ^ ((const uint8_t *)&c0)[i];
  507. }
  508. }
  509. static ZT_ALWAYS_INLINE __m128i _mult_block_aesni(__m128i shuf,__m128i h,__m128i y)
  510. {
  511. y = _mm_shuffle_epi8(y,shuf);
  512. __m128i t1 = _mm_clmulepi64_si128(h,y,0x00);
  513. __m128i t2 = _mm_clmulepi64_si128(h,y,0x01);
  514. __m128i t3 = _mm_clmulepi64_si128(h,y,0x10);
  515. __m128i t4 = _mm_clmulepi64_si128(h,y,0x11);
  516. t2 = _mm_xor_si128(t2,t3);
  517. t3 = _mm_slli_si128(t2,8);
  518. t2 = _mm_srli_si128(t2,8);
  519. t1 = _mm_xor_si128(t1,t3);
  520. t4 = _mm_xor_si128(t4,t2);
  521. __m128i t5 = _mm_srli_epi32(t1,31);
  522. t1 = _mm_slli_epi32(t1,1);
  523. __m128i t6 = _mm_srli_epi32(t4,31);
  524. t4 = _mm_slli_epi32(t4,1);
  525. t3 = _mm_srli_si128(t5,12);
  526. t6 = _mm_slli_si128(t6,4);
  527. t5 = _mm_slli_si128(t5,4);
  528. t1 = _mm_or_si128(t1,t5);
  529. t4 = _mm_or_si128(t4,t6);
  530. t4 = _mm_or_si128(t4,t3);
  531. t5 = _mm_slli_epi32(t1,31);
  532. t6 = _mm_slli_epi32(t1,30);
  533. t3 = _mm_slli_epi32(t1,25);
  534. t5 = _mm_xor_si128(t5,t6);
  535. t5 = _mm_xor_si128(t5,t3);
  536. t6 = _mm_srli_si128(t5,4);
  537. t4 = _mm_xor_si128(t4,t6);
  538. t5 = _mm_slli_si128(t5,12);
  539. t1 = _mm_xor_si128(t1,t5);
  540. t4 = _mm_xor_si128(t4,t1);
  541. t5 = _mm_srli_epi32(t1,1);
  542. t2 = _mm_srli_epi32(t1,2);
  543. t3 = _mm_srli_epi32(t1,7);
  544. t4 = _mm_xor_si128(t4,t2);
  545. t4 = _mm_xor_si128(t4,t3);
  546. t4 = _mm_xor_si128(t4,t5);
  547. return _mm_shuffle_epi8(t4,shuf);
  548. }
  549. static ZT_ALWAYS_INLINE __m128i _ghash_aesni(__m128i shuf,__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(shuf,h,_mm_xor_si128(y,x)); }
  550. ZT_ALWAYS_INLINE void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int len,uint8_t out[16]) const
  551. {
  552. const __m128i *ab = (const __m128i *)in;
  553. unsigned int blocks = len / 16;
  554. unsigned int pblocks = blocks - (blocks % 4);
  555. unsigned int rem = len % 16;
  556. const __m128i h1 = _k.ni.hhhh;
  557. const __m128i h2 = _k.ni.hhh;
  558. const __m128i h3 = _k.ni.hh;
  559. const __m128i h4 = _k.ni.h;
  560. const __m128i shuf = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
  561. __m128i y = _mm_setzero_si128();
  562. unsigned int i = 0;
  563. for (;i<pblocks;i+=4) {
  564. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y,_mm_loadu_si128(ab + i + 0)),shuf);
  565. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 1),shuf);
  566. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 2),shuf);
  567. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(ab + i + 3),shuf);
  568. __m128i t0 = _mm_clmulepi64_si128(h1,d1,0x00);
  569. __m128i t1 = _mm_clmulepi64_si128(h2,d2,0x00);
  570. __m128i t2 = _mm_clmulepi64_si128(h3,d3,0x00);
  571. __m128i t3 = _mm_clmulepi64_si128(h4,d4,0x00);
  572. __m128i t8 = _mm_xor_si128(t0,t1);
  573. t8 = _mm_xor_si128(t8,t2);
  574. t8 = _mm_xor_si128(t8,t3);
  575. __m128i t4 = _mm_clmulepi64_si128(h1,d1,0x11);
  576. __m128i t5 = _mm_clmulepi64_si128(h2,d2,0x11);
  577. __m128i t6 = _mm_clmulepi64_si128(h3,d3,0x11);
  578. __m128i t7 = _mm_clmulepi64_si128(h4,d4,0x11);
  579. __m128i t9 = _mm_xor_si128(t4,t5);
  580. t9 = _mm_xor_si128(t9,t6);
  581. t9 = _mm_xor_si128(t9,t7);
  582. t0 = _mm_shuffle_epi32(h1,78);
  583. t4 = _mm_shuffle_epi32(d1,78);
  584. t0 = _mm_xor_si128(t0,h1);
  585. t4 = _mm_xor_si128(t4,d1);
  586. t1 = _mm_shuffle_epi32(h2,78);
  587. t5 = _mm_shuffle_epi32(d2,78);
  588. t1 = _mm_xor_si128(t1,h2);
  589. t5 = _mm_xor_si128(t5,d2);
  590. t2 = _mm_shuffle_epi32(h3,78);
  591. t6 = _mm_shuffle_epi32(d3,78);
  592. t2 = _mm_xor_si128(t2,h3);
  593. t6 = _mm_xor_si128(t6,d3);
  594. t3 = _mm_shuffle_epi32(h4,78);
  595. t7 = _mm_shuffle_epi32(d4,78);
  596. t3 = _mm_xor_si128(t3,h4);
  597. t7 = _mm_xor_si128(t7,d4);
  598. t0 = _mm_clmulepi64_si128(t0,t4,0x00);
  599. t1 = _mm_clmulepi64_si128(t1,t5,0x00);
  600. t2 = _mm_clmulepi64_si128(t2,t6,0x00);
  601. t3 = _mm_clmulepi64_si128(t3,t7,0x00);
  602. t0 = _mm_xor_si128(t0,t8);
  603. t0 = _mm_xor_si128(t0,t9);
  604. t0 = _mm_xor_si128(t1,t0);
  605. t0 = _mm_xor_si128(t2,t0);
  606. t0 = _mm_xor_si128(t3,t0);
  607. t4 = _mm_slli_si128(t0,8);
  608. t0 = _mm_srli_si128(t0,8);
  609. t3 = _mm_xor_si128(t4,t8);
  610. t6 = _mm_xor_si128(t0,t9);
  611. t7 = _mm_srli_epi32(t3,31);
  612. t8 = _mm_srli_epi32(t6,31);
  613. t3 = _mm_slli_epi32(t3,1);
  614. t6 = _mm_slli_epi32(t6,1);
  615. t9 = _mm_srli_si128(t7,12);
  616. t8 = _mm_slli_si128(t8,4);
  617. t7 = _mm_slli_si128(t7,4);
  618. t3 = _mm_or_si128(t3,t7);
  619. t6 = _mm_or_si128(t6,t8);
  620. t6 = _mm_or_si128(t6,t9);
  621. t7 = _mm_slli_epi32(t3,31);
  622. t8 = _mm_slli_epi32(t3,30);
  623. t9 = _mm_slli_epi32(t3,25);
  624. t7 = _mm_xor_si128(t7,t8);
  625. t7 = _mm_xor_si128(t7,t9);
  626. t8 = _mm_srli_si128(t7,4);
  627. t7 = _mm_slli_si128(t7,12);
  628. t3 = _mm_xor_si128(t3,t7);
  629. t2 = _mm_srli_epi32(t3,1);
  630. t4 = _mm_srli_epi32(t3,2);
  631. t5 = _mm_srli_epi32(t3,7);
  632. t2 = _mm_xor_si128(t2,t4);
  633. t2 = _mm_xor_si128(t2,t5);
  634. t2 = _mm_xor_si128(t2,t8);
  635. t3 = _mm_xor_si128(t3,t2);
  636. t6 = _mm_xor_si128(t6,t3);
  637. y = _mm_shuffle_epi8(t6,shuf);
  638. }
  639. for (;i<blocks;++i)
  640. y = _ghash_aesni(shuf,h4,y,_mm_loadu_si128(ab + i));
  641. if (rem) {
  642. __m128i last = _mm_setzero_si128();
  643. memcpy(&last,ab + blocks,rem);
  644. y = _ghash_aesni(shuf,h4,y,last);
  645. }
  646. y = _ghash_aesni(shuf,h4,y,_mm_set_epi64((__m64)0LL,(__m64)Utils::hton((uint64_t)len * (uint64_t)8)));
  647. __m128i t = _mm_xor_si128(_mm_set_epi32(0x01000000,(int)*((const uint32_t *)(iv+8)),(int)*((const uint32_t *)(iv+4)),(int)*((const uint32_t *)(iv))),_k.ni.k[0]);
  648. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  649. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  650. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  651. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  652. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  653. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  654. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  655. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  656. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  657. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  658. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  659. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  660. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  661. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  662. _mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));
  663. }
  664. #endif /* ZT_AES_AESNI ******************************************************/
  665. };
  666. } // namespace ZeroTier
  667. #endif