SHA512.cpp 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260
  1. // Code taken from NaCl by D. J. Bernstein and others
  2. // Public domain
  3. /*
  4. 20080913
  5. D. J. Bernstein
  6. Public domain.
  7. */
  8. #include <stdint.h>
  9. #include <stdlib.h>
  10. #include <string.h>
  11. #include "SHA512.hpp"
  12. #include "Utils.hpp"
  13. #ifdef __APPLE__
  14. #include <CommonCrypto/CommonDigest.h>
  15. #define ZT_HAVE_NATIVE_SHA512
  16. namespace ZeroTier {
  17. void SHA512(void *digest,const void *data,unsigned int len)
  18. {
  19. CC_SHA512_CTX ctx;
  20. CC_SHA512_Init(&ctx);
  21. CC_SHA512_Update(&ctx,data,len);
  22. CC_SHA512_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
  23. }
  24. void SHA384(void *digest,const void *data,unsigned int len)
  25. {
  26. CC_SHA512_CTX ctx;
  27. CC_SHA384_Init(&ctx);
  28. CC_SHA384_Update(&ctx,data,len);
  29. CC_SHA384_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
  30. }
  31. }
  32. #endif
  33. #ifdef ZT_USE_LIBCRYPTO
  34. #include <openssl/sha.h>
  35. #define ZT_HAVE_NATIVE_SHA512
  36. namespace ZeroTier {
  37. void SHA512(void *digest,const void *data,unsigned int len)
  38. {
  39. SHA512_CTX ctx;
  40. SHA512_Init(&ctx);
  41. SHA512_Update(&ctx,data,len);
  42. SHA512_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
  43. }
  44. void SHA384(void *digest,const void *data,unsigned int len)
  45. {
  46. SHA512_CTX ctx;
  47. SHA384_Init(&ctx);
  48. SHA384_Update(&ctx,data,len);
  49. SHA384_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
  50. }
  51. }
  52. #endif
  53. // If a platform-native SHA512 isn't available we use this 64-bit C version.
  54. #ifndef ZT_HAVE_NATIVE_SHA512
  55. namespace ZeroTier {
  56. namespace {
  57. static inline void sha512_encode(uint64_t input, uint8_t *output, uint32_t idx)
  58. {
  59. output[idx + 0] = (uint8_t)(input >> 56);
  60. output[idx + 1] = (uint8_t)(input >> 48);
  61. output[idx + 2] = (uint8_t)(input >> 40);
  62. output[idx + 3] = (uint8_t)(input >> 32);
  63. output[idx + 4] = (uint8_t)(input >> 24);
  64. output[idx + 5] = (uint8_t)(input >> 16);
  65. output[idx + 6] = (uint8_t)(input >> 8);
  66. output[idx + 7] = (uint8_t)(input >> 0);
  67. }
  68. static inline void sha512_decode(uint64_t *output, uint8_t *input, uint32_t idx)
  69. {
  70. *output = ((uint64_t)input[idx + 0] << 56)
  71. | ((uint64_t)input[idx + 1] << 48)
  72. | ((uint64_t)input[idx + 2] << 40)
  73. | ((uint64_t)input[idx + 3] << 32)
  74. | ((uint64_t)input[idx + 4] << 24)
  75. | ((uint64_t)input[idx + 5] << 16)
  76. | ((uint64_t)input[idx + 6] << 8)
  77. | ((uint64_t)input[idx + 7] << 0);
  78. }
  79. typedef struct sha512_ctx_tag {
  80. uint32_t is_sha384;
  81. uint8_t block[128];
  82. uint64_t len[2];
  83. uint64_t val[8];
  84. uint8_t *payload_addr;
  85. uint64_t payload_len;
  86. } sha512_ctx_t;
  87. #define LSR(x,n) (x >> n)
  88. #define ROR(x,n) (LSR(x,n) | (x << (64 - n)))
  89. #define MA(x,y,z) ((x & y) | (z & (x | y)))
  90. #define CH(x,y,z) (z ^ (x & (y ^ z)))
  91. #define GAMMA0(x) (ROR(x, 1) ^ ROR(x, 8) ^ LSR(x, 7))
  92. #define GAMMA1(x) (ROR(x,19) ^ ROR(x,61) ^ LSR(x, 6))
  93. #define SIGMA0(x) (ROR(x,28) ^ ROR(x,34) ^ ROR(x,39))
  94. #define SIGMA1(x) (ROR(x,14) ^ ROR(x,18) ^ ROR(x,41))
  95. #define INIT_COMPRESSOR() uint64_t tmp0 = 0, tmp1 = 0
  96. #define COMPRESS( a, b, c, d, e, f, g, h, x, k) \
  97. tmp0 = h + SIGMA1(e) + CH(e,f,g) + k + x; \
  98. tmp1 = SIGMA0(a) + MA(a,b,c); d += tmp0; h = tmp0 + tmp1;
  99. static const uint8_t sha512_padding[128] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  100. static const uint64_t K[80] = {
  101. 0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL, 0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL,
  102. 0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL, 0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL,
  103. 0xD807AA98A3030242ULL, 0x12835B0145706FBEULL, 0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL,
  104. 0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL, 0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL,
  105. 0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL, 0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL,
  106. 0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL, 0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL,
  107. 0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL, 0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL,
  108. 0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL, 0x06CA6351E003826FULL, 0x142929670A0E6E70ULL,
  109. 0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL, 0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL,
  110. 0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL, 0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL,
  111. 0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL, 0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL,
  112. 0xD192E819D6EF5218ULL, 0xD69906245565A910ULL, 0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL,
  113. 0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL, 0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL,
  114. 0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL, 0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL,
  115. 0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL, 0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL,
  116. 0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL, 0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL,
  117. 0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL, 0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL,
  118. 0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL, 0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL,
  119. 0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL, 0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL,
  120. 0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL, 0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL
  121. };
  122. static inline void sha512_memcpy(uint8_t *src, uint8_t *dst, uint32_t size)
  123. {
  124. uint32_t i = 0;
  125. for (;i < size;i++) { *dst++ = *src++; }
  126. }
  127. static inline void sha512_memclr(uint8_t *dst, uint32_t size)
  128. {
  129. uint32_t i = 0;
  130. for (;i < size;i++) { *dst++ = 0; }
  131. }
  132. static inline void sha512_init_512(sha512_ctx_t *sha512_ctx, uint8_t *payload_addr, uint64_t payload_len)
  133. {
  134. sha512_memclr((uint8_t *)sha512_ctx,sizeof(sha512_ctx_t));
  135. sha512_ctx->val[0] = 0x6A09E667F3BCC908ULL;
  136. sha512_ctx->val[1] = 0xBB67AE8584CAA73BULL;
  137. sha512_ctx->val[2] = 0x3C6EF372FE94F82BULL;
  138. sha512_ctx->val[3] = 0xA54FF53A5F1D36F1ULL;
  139. sha512_ctx->val[4] = 0x510E527FADE682D1ULL;
  140. sha512_ctx->val[5] = 0x9B05688C2B3E6C1FULL;
  141. sha512_ctx->val[6] = 0x1F83D9ABFB41BD6BULL;
  142. sha512_ctx->val[7] = 0x5BE0CD19137E2179ULL;
  143. sha512_ctx->is_sha384 = 0;
  144. sha512_ctx->payload_addr = payload_addr;
  145. sha512_ctx->payload_len = (uint64_t)payload_len;
  146. sha512_ctx->len[0] = payload_len << 3;
  147. sha512_ctx->len[1] = payload_len >> 61;
  148. }
  149. static inline void sha512_init_384(sha512_ctx_t *sha512_ctx, uint8_t *payload_addr, uint64_t payload_len)
  150. {
  151. sha512_memclr((uint8_t *)sha512_ctx,sizeof(sha512_ctx_t));
  152. sha512_ctx->val[0] = 0xCBBB9D5DC1059ED8ULL;
  153. sha512_ctx->val[1] = 0x629A292A367CD507ULL;
  154. sha512_ctx->val[2] = 0x9159015A3070DD17ULL;
  155. sha512_ctx->val[3] = 0x152FECD8F70E5939ULL;
  156. sha512_ctx->val[4] = 0x67332667FFC00B31ULL;
  157. sha512_ctx->val[5] = 0x8EB44A8768581511ULL;
  158. sha512_ctx->val[6] = 0xDB0C2E0D64F98FA7ULL;
  159. sha512_ctx->val[7] = 0x47B5481DBEFA4FA4ULL;
  160. sha512_ctx->is_sha384 = 1;
  161. sha512_ctx->payload_addr = payload_addr;
  162. sha512_ctx->payload_len = (uint64_t)payload_len;
  163. sha512_ctx->len[0] = payload_len << 3;
  164. sha512_ctx->len[1] = payload_len >> 61;
  165. }
  166. static inline void sha512_hash_factory(sha512_ctx_t *ctx, uint8_t data[128])
  167. {
  168. uint32_t i = 0;
  169. uint64_t W[80];
  170. uint64_t v[8];
  171. INIT_COMPRESSOR();
  172. for(i = 0; i < 16; i++) { sha512_decode(&W[i], data, i << 3 ); }
  173. for(; i < 80; i++) { W[i] = GAMMA1(W[i - 2]) + W[i - 7] + GAMMA0(W[i - 15]) + W[i - 16]; }
  174. for (i = 0;i < 8; i++) { v[i] = ctx->val[i]; }
  175. for(i = 0; i < 80;) {
  176. COMPRESS(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7], W[i], K[i] ); i++;
  177. COMPRESS(v[7], v[0], v[1], v[2], v[3], v[4], v[5], v[6], W[i], K[i] ); i++;
  178. COMPRESS(v[6], v[7], v[0], v[1], v[2], v[3], v[4], v[5], W[i], K[i] ); i++;
  179. COMPRESS(v[5], v[6], v[7], v[0], v[1], v[2], v[3], v[4], W[i], K[i] ); i++;
  180. COMPRESS(v[4], v[5], v[6], v[7], v[0], v[1], v[2], v[3], W[i], K[i] ); i++;
  181. COMPRESS(v[3], v[4], v[5], v[6], v[7], v[0], v[1], v[2], W[i], K[i] ); i++;
  182. COMPRESS(v[2], v[3], v[4], v[5], v[6], v[7], v[0], v[1], W[i], K[i] ); i++;
  183. COMPRESS(v[1], v[2], v[3], v[4], v[5], v[6], v[7], v[0], W[i], K[i] ); i++;
  184. }
  185. for (i = 0; i < 8; i++) { ctx->val[i] += v[i]; }
  186. }
  187. static inline void sha512_stage1(sha512_ctx_t *sha512_ctx)
  188. {
  189. while (sha512_ctx->payload_len >= 128) {
  190. sha512_hash_factory(sha512_ctx, sha512_ctx->payload_addr);
  191. sha512_ctx->payload_addr += 128;
  192. sha512_ctx->payload_len -= 128;
  193. }
  194. }
  195. static inline void sha512_stage2(sha512_ctx_t *sha512_ctx, uint8_t output[64])
  196. {
  197. uint32_t block_pos = sha512_ctx->payload_len;
  198. uint32_t padding_bytes = 0;
  199. uint8_t temp_data[128] = {0};
  200. uint8_t *temp_data_p = (uint8_t *)&temp_data[0];
  201. uint8_t len_be[16] = {0};
  202. uint8_t i = 0;
  203. sha512_memcpy(sha512_ctx->payload_addr, temp_data_p, sha512_ctx->payload_len);
  204. padding_bytes = 112 - block_pos;
  205. temp_data_p += block_pos;
  206. sha512_memcpy((uint8_t *)sha512_padding, temp_data_p, padding_bytes);
  207. temp_data_p += padding_bytes;
  208. sha512_encode(sha512_ctx->len[1], len_be, 0);
  209. sha512_encode(sha512_ctx->len[0], len_be, 8);
  210. sha512_memcpy(len_be, temp_data_p, 16);
  211. sha512_hash_factory(sha512_ctx, temp_data);
  212. for (i = 0; i < 6; i++) { sha512_encode(sha512_ctx->val[i], output, i * 8); }
  213. for ( ;(i < 8) && (sha512_ctx->is_sha384 == 0); i++) { sha512_encode(sha512_ctx->val[i], output, i * 8); }
  214. }
  215. } // anonymous namespace
  216. void SHA512(void *digest,const void *data,unsigned int len)
  217. {
  218. sha512_ctx_t h;
  219. sha512_init_512(&h,(uint8_t *)data,len);
  220. sha512_stage1(&h);
  221. sha512_stage2(&h,(uint8_t *)digest);
  222. }
  223. void SHA384(void *digest,const void *data,unsigned int len)
  224. {
  225. sha512_ctx_t h;
  226. sha512_init_384(&h,(uint8_t *)data,len);
  227. sha512_stage1(&h);
  228. sha512_stage2(&h,(uint8_t *)digest);
  229. }
  230. } // namespace ZeroTier
  231. #endif // !ZT_HAVE_NATIVE_SHA512
  232. extern "C" void ZT_sha512internal(void *digest,const void *data,unsigned int len) { ZeroTier::SHA512(digest,data,len); }
  233. extern "C" void ZT_sha384internal(void *digest,const void *data,unsigned int len) { ZeroTier::SHA384(digest,data,len); }