Protocol.hpp 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2024-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_PROTOCOL_HPP
  14. #define ZT_PROTOCOL_HPP
  15. #include "Constants.hpp"
  16. #include "AES.hpp"
  17. #include "Salsa20.hpp"
  18. #include "Poly1305.hpp"
  19. #include "LZ4.hpp"
  20. #include "Buf.hpp"
  21. #include "Address.hpp"
  22. #include "Identity.hpp"
  23. #include "SymmetricKey.hpp"
  24. /*
  25. * Packet format:
  26. * <[8] 64-bit packet ID / crypto IV>
  27. * <[5] destination ZT address>
  28. * <[5] source ZT address>
  29. * <[1] outer visible flags, cipher, and hop count (bits: FFCCHHH)>
  30. * <[8] 64-bit MAC (or trusted path ID in trusted path mode)>
  31. * [... -- begin encryption envelope -- ...]
  32. * <[1] inner envelope flags (MS 3 bits) and verb (LS 5 bits)>
  33. * [... verb-specific payload ...]
  34. *
  35. * Packets smaller than 28 bytes are invalid and silently discarded.
  36. *
  37. * The hop count field is masked during message authentication computation
  38. * and is thus the only field that is mutable in transit. It's incremented
  39. * when roots or other nodes forward packets and exists to prevent infinite
  40. * forwarding loops and to detect direct paths.
  41. *
  42. * HELLO is normally sent in the clear with the POLY1305_NONE cipher suite
  43. * and with Poly1305 computed on plain text (Salsa20/12 is still used to
  44. * generate a one time use Poly1305 key). As of protocol version 11 HELLO
  45. * also includes a terminating HMAC (last 48 bytes) that significantly
  46. * hardens HELLO authentication beyond what a 64-bit MAC can guarantee.
  47. *
  48. * Fragmented packets begin with a packet header whose fragment bit (bit
  49. * 0x40 in the flags field) is set. This constitutes fragment zero. The
  50. * total number of expected fragments is contained in each subsequent
  51. * fragment packet. Unfragmented packets must not have the fragment bit
  52. * set or the receiver will expect at least one additional fragment.
  53. *
  54. * --
  55. *
  56. * Packet fragment format (fragments beyond 0):
  57. * <[8] packet ID of packet to which this fragment belongs>
  58. * <[5] destination ZT address>
  59. * <[1] 0xff here signals that this is a fragment>
  60. * <[1] total fragments (most significant 4 bits), fragment no (LS 4 bits)>
  61. * <[1] ZT hop count (least significant 3 bits; others are reserved)>
  62. * <[...] fragment data>
  63. *
  64. * The protocol supports a maximum of 16 fragments including fragment 0
  65. * which contains the full packet header (with fragment bit set). Fragments
  66. * thus always carry fragment numbers between 1 and 15. All fragments
  67. * belonging to the same packet must carry the same total fragment count in
  68. * the most significant 4 bits of the fragment numbering field.
  69. *
  70. * All fragments have the same packet ID and destination. The packet ID
  71. * doubles as the grouping identifier for fragment reassembly.
  72. *
  73. * Fragments do not carry their own packet MAC. The entire packet is
  74. * authenticated once it is assembled by the receiver. Incomplete packets
  75. * are discarded after a receiver configured period of time.
  76. */
  77. /*
  78. * Protocol versions
  79. *
  80. * 1 - 0.2.0 ... 0.2.5
  81. * 2 - 0.3.0 ... 0.4.5
  82. * + Added signature and originating peer to multicast frame
  83. * + Double size of multicast frame bloom filter
  84. * 3 - 0.5.0 ... 0.6.0
  85. * + Yet another multicast redesign
  86. * + New crypto completely changes key agreement cipher
  87. * 4 - 0.6.0 ... 1.0.6
  88. * + BREAKING CHANGE: New identity format based on hashcash design
  89. * 5 - 1.1.0 ... 1.1.5
  90. * + Supports echo
  91. * + Supports in-band world (root server definition) updates
  92. * + Clustering! (Though this will work with protocol v4 clients.)
  93. * + Otherwise backward compatible with protocol v4
  94. * 6 - 1.1.5 ... 1.1.10
  95. * + Network configuration format revisions including binary values
  96. * 7 - 1.1.10 ... 1.1.17
  97. * + Introduce trusted paths for local SDN use
  98. * 8 - 1.1.17 ... 1.2.0
  99. * + Multipart network configurations for large network configs
  100. * + Tags and Capabilities
  101. * + inline push of CertificateOfMembership deprecated
  102. * 9 - 1.2.0 ... 1.2.14
  103. * 10 - 1.4.0 ... 1.4.6
  104. * + Contained early pre-alpha versions of multipath, which are deprecated
  105. * 11 - 2.0.0 ... CURRENT
  106. * + New more WAN-efficient P2P-assisted multicast algorithm
  107. * + HELLO and OK(HELLO) include an extra HMAC to harden authentication
  108. * + HELLO and OK(HELLO) carry meta-data in a dictionary that's encrypted
  109. * + Forward secrecy, key lifetime management
  110. * + Old planet/moon stuff is DEAD! Independent roots are easier.
  111. * + AES encryption with the SIV construction AES-GMAC-SIV
  112. * + New combined Curve25519/NIST P-384 identity type (type 1)
  113. * + Short probe packets to reduce probe bandwidth
  114. * + More aggressive NAT traversal techniques for IPv4 symmetric NATs
  115. */
  116. #define ZT_PROTO_VERSION 11
  117. /**
  118. * Minimum supported protocol version
  119. */
  120. #define ZT_PROTO_VERSION_MIN 8
  121. /**
  122. * Maximum allowed packet size (can technically be increased up to 16384)
  123. */
  124. #define ZT_PROTO_MAX_PACKET_LENGTH (ZT_MAX_PACKET_FRAGMENTS * ZT_MIN_UDP_MTU)
  125. /**
  126. * Minimum viable packet length (outer header + verb)
  127. */
  128. #define ZT_PROTO_MIN_PACKET_LENGTH 28
  129. /**
  130. * Index at which the encrypted section of a packet begins
  131. */
  132. #define ZT_PROTO_PACKET_ENCRYPTED_SECTION_START 27
  133. /**
  134. * Index at which packet payload begins (after verb)
  135. */
  136. #define ZT_PROTO_PACKET_PAYLOAD_START 28
  137. /**
  138. * Maximum hop count allowed by packet structure (3 bits, 0-7)
  139. *
  140. * This is a protocol constant. It's the maximum allowed by the length
  141. * of the hop counter -- three bits. A lower limit is specified as
  142. * the actual maximum hop count.
  143. */
  144. #define ZT_PROTO_MAX_HOPS 7
  145. /**
  146. * NONE/Poly1305 (legacy)
  147. */
  148. #define ZT_PROTO_CIPHER_SUITE__POLY1305_NONE 0
  149. /**
  150. * Salsa2012/Poly1305 (legacy)
  151. */
  152. #define ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012 1
  153. /**
  154. * No encryption or authentication at all!
  155. *
  156. * This is used for trusted paths. The MAC field will contain the
  157. * 64-bit trusted path ID. Both sides of a link must be configured
  158. * to trust a given network with the same trusted path ID for this
  159. * to be used. It's a high performance mode designed for use on
  160. * secure LANs.
  161. */
  162. #define ZT_PROTO_CIPHER_SUITE__NONE 2
  163. /**
  164. * AES-GMAC-SIV
  165. */
  166. #define ZT_PROTO_CIPHER_SUITE__AES_GMAC_SIV 3
  167. /**
  168. * Minimum viable length for a fragment
  169. */
  170. #define ZT_PROTO_MIN_FRAGMENT_LENGTH 16
  171. /**
  172. * Magic number indicating a fragment if present at index 13
  173. */
  174. #define ZT_PROTO_PACKET_FRAGMENT_INDICATOR 0xff
  175. /**
  176. * Length of a probe packet
  177. */
  178. #define ZT_PROTO_PROBE_LENGTH 4
  179. /**
  180. * Index at which packet fragment payload starts
  181. */
  182. #define ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT ZT_PROTO_MIN_FRAGMENT_LENGTH
  183. /**
  184. * Header flag indicating that a packet is fragmented and more fragments should be expected
  185. */
  186. #define ZT_PROTO_FLAG_FRAGMENTED 0x40U
  187. /**
  188. * Mask for obtaining hops from the combined flags, cipher, and hops field
  189. */
  190. #define ZT_PROTO_FLAG_FIELD_HOPS_MASK 0x07U
  191. /**
  192. * Verb flag indicating payload is compressed with LZ4
  193. */
  194. #define ZT_PROTO_VERB_FLAG_COMPRESSED 0x80U
  195. /**
  196. * Mask to extract just the verb from the verb / verb flags field
  197. */
  198. #define ZT_PROTO_VERB_MASK 0x1fU
  199. /**
  200. * AES-GMAC-SIV first of two keys
  201. */
  202. #define ZT_KBKDF_LABEL_AES_GMAC_SIV_K0 '0'
  203. /**
  204. * AES-GMAC-SIV second of two keys
  205. */
  206. #define ZT_KBKDF_LABEL_AES_GMAC_SIV_K1 '1'
  207. /**
  208. * Key used to encrypt dictionary in HELLO with AES-CTR.
  209. */
  210. #define ZT_KBKDF_LABEL_HELLO_DICTIONARY_ENCRYPT 'H'
  211. /**
  212. * Key used for extra HMAC-SHA384 authentication on some packets.
  213. */
  214. #define ZT_KBKDF_LABEL_PACKET_HMAC 'M'
  215. #define ZT_PROTO_PACKET_FRAGMENT_INDICATOR_INDEX 13
  216. #define ZT_PROTO_PACKET_FRAGMENT_COUNTS 14
  217. #define ZT_PROTO_PACKET_ID_INDEX 0
  218. #define ZT_PROTO_PACKET_DESTINATION_INDEX 8
  219. #define ZT_PROTO_PACKET_SOURCE_INDEX 13
  220. #define ZT_PROTO_PACKET_FLAGS_INDEX 18
  221. #define ZT_PROTO_PACKET_MAC_INDEX 19
  222. #define ZT_PROTO_PACKET_VERB_INDEX 27
  223. #define ZT_PROTO_HELLO_NODE_META_INSTANCE_ID "i"
  224. #define ZT_PROTO_HELLO_NODE_META_LOCATOR "l"
  225. #define ZT_PROTO_HELLO_NODE_META_PROBE_TOKEN "p"
  226. #define ZT_PROTO_HELLO_NODE_META_SOFTWARE_VENDOR "s"
  227. #define ZT_PROTO_HELLO_NODE_META_SOFTWARE_VERSION "v"
  228. #define ZT_PROTO_HELLO_NODE_META_PHYSICAL_DEST "d"
  229. #define ZT_PROTO_HELLO_NODE_META_COMPLIANCE "c"
  230. #define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_PUBLIC "e"
  231. #define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_ACK "E"
  232. static_assert(ZT_PROTO_MAX_PACKET_LENGTH < ZT_BUF_MEM_SIZE,"maximum packet length won't fit in Buf");
  233. static_assert(ZT_PROTO_PACKET_ENCRYPTED_SECTION_START == (ZT_PROTO_MIN_PACKET_LENGTH-1),"encrypted packet section must start right before protocol verb at one less than minimum packet size");
  234. namespace ZeroTier {
  235. namespace Protocol {
  236. /**
  237. * Packet verb (message type)
  238. */
  239. enum Verb
  240. {
  241. /**
  242. * No operation
  243. *
  244. * This packet does nothing, but it is sometimes sent as a probe to
  245. * trigger a HELLO exchange as the code will attempt HELLO when it
  246. * receives a packet from an unidentified source.
  247. */
  248. VERB_NOP = 0x00,
  249. /**
  250. * Announcement of a node's existence and vitals:
  251. * <[1] protocol version>
  252. * <[1] software major version (LEGACY)>
  253. * <[1] software minor version (LEGACY)>
  254. * <[2] software revision (LEGACY)>
  255. * <[8] timestamp>
  256. * <[...] binary serialized full sender identity>
  257. * <[...] physical destination address of packet (LEGACY)>
  258. * <[12] 96-bit CTR IV>
  259. * [... start of encrypted section ...]
  260. * <[2] 16-bit length of encrypted dictionary>
  261. * <[...] encrypted dictionary>
  262. * [... end of encrypted section ...]
  263. * <[48] HMAC-SHA384 of plaintext packet>
  264. *
  265. * HELLO is sent to initiate a new pairing between two nodes and
  266. * periodically to refresh information.
  267. *
  268. * HELLO is the only packet ever sent without whole payload encryption,
  269. * though an inner encrypted envelope exists to obscure all fields that
  270. * do not need to be sent in the clear. There is nothing in this
  271. * encrypted section that would be catastrophic if it leaked, but it's
  272. * good to proactively limit exposed information.
  273. *
  274. * Inner encryption is AES-CTR with a key derived using KBKDF and a
  275. * label indicating this specific usage. A 96-bit CTR IV precedes this
  276. * encrypted section.
  277. *
  278. * Authentication and encryption in HELLO and OK(HELLO) are always done
  279. * with the long-lived identity key, not ephemeral shared keys. This
  280. * is so ephemeral key negotiation can always occur on the first try
  281. * even if things get out of sync e.g. by one side restarting. Nothing
  282. * in HELLO is likely to be dangerous if decrypted later.
  283. *
  284. * HELLO and OK(HELLO) include an extra HMAC at the end of the packet.
  285. * This authenticates them to a level of certainty beyond that afforded
  286. * by regular AEAD. HMAC is computed over the whole packet prior to
  287. * packet MAC and with the 3-bit hop count field masked as it is
  288. * with regular packet AEAD, and it is then included in the regular
  289. * packet MAC.
  290. *
  291. * LEGACY: for legacy reasons the MAC field of HELLO is a poly1305
  292. * MAC initialized in the same manner as 1.x. Since HMAC provides
  293. * additional full 384-bit strength authentication this should not be
  294. * a problem for FIPS.
  295. *
  296. * Several legacy fields are present as well for the benefit of 1.x nodes.
  297. * These will go away and become simple reserved space once 1.x is no longer
  298. * supported. Some are self-explanatory. The "encrypted zero" is rather
  299. * strange. It's a 16-bit zero value encrypted using Salsa20/12 and the
  300. * long-lived identity key shared by the two peers. It tells 1.x that an
  301. * old encrypted field is no longer there and that it should stop parsing
  302. * the packet at that point.
  303. *
  304. * 1.x does not understand the dictionary and HMAC fields, but it will
  305. * ignore them due to the "encrypted zero" field indicating that the
  306. * packet contains no more information.
  307. *
  308. * Dictionary fields (defines start with ZT_PROTO_HELLO_NODE_META_):
  309. *
  310. * INSTANCE_ID - a 64-bit unique value generated on each node start
  311. * LOCATOR - signed record enumerating this node's trusted contact points
  312. * PROBE_TOKEN - 32-bit probe token
  313. * EPHEMERAL_PUBLIC - Ephemeral public key(s)
  314. *
  315. * OK will contain EPHEMERAL_PUBLIC (of the sender) and:
  316. *
  317. * EPHEMERAL_ACK - SHA384 of EPHEMERAL_PUBLIC received
  318. *
  319. * The following optional fields may also be present:
  320. *
  321. * HOSTNAME - arbitrary short host name for this node
  322. * CONTACT - arbitrary short contact information string for this node
  323. * SOFTWARE_VENDOR - short name or description of vendor, such as a URL
  324. * SOFTWARE_VERSION - major, minor, revision, and build (packed 64-bit int)
  325. * PHYSICAL_DEST - serialized Endpoint to which this message was sent
  326. * COMPLIANCE - bit mask containing bits for e.g. a FIPS-compliant node
  327. *
  328. * The timestamp field in OK is echoed but the others represent the sender
  329. * of the OK and are not echoes from HELLO. The dictionary in OK typically
  330. * only contains the EPHEMERAL fields, allowing the receiver of the OK to
  331. * confirm that both sides know the correct keys and thus begin using the
  332. * ephemeral shared secret to send packets.
  333. *
  334. * OK payload:
  335. * <[8] timestamp echoed from original HELLO>
  336. * <[1] protocol version of responding node>
  337. * <[2] 16-bit length of dictionary>
  338. * <[...] dictionary>
  339. * <[48] HMAC-SHA384 of plaintext packet>
  340. *
  341. * Legacy OK payload (sent to pre-2.x nodes):
  342. * <[8] timestamp echoed from original HELLO>
  343. * <[1] protocol version of responding node>
  344. * <[1] software major version>
  345. * <[1] software minor version>
  346. * <[2] software revision>
  347. * <[...] physical destination address of packet>
  348. * <[2] 16-bit zero length of additional fields>
  349. */
  350. VERB_HELLO = 0x01,
  351. /**
  352. * Error response:
  353. * <[1] in-re verb>
  354. * <[8] in-re packet ID>
  355. * <[1] error code>
  356. * <[...] error-dependent payload, may be empty>
  357. *
  358. * An ERROR that does not pertain to a specific packet will have its verb
  359. * set to VERB_NOP and its packet ID set to zero.
  360. */
  361. VERB_ERROR = 0x02,
  362. /**
  363. * Success response:
  364. * <[1] in-re verb>
  365. * <[8] in-re packet ID>
  366. * <[...] response-specific payload>
  367. */
  368. VERB_OK = 0x03,
  369. /**
  370. * Query an identity by address:
  371. * <[5] address to look up>
  372. * [<[...] additional addresses to look up>
  373. *
  374. * OK response payload:
  375. * <[...] identity>
  376. * <[...] locator>
  377. * [... additional identity/locator pairs]
  378. *
  379. * If the address is not found, no response is generated. The semantics
  380. * of WHOIS is similar to ARP and NDP in that persistent retrying can
  381. * be performed.
  382. *
  383. * It is possible for an identity but a null/empty locator to be returned
  384. * if no locator is known for a node. Older versions may omit the locator.
  385. */
  386. VERB_WHOIS = 0x04,
  387. /**
  388. * Relay-mediated NAT traversal or firewall punching initiation:
  389. * <[1] flags (unused, currently 0)>
  390. * <[5] ZeroTier address of other peer>
  391. * <[2] 16-bit number of endpoints where peer might be reached>
  392. * <[...] endpoints to attempt>
  393. *
  394. * Legacy packet format for pre-2.x peers:
  395. * <[1] flags (unused, currently 0)>
  396. * <[5] ZeroTier address of other peer>
  397. * <[2] 16-bit protocol address port>
  398. * <[1] protocol address length / type>
  399. * <[...] protocol address (network byte order)>
  400. *
  401. * When a root or other peer is relaying messages, it can periodically send
  402. * RENDEZVOUS to assist peers in establishing direct communication.
  403. *
  404. * Peers also directly exchange information via HELLO, so this serves as
  405. * a second way for peers to learn about their possible locations.
  406. *
  407. * It also serves another function: temporal coordination of NAT traversal
  408. * attempts. Some NATs traverse better if both sides first send "firewall
  409. * opener" packets and then send real packets and if this exchange is
  410. * coordinated in time so that the packets effectively pass each other in
  411. * flight.
  412. *
  413. * No OK or ERROR is generated.
  414. */
  415. VERB_RENDEZVOUS = 0x05,
  416. /**
  417. * ZT-to-ZT unicast ethernet frame (shortened EXT_FRAME):
  418. * <[8] 64-bit network ID>
  419. * <[2] 16-bit ethertype>
  420. * <[...] ethernet payload>
  421. *
  422. * MAC addresses are derived from the packet's source and destination
  423. * ZeroTier addresses. This is a shortened EXT_FRAME that elides full
  424. * Ethernet framing and other optional flags and features when they
  425. * are not necessary.
  426. *
  427. * ERROR may be generated if a membership certificate is needed for a
  428. * closed network. Payload will be network ID.
  429. */
  430. VERB_FRAME = 0x06,
  431. /**
  432. * Full Ethernet frame with MAC addressing and optional fields:
  433. * <[8] 64-bit network ID>
  434. * <[1] flags>
  435. * <[6] destination MAC or all zero for destination node>
  436. * <[6] source MAC or all zero for node of origin>
  437. * <[2] 16-bit ethertype>
  438. * <[...] ethernet payload>
  439. *
  440. * Flags:
  441. * 0x01 - Certificate of network membership attached (DEPRECATED)
  442. * 0x02 - Most significant bit of subtype (see below)
  443. * 0x04 - Middle bit of subtype (see below)
  444. * 0x08 - Least significant bit of subtype (see below)
  445. * 0x10 - ACK requested in the form of OK(EXT_FRAME)
  446. *
  447. * Subtypes (0..7):
  448. * 0x0 - Normal frame (bridging can be determined by checking MAC)
  449. * 0x1 - TEEd outbound frame
  450. * 0x2 - REDIRECTed outbound frame
  451. * 0x3 - WATCHed outbound frame (TEE with ACK, ACK bit also set)
  452. * 0x4 - TEEd inbound frame
  453. * 0x5 - REDIRECTed inbound frame
  454. * 0x6 - WATCHed inbound frame
  455. * 0x7 - (reserved for future use)
  456. *
  457. * An extended frame carries full MAC addressing, making it a
  458. * superset of VERB_FRAME. If 0x20 is set then p2p or hub and
  459. * spoke multicast propagation is requested.
  460. *
  461. * OK payload (if ACK flag is set):
  462. * <[8] 64-bit network ID>
  463. * <[1] flags>
  464. * <[6] destination MAC or all zero for destination node>
  465. * <[6] source MAC or all zero for node of origin>
  466. * <[2] 16-bit ethertype>
  467. */
  468. VERB_EXT_FRAME = 0x07,
  469. /**
  470. * ECHO request (a.k.a. ping):
  471. * <[...] arbitrary payload>
  472. *
  473. * This generates OK with a copy of the transmitted payload. No ERROR
  474. * is generated. Response to ECHO requests is optional and ECHO may be
  475. * ignored if a node detects a possible flood.
  476. */
  477. VERB_ECHO = 0x08,
  478. /**
  479. * Announce interest in multicast group(s):
  480. * <[8] 64-bit network ID>
  481. * <[6] multicast Ethernet address>
  482. * <[4] multicast additional distinguishing information (ADI)>
  483. * [... additional tuples of network/address/adi ...]
  484. *
  485. * LIKEs may be sent to any peer, though a good implementation should
  486. * restrict them to peers on the same network they're for and to network
  487. * controllers and root servers. In the current network, root servers
  488. * will provide the service of final multicast cache.
  489. */
  490. VERB_MULTICAST_LIKE = 0x09,
  491. /**
  492. * Network credentials push:
  493. * [<[...] one or more certificates of membership>]
  494. * <[1] 0x00, null byte marking end of COM array>
  495. * <[2] 16-bit number of capabilities>
  496. * <[...] one or more serialized Capability>
  497. * <[2] 16-bit number of tags>
  498. * <[...] one or more serialized Tags>
  499. * <[2] 16-bit number of revocations>
  500. * <[...] one or more serialized Revocations>
  501. * <[2] 16-bit number of certificates of ownership>
  502. * <[...] one or more serialized CertificateOfOwnership>
  503. *
  504. * This can be sent by anyone at any time to push network credentials.
  505. * These will of course only be accepted if they are properly signed.
  506. * Credentials can be for any number of networks.
  507. *
  508. * The use of a zero byte to terminate the COM section is for legacy
  509. * backward compatibility. Newer fields are prefixed with a length.
  510. *
  511. * OK/ERROR are not generated.
  512. */
  513. VERB_NETWORK_CREDENTIALS = 0x0a,
  514. /**
  515. * Network configuration request:
  516. * <[8] 64-bit network ID>
  517. * <[2] 16-bit length of request meta-data dictionary>
  518. * <[...] string-serialized request meta-data>
  519. * <[8] 64-bit revision of netconf we currently have>
  520. * <[8] 64-bit timestamp of netconf we currently have>
  521. *
  522. * This message requests network configuration from a node capable of
  523. * providing it. Responses can be sent as OK(NETWORK_CONFIG_REQUEST)
  524. * or NETWORK_CONFIG messages. NETWORK_CONFIG can also be sent by
  525. * network controllers or other nodes unsolicited.
  526. *
  527. * OK response payload:
  528. * (same as VERB_NETWORK_CONFIG payload)
  529. *
  530. * ERROR response payload:
  531. * <[8] 64-bit network ID>
  532. */
  533. VERB_NETWORK_CONFIG_REQUEST = 0x0b,
  534. /**
  535. * Network configuration data push:
  536. * <[8] 64-bit network ID>
  537. * <[2] 16-bit length of network configuration dictionary chunk>
  538. * <[...] network configuration dictionary (may be incomplete)>
  539. * <[1] 8-bit flags>
  540. * <[8] 64-bit config update ID (should never be 0)>
  541. * <[4] 32-bit total length of assembled dictionary>
  542. * <[4] 32-bit index of chunk>
  543. * [ ... end signed portion ... ]
  544. * <[1] 8-bit reserved field (legacy)>
  545. * <[2] 16-bit length of chunk signature>
  546. * <[...] chunk signature>
  547. *
  548. * Network configurations can come from network controllers or theoretically
  549. * any other node, but each chunk must be signed by the network controller
  550. * that generated it originally. The config update ID is arbitrary and is merely
  551. * used by the receiver to group chunks. Chunk indexes must be sequential and
  552. * the total delivered chunks must yield a total network config equal to the
  553. * specified total length.
  554. *
  555. * Flags:
  556. * 0x01 - Use fast propagation -- rumor mill flood this chunk to other members
  557. *
  558. * An OK should be sent if the config is successfully received and
  559. * accepted.
  560. *
  561. * OK payload:
  562. * <[8] 64-bit network ID>
  563. * <[8] 64-bit config update ID>
  564. */
  565. VERB_NETWORK_CONFIG = 0x0c,
  566. /**
  567. * Request endpoints for multicast distribution:
  568. * <[8] 64-bit network ID>
  569. * <[1] flags>
  570. * <[6] MAC address of multicast group being queried>
  571. * <[4] 32-bit ADI for multicast group being queried>
  572. * <[4] 32-bit requested max number of multicast peers>
  573. *
  574. * This message asks a peer for additional known endpoints that have
  575. * LIKEd a given multicast group. It's sent when the sender wishes
  576. * to send multicast but does not have the desired number of recipient
  577. * peers.
  578. *
  579. * OK response payload: (multiple OKs can be generated)
  580. * <[8] 64-bit network ID>
  581. * <[6] MAC address of multicast group being queried>
  582. * <[4] 32-bit ADI for multicast group being queried>
  583. * <[4] 32-bit total number of known members in this multicast group>
  584. * <[2] 16-bit number of members enumerated in this packet>
  585. * <[...] series of 5-byte ZeroTier addresses of enumerated members>
  586. *
  587. * ERROR is not generated; queries that return no response are dropped.
  588. */
  589. VERB_MULTICAST_GATHER = 0x0d,
  590. // Deprecated multicast frame message type.
  591. VERB_MULTICAST_FRAME_deprecated = 0x0e,
  592. /**
  593. * Push of potential endpoints for direct communication:
  594. * <[2] 16-bit number of paths>
  595. * <[...] paths>
  596. *
  597. * Path record format:
  598. * <[1] 8-bit path flags>
  599. * <[2] length of endpoint record>
  600. * <[...] endpoint>
  601. *
  602. * The following fields are also included if the node is pre-2.x:
  603. * <[1] address type (LEGACY)>
  604. * <[1] address length in bytes (LEGACY)>
  605. * <[...] address (LEGACY)>
  606. *
  607. * Path record flags:
  608. * 0x01 - reserved (legacy)
  609. * 0x02 - reserved (legacy)
  610. * 0x04 - Symmetric NAT detected at sender side
  611. * 0x08 - Request aggressive symmetric NAT traversal
  612. *
  613. * OK and ERROR are not generated.
  614. */
  615. VERB_PUSH_DIRECT_PATHS = 0x10,
  616. /**
  617. * A message with arbitrary user-definable content:
  618. * <[8] 64-bit arbitrary message type ID>
  619. * [<[...] message payload>]
  620. *
  621. * This can be used to send arbitrary messages over VL1. It generates no
  622. * OK or ERROR and has no special semantics outside of whatever the user
  623. * (via the ZeroTier core API) chooses to give it.
  624. *
  625. * Message type IDs less than or equal to 65535 are reserved for use by
  626. * ZeroTier, Inc. itself. We recommend making up random ones for your own
  627. * implementations.
  628. */
  629. VERB_USER_MESSAGE = 0x14,
  630. VERB_MULTICAST = 0x16,
  631. /**
  632. * Encapsulate a full ZeroTier packet in another:
  633. * <[...] raw encapsulated packet>
  634. *
  635. * Encapsulation exists to enable secure relaying as opposed to the usual
  636. * "dumb" relaying. The latter is faster but secure relaying has roles
  637. * where endpoint privacy is desired.
  638. *
  639. * Packet hop count is incremented as normal.
  640. */
  641. VERB_ENCAP = 0x17
  642. // protocol max: 0x1f
  643. };
  644. /**
  645. * Error codes used in ERROR packets.
  646. */
  647. enum ErrorCode
  648. {
  649. /* Invalid request */
  650. ERROR_INVALID_REQUEST = 0x01,
  651. /* Bad/unsupported protocol version */
  652. ERROR_BAD_PROTOCOL_VERSION = 0x02,
  653. /* Unknown object queried */
  654. ERROR_OBJ_NOT_FOUND = 0x03,
  655. /* Verb or use case not supported/enabled by this node */
  656. ERROR_UNSUPPORTED_OPERATION = 0x05,
  657. /* Network access denied; updated credentials needed */
  658. ERROR_NEED_MEMBERSHIP_CERTIFICATE = 0x06,
  659. /* Tried to join network, but you're not a member */
  660. ERROR_NETWORK_ACCESS_DENIED_ = 0x07, /* extra _ at end to avoid Windows name conflict */
  661. /* Cannot deliver a forwarded ZeroTier packet (for any reason) */
  662. ERROR_CANNOT_DELIVER = 0x09
  663. };
  664. /**
  665. * EXT_FRAME subtypes, which are packed into three bits in the flags field.
  666. *
  667. * This allows the node to know whether this is a normal frame or one generated
  668. * by a special tee or redirect type flow rule.
  669. */
  670. enum ExtFrameSubtype
  671. {
  672. EXT_FRAME_SUBTYPE_NORMAL = 0x0,
  673. EXT_FRAME_SUBTYPE_TEE_OUTBOUND = 0x1,
  674. EXT_FRAME_SUBTYPE_REDIRECT_OUTBOUND = 0x2,
  675. EXT_FRAME_SUBTYPE_WATCH_OUTBOUND = 0x3,
  676. EXT_FRAME_SUBTYPE_TEE_INBOUND = 0x4,
  677. EXT_FRAME_SUBTYPE_REDIRECT_INBOUND = 0x5,
  678. EXT_FRAME_SUBTYPE_WATCH_INBOUND = 0x6
  679. };
  680. /**
  681. * EXT_FRAME flags
  682. */
  683. enum ExtFrameFlag
  684. {
  685. /**
  686. * A certifiate of membership was included (no longer used but still accepted)
  687. */
  688. EXT_FRAME_FLAG_COM_ATTACHED_deprecated = 0x01,
  689. // bits 0x02, 0x04, and 0x08 are occupied by the 3-bit ExtFrameSubtype value.
  690. /**
  691. * An OK(EXT_FRAME) acknowledgement was requested by the sender.
  692. */
  693. EXT_FRAME_FLAG_ACK_REQUESTED = 0x10
  694. };
  695. /**
  696. * NETWORK_CONFIG (or OK(NETWORK_CONFIG_REQUEST)) flags
  697. */
  698. enum NetworkConfigFlag
  699. {
  700. /**
  701. * Indicates that this network config chunk should be fast propagated via rumor mill flooding.
  702. */
  703. NETWORK_CONFIG_FLAG_FAST_PROPAGATE = 0x01
  704. };
  705. /**
  706. * Deterministically mangle a 256-bit crypto key based on packet characteristics
  707. *
  708. * This uses extra data from the packet to mangle the secret, yielding when
  709. * combined with Salsa20's conventional 64-bit nonce an effective nonce that's
  710. * more like 68 bits.
  711. *
  712. * @param in Input key (32 bytes)
  713. * @param out Output buffer (32 bytes)
  714. */
  715. static ZT_INLINE void salsa2012DeriveKey(const uint8_t *const in,uint8_t *const out,const Buf &packet,const unsigned int packetSize) noexcept
  716. {
  717. // IV and source/destination addresses. Using the addresses divides the
  718. // key space into two halves-- A->B and B->A (since order will change).
  719. #ifdef ZT_NO_UNALIGNED_ACCESS
  720. for(int i=0;i<18;++i)
  721. out[i] = in[i] ^ packet.unsafeData[i];
  722. #else
  723. *reinterpret_cast<uint64_t *>(out) = *reinterpret_cast<const uint64_t *>(in) ^ *reinterpret_cast<const uint64_t *>(packet.unsafeData);
  724. *reinterpret_cast<uint64_t *>(out + 8) = *reinterpret_cast<const uint64_t *>(in + 8) ^ *reinterpret_cast<const uint64_t *>(packet.unsafeData + 8);
  725. *reinterpret_cast<uint16_t *>(out + 16) = *reinterpret_cast<const uint16_t *>(in + 16) ^ *reinterpret_cast<const uint16_t *>(packet.unsafeData + 16);
  726. #endif
  727. // Flags, but with hop count masked off. Hop count is altered by forwarding
  728. // nodes and is the only field that is mutable by unauthenticated third parties.
  729. out[18] = in[18] ^ (packet.unsafeData[18] & 0xf8U);
  730. // Raw packet size in bytes -- thus each packet size defines a new key space.
  731. out[19] = in[19] ^ (uint8_t)packetSize;
  732. out[20] = in[20] ^ (uint8_t)(packetSize >> 8U); // little endian
  733. // Rest of raw key is used unchanged
  734. #ifdef ZT_NO_UNALIGNED_ACCESS
  735. for(int i=21;i<32;++i)
  736. out[i] = in[i];
  737. #else
  738. out[21] = in[21];
  739. out[22] = in[22];
  740. out[23] = in[23];
  741. *reinterpret_cast<uint64_t *>(out + 24) = *reinterpret_cast<const uint64_t *>(in + 24);
  742. #endif
  743. }
  744. /**
  745. * Fill out packet header fields (except for mac, which is filled out by armor())
  746. *
  747. * @param pkt Start of packet buffer
  748. * @param packetId Packet IV / cryptographic MAC
  749. * @param destination Destination ZT address
  750. * @param source Source (sending) ZT address
  751. * @param verb Protocol verb
  752. * @return Index of packet start
  753. */
  754. static ZT_INLINE int newPacket(uint8_t pkt[28],const uint64_t packetId,const Address destination,const Address source,const Verb verb) noexcept
  755. {
  756. Utils::storeAsIsEndian<uint64_t>(pkt + ZT_PROTO_PACKET_ID_INDEX,packetId);
  757. destination.copyTo(pkt + ZT_PROTO_PACKET_DESTINATION_INDEX);
  758. source.copyTo(pkt + ZT_PROTO_PACKET_SOURCE_INDEX);
  759. pkt[ZT_PROTO_PACKET_FLAGS_INDEX] = 0;
  760. // mac is left undefined as it's filled out by armor()
  761. pkt[ZT_PROTO_PACKET_VERB_INDEX] = (uint8_t)verb;
  762. return ZT_PROTO_PACKET_VERB_INDEX + 1;
  763. }
  764. static ZT_INLINE int newPacket(Buf &pkt,const uint64_t packetId,const Address destination,const Address source,const Verb verb) noexcept { return newPacket(pkt.unsafeData,packetId,destination,source,verb); }
  765. /**
  766. * Encrypt and compute packet MAC
  767. *
  768. * @param pkt Packet data to encrypt (in place)
  769. * @param packetSize Packet size, must be at least ZT_PROTO_MIN_PACKET_LENGTH or crash will occur
  770. * @param key Key to use for encryption
  771. * @param cipherSuite Cipher suite to use for AEAD encryption or just MAC
  772. */
  773. static ZT_INLINE void armor(uint8_t *const pkt,const int packetSize,const SharedPtr<SymmetricKey> &key,const uint8_t cipherSuite) noexcept
  774. {
  775. #if 0
  776. Protocol::Header &ph = pkt.as<Protocol::Header>(); // NOLINT(hicpp-use-auto,modernize-use-auto)
  777. ph.flags = (ph.flags & 0xc7U) | ((cipherSuite << 3U) & 0x38U); // flags: FFCCCHHH where CCC is cipher
  778. switch(cipherSuite) {
  779. case ZT_PROTO_CIPHER_SUITE__POLY1305_NONE: {
  780. uint8_t perPacketKey[ZT_SYMMETRIC_KEY_SIZE];
  781. salsa2012DeriveKey(key,perPacketKey,pkt,packetSize);
  782. Salsa20 s20(perPacketKey,&ph.packetId);
  783. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  784. s20.crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  785. // only difference here is that we don't encrypt the payload
  786. uint64_t mac[2];
  787. poly1305(mac,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  788. ph.mac = mac[0];
  789. } break;
  790. case ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012: {
  791. uint8_t perPacketKey[ZT_SYMMETRIC_KEY_SIZE];
  792. salsa2012DeriveKey(key,perPacketKey,pkt,packetSize);
  793. Salsa20 s20(perPacketKey,&ph.packetId);
  794. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  795. s20.crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  796. const unsigned int encLen = packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
  797. s20.crypt12(pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,encLen);
  798. uint64_t mac[2];
  799. poly1305(mac,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,encLen,macKey);
  800. ph.mac = mac[0];
  801. } break;
  802. case ZT_PROTO_CIPHER_SUITE__AES_GMAC_SIV: {
  803. } break;
  804. }
  805. #endif
  806. }
  807. /**
  808. * Attempt to compress packet payload
  809. *
  810. * This attempts compression and swaps the pointer in 'pkt' for a buffer holding
  811. * compressed data on success. If compression did not shrink the packet, the original
  812. * packet size is returned and 'pkt' remains unchanged. If compression is successful
  813. * the compressed verb flag is also set.
  814. *
  815. * @param pkt Packet buffer value/result parameter: pointer may be swapped if compression is successful
  816. * @param packetSize Total size of packet in bytes (including headers)
  817. * @return New size of packet after compression or original size of compression wasn't helpful
  818. */
  819. static ZT_INLINE int compress(SharedPtr<Buf> &pkt,int packetSize) noexcept
  820. {
  821. // TODO
  822. return packetSize;
  823. }
  824. } // namespace Protocol
  825. } // namespace ZeroTier
  826. #endif