Cluster.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_CLUSTER
  28. #include <stdint.h>
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include <math.h>
  33. #include <algorithm>
  34. #include <utility>
  35. #include "../version.h"
  36. #include "Cluster.hpp"
  37. #include "RuntimeEnvironment.hpp"
  38. #include "MulticastGroup.hpp"
  39. #include "CertificateOfMembership.hpp"
  40. #include "Salsa20.hpp"
  41. #include "Poly1305.hpp"
  42. #include "Identity.hpp"
  43. #include "Topology.hpp"
  44. #include "Packet.hpp"
  45. #include "Switch.hpp"
  46. #include "Node.hpp"
  47. namespace ZeroTier {
  48. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  49. throw()
  50. {
  51. double dx = ((double)x2 - (double)x1);
  52. double dy = ((double)y2 - (double)y1);
  53. double dz = ((double)z2 - (double)z1);
  54. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  55. }
  56. Cluster::Cluster(
  57. const RuntimeEnvironment *renv,
  58. uint16_t id,
  59. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  60. int32_t x,
  61. int32_t y,
  62. int32_t z,
  63. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  64. void *sendFunctionArg,
  65. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  66. void *addressToLocationFunctionArg) :
  67. RR(renv),
  68. _sendFunction(sendFunction),
  69. _sendFunctionArg(sendFunctionArg),
  70. _addressToLocationFunction(addressToLocationFunction),
  71. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  72. _x(x),
  73. _y(y),
  74. _z(z),
  75. _id(id),
  76. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  77. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
  78. _peerAffinities(65536),
  79. _lastCleanedPeerAffinities(0),
  80. _lastCheckedPeersForAnnounce(0),
  81. _lastFlushed(0)
  82. {
  83. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  84. // Generate master secret by hashing the secret from our Identity key pair
  85. RR->identity.sha512PrivateKey(_masterSecret);
  86. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  87. memcpy(stmp,_masterSecret,sizeof(stmp));
  88. stmp[0] ^= Utils::hton(id);
  89. SHA512::hash(stmp,stmp,sizeof(stmp));
  90. SHA512::hash(stmp,stmp,sizeof(stmp));
  91. memcpy(_key,stmp,sizeof(_key));
  92. Utils::burn(stmp,sizeof(stmp));
  93. }
  94. Cluster::~Cluster()
  95. {
  96. Utils::burn(_masterSecret,sizeof(_masterSecret));
  97. Utils::burn(_key,sizeof(_key));
  98. delete [] _members;
  99. }
  100. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  101. {
  102. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  103. {
  104. // FORMAT: <[16] iv><[8] MAC><... data>
  105. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  106. return;
  107. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  108. char keytmp[32];
  109. memcpy(keytmp,_key,32);
  110. for(int i=0;i<8;++i)
  111. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  112. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  113. Utils::burn(keytmp,sizeof(keytmp));
  114. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  115. char polykey[ZT_POLY1305_KEY_LEN];
  116. memset(polykey,0,sizeof(polykey));
  117. s20.encrypt12(polykey,polykey,sizeof(polykey));
  118. // Compute 16-byte MAC
  119. char mac[ZT_POLY1305_MAC_LEN];
  120. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  121. // Check first 8 bytes of MAC against 64-bit MAC in stream
  122. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  123. return;
  124. // Decrypt!
  125. dmsg.setSize(len - 24);
  126. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  127. }
  128. if (dmsg.size() < 4)
  129. return;
  130. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  131. unsigned int ptr = 2;
  132. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  133. return;
  134. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  135. ptr += 2;
  136. if (toMemberId != _id) // sanity check: message not for us?
  137. return;
  138. { // make sure sender is actually considered a member
  139. Mutex::Lock _l3(_memberIds_m);
  140. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  141. return;
  142. }
  143. {
  144. _Member &m = _members[fromMemberId];
  145. Mutex::Lock mlck(m.lock);
  146. try {
  147. while (ptr < dmsg.size()) {
  148. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  149. const unsigned int nextPtr = ptr + mlen;
  150. if (nextPtr > dmsg.size())
  151. break;
  152. int mtype = -1;
  153. try {
  154. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  155. default:
  156. break;
  157. case STATE_MESSAGE_ALIVE: {
  158. ptr += 7; // skip version stuff, not used yet
  159. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  160. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  161. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  162. ptr += 8; // skip local clock, not used
  163. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  164. m.peers = dmsg.at<uint64_t>(ptr); ptr += 8;
  165. ptr += 8; // skip flags, unused
  166. #ifdef ZT_TRACE
  167. std::string addrs;
  168. #endif
  169. unsigned int physicalAddressCount = dmsg[ptr++];
  170. m.zeroTierPhysicalEndpoints.clear();
  171. for(unsigned int i=0;i<physicalAddressCount;++i) {
  172. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  173. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  174. if (!(m.zeroTierPhysicalEndpoints.back())) {
  175. m.zeroTierPhysicalEndpoints.pop_back();
  176. }
  177. #ifdef ZT_TRACE
  178. else {
  179. if (addrs.length() > 0)
  180. addrs.push_back(',');
  181. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  182. }
  183. #endif
  184. }
  185. #ifdef ZT_TRACE
  186. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  187. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  188. }
  189. #endif
  190. m.lastReceivedAliveAnnouncement = RR->node->now();
  191. } break;
  192. case STATE_MESSAGE_HAVE_PEER: {
  193. const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  194. Mutex::Lock _l2(_peerAffinities_m);
  195. _peerAffinities.set(zeroTierAddress,fromMemberId);
  196. TRACE("[%u] has %s @ %s",(unsigned int)fromMemberId,id.address().toString().c_str(),physicalAddress.toString().c_str());
  197. } break;
  198. case STATE_MESSAGE_WANT_PEER: {
  199. const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  200. SharedPtr<Peer> peer(RR->topology->getPeerNoCache(zeroTierAddress));
  201. if ((peer)&&(peer->hasActiveDirectPath(RR->node->now()))) {
  202. char buf[ZT_ADDRESS_LENGTH];
  203. peer->address().copyTo(buf,ZT_ADDRESS_LENGTH);
  204. Mutex::Lock _l2(_members[fromMemberId].lock);
  205. _send(fromMemberId,STATE_MESSAGE_HAVE_PEER,buf,ZT_ADDRESS_LENGTH);
  206. _flush(fromMemberId);
  207. }
  208. } break;
  209. case STATE_MESSAGE_MULTICAST_LIKE: {
  210. const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
  211. const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  212. const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
  213. const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
  214. RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
  215. TRACE("[%u] %s likes %s/%.8x on %.16llx",(unsigned int)fromMemberId,address.toString().c_str(),mac.toString().c_str(),(unsigned int)adi,nwid);
  216. } break;
  217. case STATE_MESSAGE_COM: {
  218. /* not currently used so not decoded yet
  219. CertificateOfMembership com;
  220. ptr += com.deserialize(dmsg,ptr);
  221. if (com) {
  222. TRACE("[%u] COM for %s on %.16llu rev %llu",(unsigned int)fromMemberId,com.issuedTo().toString().c_str(),com.networkId(),com.revision());
  223. }
  224. */
  225. } break;
  226. case STATE_MESSAGE_PROXY_UNITE: {
  227. const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  228. const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  229. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  230. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  231. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  232. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  233. TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
  234. const uint64_t now = RR->node->now();
  235. SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress));
  236. if ((localPeer)&&(numRemotePeerPaths > 0)) {
  237. InetAddress bestLocalV4,bestLocalV6;
  238. localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);
  239. InetAddress bestRemoteV4,bestRemoteV6;
  240. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  241. if ((bestRemoteV4)&&(bestRemoteV6))
  242. break;
  243. switch(remotePeerPaths[i].ss_family) {
  244. case AF_INET:
  245. if (!bestRemoteV4)
  246. bestRemoteV4 = remotePeerPaths[i];
  247. break;
  248. case AF_INET6:
  249. if (!bestRemoteV6)
  250. bestRemoteV6 = remotePeerPaths[i];
  251. break;
  252. }
  253. }
  254. Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  255. rendezvousForLocal.append((uint8_t)0);
  256. remotePeerAddress.appendTo(rendezvousForLocal);
  257. Buffer<2048> rendezvousForRemote;
  258. remotePeerAddress.appendTo(rendezvousForRemote);
  259. rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
  260. const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForRemote.size();
  261. rendezvousForRemote.addSize(2); // space for actual packet payload length
  262. rendezvousForRemote.append((uint8_t)0); // flags == 0
  263. localPeerAddress.appendTo(rendezvousForRemote);
  264. bool haveMatch = false;
  265. if ((bestLocalV6)&&(bestRemoteV6)) {
  266. haveMatch = true;
  267. rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
  268. rendezvousForLocal.append((uint8_t)16);
  269. rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
  270. rendezvousForRemote.append((uint16_t)bestLocalV6.port());
  271. rendezvousForRemote.append((uint8_t)16);
  272. rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
  273. rendezvousForRemote.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
  274. } else if ((bestLocalV4)&&(bestRemoteV4)) {
  275. haveMatch = true;
  276. rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
  277. rendezvousForLocal.append((uint8_t)4);
  278. rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
  279. rendezvousForRemote.append((uint16_t)bestLocalV4.port());
  280. rendezvousForRemote.append((uint8_t)4);
  281. rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
  282. rendezvousForRemote.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
  283. }
  284. if (haveMatch) {
  285. _send(fromMemberId,STATE_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
  286. _flush(fromMemberId);
  287. RR->sw->send(rendezvousForLocal,true,0);
  288. }
  289. }
  290. } break;
  291. case STATE_MESSAGE_PROXY_SEND: {
  292. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  293. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  294. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  295. Packet outp(rcpt,RR->identity.address(),verb);
  296. outp.append(dmsg.field(ptr,len),len); ptr += len;
  297. RR->sw->send(outp,true,0);
  298. TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  299. } break;
  300. }
  301. } catch ( ... ) {
  302. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  303. // drop invalids
  304. }
  305. ptr = nextPtr;
  306. }
  307. } catch ( ... ) {
  308. TRACE("invalid message (outer loop), discarding");
  309. // drop invalids
  310. }
  311. }
  312. }
  313. bool Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
  314. {
  315. if (len > 16384) // sanity check
  316. return false;
  317. const uint64_t now = RR->node->now();
  318. unsigned int canHasPeer = 0;
  319. {
  320. Mutex::Lock _l2(_peerAffinities_m);
  321. const unsigned int *pa = _peerAffinities.get(toPeerAddress);
  322. if (!pa) {
  323. char buf[ZT_ADDRESS_LENGTH];
  324. peerId.address().copyTo(buf,ZT_ADDRESS_LENGTH);
  325. {
  326. Mutex::Lock _l(_memberIds_m);
  327. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  328. Mutex::Lock _l2(_members[*mid].lock);
  329. _send(*mid,STATE_MESSAGE_WANT_PEER,buf,ZT_ADDRESS_LENGTH);
  330. }
  331. }
  332. return false;
  333. }
  334. canHasPeer = *pa;
  335. }
  336. Buffer<1024> buf;
  337. if (unite) {
  338. InetAddress v4,v6;
  339. if (fromPeerAddress) {
  340. SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress));
  341. if (fromPeer)
  342. fromPeer->getBestActiveAddresses(now,v4,v6);
  343. }
  344. uint8_t addrCount = 0;
  345. if (v4)
  346. ++addrCount;
  347. if (v6)
  348. ++addrCount;
  349. if (addrCount) {
  350. toPeerAddress.appendTo(buf);
  351. fromPeerAddress.appendTo(buf);
  352. buf.append(addrCount);
  353. if (v4)
  354. v4.serialize(buf);
  355. if (v6)
  356. v6.serialize(buf);
  357. }
  358. }
  359. {
  360. Mutex::Lock _l2(_members[canHasPeer].lock);
  361. if (buf.size() > 0)
  362. _send(canHasPeer,STATE_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
  363. if (_members[canHasPeer].zeroTierPhysicalEndpoints.size() > 0)
  364. RR->node->putPacket(InetAddress(),_members[canHasPeer].zeroTierPhysicalEndpoints.front(),data,len);
  365. }
  366. TRACE("sendViaCluster(): relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)canHasPeer);
  367. return true;
  368. }
  369. void Cluster::replicateHavePeer(const Identity &peerId)
  370. {
  371. char buf[ZT_ADDRESS_LENGTH];
  372. peerId.address().copyTo(buf,ZT_ADDRESS_LENGTH);
  373. {
  374. Mutex::Lock _l(_memberIds_m);
  375. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  376. Mutex::Lock _l2(_members[*mid].lock);
  377. _send(*mid,STATE_MESSAGE_HAVE_PEER,buf,ZT_ADDRESS_LENGTH);
  378. }
  379. }
  380. }
  381. void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
  382. {
  383. Buffer<1024> buf;
  384. buf.append((uint64_t)nwid);
  385. peerAddress.appendTo(buf);
  386. group.mac().appendTo(buf);
  387. buf.append((uint32_t)group.adi());
  388. TRACE("replicating %s MULTICAST_LIKE %.16llx/%s/%u to all members",peerAddress.toString().c_str(),nwid,group.mac().toString().c_str(),(unsigned int)group.adi());
  389. {
  390. Mutex::Lock _l(_memberIds_m);
  391. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  392. Mutex::Lock _l2(_members[*mid].lock);
  393. _send(*mid,STATE_MESSAGE_MULTICAST_LIKE,buf.data(),buf.size());
  394. }
  395. }
  396. }
  397. void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
  398. {
  399. /* not used yet, so don't do this yet
  400. Buffer<4096> buf;
  401. com.serialize(buf);
  402. TRACE("replicating %s COM for %.16llx to all members",com.issuedTo().toString().c_str(),com.networkId());
  403. {
  404. Mutex::Lock _l(_memberIds_m);
  405. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  406. Mutex::Lock _l2(_members[*mid].lock);
  407. _send(*mid,STATE_MESSAGE_COM,buf.data(),buf.size());
  408. }
  409. }
  410. */
  411. }
  412. void Cluster::doPeriodicTasks()
  413. {
  414. const uint64_t now = RR->node->now();
  415. if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
  416. _lastFlushed = now;
  417. Mutex::Lock _l(_memberIds_m);
  418. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  419. Mutex::Lock _l2(_members[*mid].lock);
  420. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  421. Buffer<2048> alive;
  422. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  423. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  424. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  425. alive.append((uint8_t)ZT_PROTO_VERSION);
  426. if (_addressToLocationFunction) {
  427. alive.append((int32_t)_x);
  428. alive.append((int32_t)_y);
  429. alive.append((int32_t)_z);
  430. } else {
  431. alive.append((int32_t)0);
  432. alive.append((int32_t)0);
  433. alive.append((int32_t)0);
  434. }
  435. alive.append((uint64_t)now);
  436. alive.append((uint64_t)0); // TODO: compute and send load average
  437. alive.append((uint64_t)RR->topology->countActive());
  438. alive.append((uint64_t)0); // unused/reserved flags
  439. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  440. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  441. pe->serialize(alive);
  442. _send(*mid,STATE_MESSAGE_ALIVE,alive.data(),alive.size());
  443. _members[*mid].lastAnnouncedAliveTo = now;
  444. }
  445. _flush(*mid); // does nothing if nothing to flush
  446. }
  447. }
  448. }
  449. void Cluster::addMember(uint16_t memberId)
  450. {
  451. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  452. return;
  453. Mutex::Lock _l2(_members[memberId].lock);
  454. {
  455. Mutex::Lock _l(_memberIds_m);
  456. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  457. return;
  458. _memberIds.push_back(memberId);
  459. std::sort(_memberIds.begin(),_memberIds.end());
  460. }
  461. _members[memberId].clear();
  462. // Generate this member's message key from the master and its ID
  463. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  464. memcpy(stmp,_masterSecret,sizeof(stmp));
  465. stmp[0] ^= Utils::hton(memberId);
  466. SHA512::hash(stmp,stmp,sizeof(stmp));
  467. SHA512::hash(stmp,stmp,sizeof(stmp));
  468. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  469. Utils::burn(stmp,sizeof(stmp));
  470. // Prepare q
  471. _members[memberId].q.clear();
  472. char iv[16];
  473. Utils::getSecureRandom(iv,16);
  474. _members[memberId].q.append(iv,16);
  475. _members[memberId].q.addSize(8); // room for MAC
  476. _members[memberId].q.append((uint16_t)_id);
  477. _members[memberId].q.append((uint16_t)memberId);
  478. }
  479. void Cluster::removeMember(uint16_t memberId)
  480. {
  481. Mutex::Lock _l(_memberIds_m);
  482. std::vector<uint16_t> newMemberIds;
  483. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  484. if (*mid != memberId)
  485. newMemberIds.push_back(*mid);
  486. }
  487. _memberIds = newMemberIds;
  488. }
  489. bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
  490. {
  491. if (_addressToLocationFunction) {
  492. // Pick based on location if it can be determined
  493. int px = 0,py = 0,pz = 0;
  494. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  495. TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
  496. return false;
  497. }
  498. // Find member closest to this peer
  499. const uint64_t now = RR->node->now();
  500. std::vector<InetAddress> best;
  501. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  502. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  503. unsigned int bestMember = _id;
  504. {
  505. Mutex::Lock _l(_memberIds_m);
  506. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  507. _Member &m = _members[*mid];
  508. Mutex::Lock _ml(m.lock);
  509. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  510. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  511. const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  512. if (mdist < bestDistance) {
  513. bestDistance = mdist;
  514. bestMember = *mid;
  515. best = m.zeroTierPhysicalEndpoints;
  516. }
  517. }
  518. }
  519. }
  520. // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
  521. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  522. if (a->ss_family == peerPhysicalAddress.ss_family) {
  523. TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
  524. redirectTo = *a;
  525. return true;
  526. }
  527. }
  528. TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
  529. return false;
  530. } else {
  531. // TODO: pick based on load if no location info?
  532. return false;
  533. }
  534. }
  535. void Cluster::status(ZT_ClusterStatus &status) const
  536. {
  537. const uint64_t now = RR->node->now();
  538. memset(&status,0,sizeof(ZT_ClusterStatus));
  539. status.myId = _id;
  540. ms[_id] = &(status.members[status.clusterSize++]);
  541. ms[_id]->id = _id;
  542. ms[_id]->alive = 1;
  543. ms[_id]->x = _x;
  544. ms[_id]->y = _y;
  545. ms[_id]->z = _z;
  546. ms[_id]->load = 0; // TODO
  547. ms[_id]->peers = RR->topology->countActive();
  548. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  549. if (ms[_id]->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  550. break;
  551. memcpy(&(ms[_id]->zeroTierPhysicalEndpoints[ms[_id]->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  552. }
  553. {
  554. Mutex::Lock _l1(_memberIds_m);
  555. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  556. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  557. break;
  558. _Member &m = _members[*mid];
  559. Mutex::Lock ml(m.lock);
  560. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  561. s->id = *mid;
  562. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  563. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  564. s->x = m.x;
  565. s->y = m.y;
  566. s->z = m.z;
  567. s->load = m.load;
  568. s->peers = m.peers;
  569. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  570. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  571. break;
  572. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  573. }
  574. }
  575. }
  576. }
  577. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  578. {
  579. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  580. return;
  581. _Member &m = _members[memberId];
  582. // assumes m.lock is locked!
  583. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  584. _flush(memberId);
  585. m.q.append((uint16_t)(len + 1));
  586. m.q.append((uint8_t)type);
  587. m.q.append(msg,len);
  588. }
  589. void Cluster::_flush(uint16_t memberId)
  590. {
  591. _Member &m = _members[memberId];
  592. // assumes m.lock is locked!
  593. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  594. // Create key from member's key and IV
  595. char keytmp[32];
  596. memcpy(keytmp,m.key,32);
  597. for(int i=0;i<8;++i)
  598. keytmp[i] ^= m.q[i];
  599. Salsa20 s20(keytmp,256,m.q.field(8,8));
  600. Utils::burn(keytmp,sizeof(keytmp));
  601. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  602. char polykey[ZT_POLY1305_KEY_LEN];
  603. memset(polykey,0,sizeof(polykey));
  604. s20.encrypt12(polykey,polykey,sizeof(polykey));
  605. // Encrypt m.q in place
  606. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  607. // Add MAC for authentication (encrypt-then-MAC)
  608. char mac[ZT_POLY1305_MAC_LEN];
  609. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  610. memcpy(m.q.field(16,8),mac,8);
  611. // Send!
  612. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  613. // Prepare for more
  614. m.q.clear();
  615. char iv[16];
  616. Utils::getSecureRandom(iv,16);
  617. m.q.append(iv,16);
  618. m.q.addSize(8); // room for MAC
  619. m.q.append((uint16_t)_id); // from member ID
  620. m.q.append((uint16_t)memberId); // to member ID
  621. }
  622. }
  623. } // namespace ZeroTier
  624. #endif // ZT_ENABLE_CLUSTER