Topology.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2024-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Topology.hpp"
  14. namespace ZeroTier {
  15. static const SharedPtr< const Certificate > s_nullCert;
  16. Topology::Topology(const RuntimeEnvironment *renv, void *tPtr, const int64_t now) :
  17. RR(renv)
  18. {
  19. char tmp[256];
  20. Vector< uint8_t > trustData(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_TRUST_STORE, Utils::ZERO256));
  21. Dictionary d;
  22. if (trustData.empty() || (!d.decode(trustData.data(), (unsigned int)trustData.size()))) {
  23. // TODO: import default certificates including default root set
  24. } else {
  25. const unsigned long certCount = (unsigned long)d.getUI("c$");
  26. for (unsigned long idx = 0; idx < certCount; ++idx) {
  27. uint64_t id[6];
  28. const Vector< uint8_t > &serialNo = d[Dictionary::arraySubscript(tmp, "c$.s", idx)];
  29. if (serialNo.size() == ZT_SHA384_DIGEST_SIZE) {
  30. Utils::copy< 48 >(id, serialNo.data());
  31. Certificate cert;
  32. if (cert.decode(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_CERT, id)))
  33. addCertificate(tPtr, cert, now, (unsigned int)d.getUI(Dictionary::arraySubscript(tmp, "c$.lt", idx)), false, false, false);
  34. }
  35. }
  36. const unsigned long localRootCount = (unsigned long)d.getUI("lr$");
  37. for (unsigned long idx = 0; idx < localRootCount; ++idx) {
  38. Identity lr;
  39. if (d.getO(Dictionary::arraySubscript(tmp, "lr$.i", idx), lr)) {
  40. if (lr)
  41. m_roots[lr].insert(s_nullCert);
  42. }
  43. }
  44. }
  45. m_cleanCertificates_l_certs(now);
  46. m_updateRootPeers_l_roots_certs(tPtr);
  47. }
  48. SharedPtr< Peer > Topology::add(void *tPtr, const SharedPtr< Peer > &peer)
  49. {
  50. RWMutex::Lock _l(m_peers_l);
  51. SharedPtr< Peer > &hp = m_peers[peer->address()];
  52. if (hp)
  53. return hp;
  54. m_loadCached(tPtr, peer->address(), hp);
  55. if (hp)
  56. return hp;
  57. hp = peer;
  58. return peer;
  59. }
  60. SharedPtr< Peer > Topology::addRoot(void *const tPtr, const Identity &id)
  61. {
  62. if ((id != RR->identity) && id.locallyValidate()) {
  63. RWMutex::Lock l1(m_roots_l);
  64. // A null pointer in the set of certificates specifying a root indicates that
  65. // the root has been directly added.
  66. m_roots[id].insert(s_nullCert);
  67. {
  68. Mutex::Lock certsLock(m_certs_l);
  69. m_updateRootPeers_l_roots_certs(tPtr);
  70. m_writeTrustStore_l_roots_certs(tPtr);
  71. }
  72. for (Vector< SharedPtr< Peer > >::const_iterator p(m_rootPeers.begin()); p != m_rootPeers.end(); ++p) {
  73. if ((*p)->identity() == id)
  74. return *p;
  75. }
  76. }
  77. return SharedPtr< Peer >();
  78. }
  79. bool Topology::removeRoot(void *const tPtr, Address address)
  80. {
  81. RWMutex::Lock l1(m_roots_l);
  82. bool removed = false;
  83. for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
  84. if (r->first.address() == address) {
  85. r->second.erase(s_nullCert);
  86. if (r->second.empty()) {
  87. m_roots.erase(r++);
  88. {
  89. Mutex::Lock certsLock(m_certs_l);
  90. m_updateRootPeers_l_roots_certs(tPtr);
  91. m_writeTrustStore_l_roots_certs(tPtr);
  92. }
  93. removed = true;
  94. } else {
  95. ++r;
  96. }
  97. } else ++r;
  98. }
  99. return removed;
  100. }
  101. struct p_RootRankingComparisonOperator
  102. {
  103. ZT_INLINE bool operator()(const SharedPtr< Peer > &a, const SharedPtr< Peer > &b) const noexcept
  104. {
  105. // Sort roots first in order of which root has spoken most recently, but
  106. // only at a resolution of ZT_PATH_KEEPALIVE_PERIOD/2 units of time. This
  107. // means that living roots that seem responsive are ranked the same. Then
  108. // they're sorted in descending order of latency so that the apparently
  109. // fastest root is ranked first.
  110. const int64_t alr = a->lastReceive() / (ZT_PATH_KEEPALIVE_PERIOD / 2);
  111. const int64_t blr = b->lastReceive() / (ZT_PATH_KEEPALIVE_PERIOD / 2);
  112. if (alr < blr) {
  113. return true;
  114. } else if (blr == alr) {
  115. const int bb = b->latency();
  116. if (bb < 0)
  117. return true;
  118. return bb < a->latency();
  119. }
  120. }
  121. };
  122. void Topology::rankRoots()
  123. {
  124. RWMutex::Lock l1(m_roots_l);
  125. std::sort(m_rootPeers.begin(), m_rootPeers.end(), p_RootRankingComparisonOperator());
  126. }
  127. void Topology::doPeriodicTasks(void *tPtr, const int64_t now)
  128. {
  129. // Peer and path delete operations are batched to avoid holding write locks on
  130. // these structures for any length of time. A list is compiled in read mode,
  131. // then the write lock is acquired for each delete. This adds overhead if there
  132. // are a lot of deletions, but that's not common.
  133. // Clean any expired certificates
  134. {
  135. Mutex::Lock l1(m_certs_l);
  136. if (m_cleanCertificates_l_certs(now)) {
  137. RWMutex::Lock l2(m_roots_l);
  138. m_updateRootPeers_l_roots_certs(tPtr);
  139. }
  140. }
  141. // Delete peers that are stale or offline.
  142. {
  143. Vector< Address > toDelete;
  144. {
  145. RWMutex::RLock l1(m_peers_l);
  146. RWMutex::RLock l2(m_roots_l);
  147. for (Map< Address, SharedPtr< Peer > >::iterator i(m_peers.begin()); i != m_peers.end();
  148. ++i) {
  149. // TODO: also delete if the peer has not exchanged meaningful communication in a while, such as
  150. // a network frame or non-trivial control packet.
  151. if (((now - i->second->lastReceive()) > ZT_PEER_ALIVE_TIMEOUT) && (m_roots.find(i->second->identity()) == m_roots.end()))
  152. toDelete.push_back(i->first);
  153. }
  154. }
  155. for (Vector< Address >::iterator i(toDelete.begin()); i != toDelete.end(); ++i) {
  156. RWMutex::Lock l1(m_peers_l);
  157. const Map< Address, SharedPtr< Peer > >::iterator p(m_peers.find(*i));
  158. if (likely(p != m_peers.end())) {
  159. p->second->save(tPtr);
  160. m_peers.erase(p);
  161. }
  162. }
  163. }
  164. // Delete paths that are no longer held by anyone else ("weak reference" type behavior).
  165. {
  166. Vector< uint64_t > toDelete;
  167. {
  168. RWMutex::RLock l1(m_paths_l);
  169. for (Map< uint64_t, SharedPtr< Path > >::iterator i(m_paths.begin()); i != m_paths.end();
  170. ++i) {
  171. if (i->second.weakGC())
  172. toDelete.push_back(i->first);
  173. }
  174. }
  175. for (Vector< uint64_t >::iterator i(toDelete.begin()); i != toDelete.end(); ++i) {
  176. RWMutex::Lock l1(m_paths_l);
  177. const Map< uint64_t, SharedPtr< Path > >::iterator p(m_paths.find(*i));
  178. if (likely(p != m_paths.end()))
  179. m_paths.erase(p);
  180. }
  181. }
  182. }
  183. void Topology::saveAll(void *tPtr)
  184. {
  185. RWMutex::RLock l(m_peers_l);
  186. for (Map< Address, SharedPtr< Peer > >::iterator i(m_peers.begin()); i != m_peers.end();
  187. ++i)
  188. i->second->save(tPtr);
  189. }
  190. ZT_CertificateError Topology::addCertificate(void *tPtr, const Certificate &cert, const int64_t now, const unsigned int localTrust, const bool writeToLocalStore, const bool refreshRootSets, const bool verify)
  191. {
  192. {
  193. Mutex::Lock certsLock(m_certs_l);
  194. // Check to see if we already have this specific certificate.
  195. const SHA384Hash serial(cert.serialNo);
  196. if (m_certs.find(serial) != m_certs.end())
  197. return ZT_CERTIFICATE_ERROR_NONE;
  198. // Verify certificate all the way to a trusted root. This also verifies inner
  199. // signatures such as those of locators or the subject unique ID.
  200. if (verify) {
  201. const ZT_CertificateError err = m_verifyCertificate_l_certs(cert, now, localTrust, false);
  202. if (err != ZT_CERTIFICATE_ERROR_NONE)
  203. return err;
  204. }
  205. // Create entry containing copy of certificate and trust flags.
  206. const std::pair< SharedPtr< const Certificate >, unsigned int > certEntry(SharedPtr< const Certificate >(new Certificate(cert)), localTrust);
  207. // If the subject contains a unique ID, check if we already have a cert for the
  208. // same uniquely identified subject. If so, check its subject timestamp and keep
  209. // the one we have if newer. Otherwise replace it. Note that the verification
  210. // function will have checked the unique ID proof signature already if a unique
  211. // ID was present.
  212. FCV< uint8_t, ZT_CERTIFICATE_MAX_UNIQUE_ID_SIZE > uniqueId(cert.subject.uniqueId, cert.subject.uniqueIdSize);
  213. if (!uniqueId.empty()) {
  214. std::pair< SharedPtr< const Certificate >, unsigned int > &bySubjectUniqueId = m_certsBySubjectUniqueId[uniqueId];
  215. if (bySubjectUniqueId.first) {
  216. if (bySubjectUniqueId.first->subject.timestamp >= cert.subject.timestamp)
  217. return ZT_CERTIFICATE_ERROR_HAVE_NEWER_CERT;
  218. m_eraseCertificate_l_certs(bySubjectUniqueId.first);
  219. m_certsBySubjectUniqueId[uniqueId] = certEntry; // reference bySubjectUniqueId no longer valid
  220. } else {
  221. bySubjectUniqueId = certEntry;
  222. }
  223. }
  224. // Save certificate by serial number.
  225. m_certs[serial] = certEntry;
  226. // Add certificate to sets of certificates whose subject references a given identity.
  227. for (unsigned int i = 0; i < cert.subject.identityCount; ++i) {
  228. const Identity *const ii = reinterpret_cast<const Identity *>(cert.subject.identities[i].identity);
  229. m_certsBySubjectIdentity[ii->fingerprint()].insert(certEntry);
  230. }
  231. // Clean any certificates whose chains are now broken, which can happen if there was
  232. // an update that replaced an old cert with a given unique ID. Otherwise this generally
  233. // does nothing here. Skip if verify is false since this means we're mindlessly loading
  234. // certificates, which right now only happens on startup when they're loaded from the
  235. // local certificate cache.
  236. if (verify)
  237. m_cleanCertificates_l_certs(now);
  238. // Refresh the root peers lists, since certs may enumerate roots.
  239. if (refreshRootSets) {
  240. RWMutex::Lock rootsLock(m_roots_l);
  241. m_updateRootPeers_l_roots_certs(tPtr);
  242. }
  243. }
  244. if (writeToLocalStore) {
  245. // Write certificate data prefixed by local trust flags as a 32-bit integer.
  246. Vector< uint8_t > certData(cert.encode());
  247. uint64_t id[6];
  248. Utils::copy< 48 >(id, cert.serialNo);
  249. RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_CERT, id, certData.data(), (unsigned int)certData.size());
  250. }
  251. return ZT_CERTIFICATE_ERROR_NONE;
  252. }
  253. void Topology::m_eraseCertificate_l_certs(const SharedPtr< const Certificate > &cert)
  254. {
  255. // assumes m_certs is locked for writing
  256. m_certs.erase(SHA384Hash(cert->serialNo));
  257. if (cert->subject.uniqueIdSize > 0)
  258. m_certsBySubjectUniqueId.erase(FCV< uint8_t, ZT_CERTIFICATE_MAX_UNIQUE_ID_SIZE >(cert->subject.uniqueId, cert->subject.uniqueIdSize));
  259. for (unsigned int i = 0; i < cert->subject.identityCount; ++i) {
  260. const Identity *const ii = reinterpret_cast<const Identity *>(cert->subject.identities[i].identity);
  261. Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > >::iterator
  262. bySubjectIdentity(m_certsBySubjectIdentity.find(ii->fingerprint()));
  263. if (bySubjectIdentity != m_certsBySubjectIdentity.end()) {
  264. bySubjectIdentity->second.erase(cert);
  265. if (bySubjectIdentity->second.empty())
  266. m_certsBySubjectIdentity.erase(bySubjectIdentity);
  267. }
  268. }
  269. }
  270. bool Topology::m_cleanCertificates_l_certs(int64_t now)
  271. {
  272. // assumes m_certs is locked for writing
  273. bool deleted = false;
  274. Vector< SharedPtr< const Certificate >> toDelete;
  275. for (;;) {
  276. for (Map< SHA384Hash, std::pair< SharedPtr< const Certificate >, unsigned int > >::iterator c(m_certs.begin()); c != m_certs.end(); ++c) {
  277. // Verify, but the last boolean option tells it to skip signature checks as this would
  278. // already have been done. This will therefore just check the path and validity times
  279. // of the certificate.
  280. const ZT_CertificateError err = m_verifyCertificate_l_certs(*(c->second.first), now, c->second.second, true);
  281. if (err != ZT_CERTIFICATE_ERROR_NONE)
  282. toDelete.push_back(c->second.first);
  283. }
  284. if (toDelete.empty())
  285. break;
  286. deleted = true;
  287. for (Vector< SharedPtr< const Certificate > >::iterator c(toDelete.begin()); c != toDelete.end(); ++c)
  288. m_eraseCertificate_l_certs(*c);
  289. toDelete.clear();
  290. }
  291. return deleted;
  292. }
  293. bool Topology::m_verifyCertificateChain_l_certs(const Certificate *current, const int64_t now) const
  294. {
  295. // assumes m_certs is at least locked for reading
  296. Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > >::const_iterator
  297. c = m_certsBySubjectIdentity.find(reinterpret_cast<const Identity *>(current->issuer)->fingerprint());
  298. if (c != m_certsBySubjectIdentity.end()) {
  299. for (Map< SharedPtr< const Certificate >, unsigned int >::const_iterator cc(c->second.begin()); cc != c->second.end(); ++cc) {
  300. if (
  301. (cc->first->maxPathLength > current->maxPathLength) &&
  302. (cc->first->validity[0] <= now) && // not before now
  303. (cc->first->validity[1] >= now) && // not after now
  304. (cc->first->validity[0] <= current->timestamp) && // not before child cert's timestamp
  305. (cc->first->validity[1] >= current->timestamp) // not after child cert's timestamp
  306. ) {
  307. if ((cc->second & ZT_CERTIFICATE_LOCAL_TRUST_FLAG_ROOT_CA) != 0)
  308. return true;
  309. if (m_verifyCertificateChain_l_certs(cc->first.ptr(), now))
  310. return true;
  311. }
  312. }
  313. }
  314. return false;
  315. }
  316. ZT_CertificateError Topology::m_verifyCertificate_l_certs(const Certificate &cert, const int64_t now, unsigned int localTrust, bool skipSignatureCheck) const
  317. {
  318. // assumes m_certs is at least locked for reading
  319. // Check certificate time window against current time.
  320. if ((cert.validity[0] > now) || (cert.validity[1] < now))
  321. return ZT_CERTIFICATE_ERROR_OUT_OF_VALID_TIME_WINDOW;
  322. // Verify primary and internal signatures and other objects unless the caller
  323. // elected to skip, which is done to re-check certs already in the DB.
  324. if (!skipSignatureCheck) {
  325. const ZT_CertificateError err = cert.verify();
  326. if (err != ZT_CERTIFICATE_ERROR_NONE)
  327. return err;
  328. }
  329. // If this is a root CA, we can skip this as we're already there. Otherwise we
  330. // recurse up the tree until we hit a root CA.
  331. if ((localTrust & ZT_CERTIFICATE_LOCAL_TRUST_FLAG_ROOT_CA) == 0) {
  332. if (!m_verifyCertificateChain_l_certs(&cert, now))
  333. return ZT_CERTIFICATE_ERROR_INVALID_CHAIN;
  334. }
  335. return ZT_CERTIFICATE_ERROR_NONE;
  336. }
  337. void Topology::m_loadCached(void *tPtr, const Address &zta, SharedPtr< Peer > &peer)
  338. {
  339. // does not require any locks to be held
  340. try {
  341. uint64_t id[2];
  342. id[0] = zta.toInt();
  343. id[1] = 0;
  344. Vector< uint8_t > data(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_PEER, id));
  345. if (data.size() > 8) {
  346. const uint8_t *d = data.data();
  347. int dl = (int)data.size();
  348. const int64_t ts = (int64_t)Utils::loadBigEndian< uint64_t >(d);
  349. Peer *const p = new Peer(RR);
  350. int n = p->unmarshal(d + 8, dl - 8);
  351. if (n < 0) {
  352. delete p;
  353. return;
  354. }
  355. if ((RR->node->now() - ts) < ZT_PEER_GLOBAL_TIMEOUT) {
  356. // TODO: handle many peers, same address (?)
  357. peer.set(p);
  358. return;
  359. }
  360. }
  361. } catch (...) {
  362. peer.zero();
  363. }
  364. }
  365. void Topology::m_updateRootPeers_l_roots_certs(void *tPtr)
  366. {
  367. // assumes m_roots_l and m_certs_l are locked for write
  368. // Clear m_roots but preserve locally added roots (indicated by a null cert ptr entry).
  369. for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
  370. if (r->second.find(s_nullCert) == r->second.end()) {
  371. m_roots.erase(r++);
  372. } else {
  373. r->second.clear();
  374. r->second.insert(s_nullCert);
  375. ++r;
  376. }
  377. }
  378. // Populate m_roots from certificate subject identities from certificates flagged
  379. // as local root set certificates.
  380. for (Map< FCV< uint8_t, ZT_CERTIFICATE_MAX_UNIQUE_ID_SIZE >, std::pair< SharedPtr< const Certificate >, unsigned int > >::const_iterator c(m_certsBySubjectUniqueId.begin()); c != m_certsBySubjectUniqueId.end();
  381. ++c) {
  382. if ((c->second.second & ZT_CERTIFICATE_LOCAL_TRUST_FLAG_ZEROTIER_ROOT_SET) != 0) {
  383. for (unsigned int i = 0; i < c->second.first->subject.identityCount; ++i)
  384. m_roots[*reinterpret_cast<const Identity *>(c->second.first->subject.identities[i].identity)].insert(c->second.first);
  385. }
  386. }
  387. // Create a new rootPeers vector and swap.
  388. Vector< SharedPtr< Peer >> newRootPeers;
  389. newRootPeers.reserve(m_roots.size());
  390. for (Map< Identity, Set< SharedPtr< const Certificate > > >::iterator r(m_roots.begin()); r != m_roots.end();) {
  391. const SharedPtr< Peer > p(this->peer(tPtr, r->first.address(), true));
  392. if ((p) && (p->identity() == r->first))
  393. newRootPeers.push_back(p);
  394. }
  395. std::sort(newRootPeers.begin(), newRootPeers.end(), p_RootRankingComparisonOperator());
  396. m_rootPeers.swap(newRootPeers);
  397. }
  398. void Topology::m_writeTrustStore_l_roots_certs(void *tPtr) const
  399. {
  400. // assumes m_roots_l and m_certs_l are locked for write
  401. char tmp[256];
  402. Dictionary d;
  403. d.add("v", (uint64_t)0); // version
  404. unsigned long idx = 0;
  405. d.add("c$", (uint64_t)m_certs.size());
  406. for (Map< SHA384Hash, std::pair< SharedPtr< const Certificate >, unsigned int > >::const_iterator c(m_certs.begin()); c != m_certs.end(); ++c) {
  407. d[Dictionary::arraySubscript(tmp, "c$.s", idx)].assign(c->first.data, c->first.data + ZT_SHA384_DIGEST_SIZE);
  408. d.add(Dictionary::arraySubscript(tmp, "c$.lt", idx), (uint64_t)c->second.second);
  409. ++idx;
  410. }
  411. unsigned long localRootCount = 0;
  412. for (Map< Identity, Set< SharedPtr< const Certificate > > >::const_iterator r(m_roots.begin()); r != m_roots.end();) {
  413. if (r->second.find(s_nullCert) != r->second.end())
  414. d.addO(Dictionary::arraySubscript(tmp, "lr$.i", localRootCount++), r->first);
  415. }
  416. d.add("lr$", (uint64_t)localRootCount);
  417. Vector< uint8_t > trustStore;
  418. d.encode(trustStore);
  419. RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_TRUST_STORE, Utils::ZERO256, trustStore.data(), (unsigned int)trustStore.size());
  420. }
  421. } // namespace ZeroTier