AES.hpp 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #ifndef ZT_AES_HPP
  27. #define ZT_AES_HPP
  28. #include "Constants.hpp"
  29. #include "Utils.hpp"
  30. #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
  31. #include <wmmintrin.h>
  32. #include <emmintrin.h>
  33. #include <smmintrin.h>
  34. #define ZT_AES_AESNI 1
  35. #endif
  36. #if defined(_M_ARM64) || defined(__aarch64__) || defined(__aarch64) || defined(__AARCH64__)
  37. #include <arm64intr.h>
  38. #include <arm64_neon.h>
  39. #ifndef ZT_AES_ARMNEON
  40. #define ZT_AES_ARMNEON 1
  41. #endif
  42. #if defined(__GNUC__) && !defined(__apple_build_version__) && (defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRYPTO))
  43. #include <arm_acle.h>
  44. #endif
  45. #endif
  46. #define ZT_AES_KEY_SIZE 32
  47. #define ZT_AES_BLOCK_SIZE 16
  48. namespace ZeroTier {
  49. /**
  50. * AES-256 and AES-GCM AEAD
  51. */
  52. class AES
  53. {
  54. public:
  55. /**
  56. * This will be true if your platform's type of AES acceleration is supported on this machine
  57. */
  58. static const bool HW_ACCEL;
  59. inline AES() {}
  60. inline AES(const uint8_t key[32]) { this->init(key); }
  61. inline ~AES() { Utils::burn(&_k,sizeof(_k)); }
  62. inline void init(const uint8_t key[32])
  63. {
  64. #ifdef ZT_AES_AESNI
  65. if (likely(HW_ACCEL)) {
  66. _init_aesni(key);
  67. return;
  68. }
  69. #endif
  70. _initSW(key);
  71. }
  72. inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
  73. {
  74. #ifdef ZT_AES_AESNI
  75. if (likely(HW_ACCEL)) {
  76. _encrypt_aesni(in,out);
  77. return;
  78. }
  79. #endif
  80. _encryptSW(in,out);
  81. }
  82. inline void decrypt(const uint8_t in[16],uint8_t out[16]) const
  83. {
  84. #ifdef ZT_AES_AESNI
  85. if (likely(HW_ACCEL)) {
  86. _decrypt_aesni(in,out);
  87. return;
  88. }
  89. #endif
  90. _decryptSW(in,out);
  91. }
  92. inline void gcmEncrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint8_t *tag,unsigned int taglen)
  93. {
  94. #ifdef ZT_AES_AESNI
  95. if (likely(HW_ACCEL)) {
  96. _encrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tag,taglen);
  97. return;
  98. }
  99. #endif
  100. abort(); // TODO: software
  101. }
  102. inline bool gcmDecrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,const uint8_t *tag,unsigned int taglen)
  103. {
  104. #ifdef ZT_AES_AESNI
  105. if (likely(HW_ACCEL)) {
  106. uint8_t tagbuf[16];
  107. _decrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tagbuf,taglen);
  108. return Utils::secureEq(tagbuf,tag,taglen);
  109. }
  110. #endif
  111. abort(); // TODO: software
  112. return false;
  113. }
  114. static inline void scramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out)
  115. {
  116. if (inlen < 16)
  117. return;
  118. #ifdef ZT_AES_AESNI
  119. if (likely(HW_ACCEL)) {
  120. _scramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen);
  121. return;
  122. }
  123. #endif
  124. }
  125. static inline void unscramble(const uint8_t key[16],const void *in,unsigned int inlen,void *out)
  126. {
  127. if (inlen < 16)
  128. return;
  129. #ifdef ZT_AES_AESNI
  130. if (likely(HW_ACCEL)) {
  131. _unscramble_aesni(key,(const uint8_t *)in,(uint8_t *)out,inlen);
  132. return;
  133. }
  134. #endif
  135. }
  136. private:
  137. static const uint32_t Te0[256];
  138. static const uint32_t Te1[256];
  139. static const uint32_t Te2[256];
  140. static const uint32_t Te3[256];
  141. static const uint32_t Te4[256];
  142. static const uint32_t Td0[256];
  143. static const uint32_t Td1[256];
  144. static const uint32_t Td2[256];
  145. static const uint32_t Td3[256];
  146. static const uint8_t Td4[256];
  147. static const uint32_t rcon[10];
  148. void _initSW(const uint8_t key[32]);
  149. void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
  150. void _decryptSW(const uint8_t in[16],uint8_t out[16]) const;
  151. /**************************************************************************/
  152. union {
  153. #ifdef ZT_AES_ARMNEON
  154. struct {
  155. uint32x4_t k[15];
  156. } neon;
  157. #endif
  158. #ifdef ZT_AES_AESNI
  159. struct {
  160. __m128i k[28];
  161. __m128i h,hh,hhh,hhhh;
  162. } ni;
  163. #endif
  164. struct {
  165. uint32_t ek[60];
  166. uint32_t dk[60];
  167. } sw;
  168. } _k;
  169. /**************************************************************************/
  170. #ifdef ZT_AES_ARMNEON /******************************************************/
  171. static inline uint32x4_t *_aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon)
  172. {
  173. uint32_t round1[4], round2[4], prv1[4], prv2[4];
  174. vst1q_u32(prv1, prev1);
  175. vst1q_u32(prv2, prev2);
  176. round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0];
  177. round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1];
  178. round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2];
  179. round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3];
  180. round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0];
  181. round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1];
  182. round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2];
  183. round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3];
  184. uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)};
  185. return expansion;
  186. }
  187. inline void _init_armneon(uint8x16_t encKey)
  188. {
  189. uint32x4_t *schedule = _k.neon.k;
  190. uint32x4_t *doubleRound = nullptr;
  191. (*schedule)[0] = vld1q_u32(encKey);
  192. (*schedule)[1] = vld1q_u32(encKey + 16);
  193. doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01);
  194. (*schedule)[2] = doubleRound[0];
  195. (*schedule)[3] = doubleRound[1];
  196. doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02);
  197. (*schedule)[4] = doubleRound[0];
  198. (*schedule)[5] = doubleRound[1];
  199. doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04);
  200. (*schedule)[6] = doubleRound[0];
  201. (*schedule)[7] = doubleRound[1];
  202. doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08);
  203. (*schedule)[8] = doubleRound[0];
  204. (*schedule)[9] = doubleRound[1];
  205. doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10);
  206. (*schedule)[10] = doubleRound[0];
  207. (*schedule)[11] = doubleRound[1];
  208. doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20);
  209. (*schedule)[12] = doubleRound[0];
  210. (*schedule)[13] = doubleRound[1];
  211. doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40);
  212. (*schedule)[14] = doubleRound[0];
  213. }
  214. inline void _encrypt_armneon(uint8x16_t *data) const
  215. {
  216. *data = veorq_u8(*data, _k.neon.k[0]);
  217. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  218. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  219. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  220. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  221. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  222. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  223. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  224. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  225. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  226. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  227. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  228. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  229. *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  230. *data = vaeseq_u8(*data, _k.neon.k[14]);
  231. }
  232. inline void _decrypt_armneon(uint8x16_t *data) const
  233. {
  234. *data = veorq_u8(*data, _k.neon.k[14]);
  235. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[13]));
  236. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[12]));
  237. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[11]));
  238. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[10]));
  239. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[9]));
  240. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[8]));
  241. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[7]));
  242. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[6]));
  243. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[5]));
  244. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[4]));
  245. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[3]));
  246. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[2]));
  247. *data = vaesimcq_u8(vaesdq_u8(*data, (uint8x16_t)_k.neon.k[1]));
  248. *data = vaesdq_u8(*data, (uint8x16_t)_k.neon.k[0]);
  249. }
  250. #endif /*********************************************************************/
  251. #ifdef ZT_AES_AESNI /********************************************************/
  252. static inline __m128i _init256_1_aesni(__m128i a,__m128i b)
  253. {
  254. __m128i x,y;
  255. b = _mm_shuffle_epi32(b,0xff);
  256. y = _mm_slli_si128(a,0x04);
  257. x = _mm_xor_si128(a,y);
  258. y = _mm_slli_si128(y,0x04);
  259. x = _mm_xor_si128(x,y);
  260. y = _mm_slli_si128(y,0x04);
  261. x = _mm_xor_si128(x,y);
  262. x = _mm_xor_si128(x,b);
  263. return x;
  264. }
  265. static inline __m128i _init256_2_aesni(__m128i a,__m128i b)
  266. {
  267. __m128i x,y,z;
  268. y = _mm_aeskeygenassist_si128(a,0x00);
  269. z = _mm_shuffle_epi32(y,0xaa);
  270. y = _mm_slli_si128(b,0x04);
  271. x = _mm_xor_si128(b,y);
  272. y = _mm_slli_si128(y,0x04);
  273. x = _mm_xor_si128(x,y);
  274. y = _mm_slli_si128(y,0x04);
  275. x = _mm_xor_si128(x,y);
  276. x = _mm_xor_si128(x,z);
  277. return x;
  278. }
  279. inline void _init_aesni(const uint8_t key[32])
  280. {
  281. __m128i t1,t2;
  282. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  283. _k.ni.k[1] = t2 = _mm_loadu_si128((const __m128i *)(key+16));
  284. _k.ni.k[2] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x01));
  285. _k.ni.k[3] = t2 = _init256_2_aesni(t1,t2);
  286. _k.ni.k[4] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x02));
  287. _k.ni.k[5] = t2 = _init256_2_aesni(t1,t2);
  288. _k.ni.k[6] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x04));
  289. _k.ni.k[7] = t2 = _init256_2_aesni(t1,t2);
  290. _k.ni.k[8] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x08));
  291. _k.ni.k[9] = t2 = _init256_2_aesni(t1,t2);
  292. _k.ni.k[10] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x10));
  293. _k.ni.k[11] = t2 = _init256_2_aesni(t1,t2);
  294. _k.ni.k[12] = t1 = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x20));
  295. _k.ni.k[13] = t2 = _init256_2_aesni(t1,t2);
  296. _k.ni.k[14] = _init256_1_aesni(t1,_mm_aeskeygenassist_si128(t2,0x40));
  297. _k.ni.k[15] = _mm_aesimc_si128(_k.ni.k[13]);
  298. _k.ni.k[16] = _mm_aesimc_si128(_k.ni.k[12]);
  299. _k.ni.k[17] = _mm_aesimc_si128(_k.ni.k[11]);
  300. _k.ni.k[18] = _mm_aesimc_si128(_k.ni.k[10]);
  301. _k.ni.k[19] = _mm_aesimc_si128(_k.ni.k[9]);
  302. _k.ni.k[20] = _mm_aesimc_si128(_k.ni.k[8]);
  303. _k.ni.k[21] = _mm_aesimc_si128(_k.ni.k[7]);
  304. _k.ni.k[22] = _mm_aesimc_si128(_k.ni.k[6]);
  305. _k.ni.k[23] = _mm_aesimc_si128(_k.ni.k[5]);
  306. _k.ni.k[24] = _mm_aesimc_si128(_k.ni.k[4]);
  307. _k.ni.k[25] = _mm_aesimc_si128(_k.ni.k[3]);
  308. _k.ni.k[26] = _mm_aesimc_si128(_k.ni.k[2]);
  309. _k.ni.k[27] = _mm_aesimc_si128(_k.ni.k[1]);
  310. __m128i h = _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  311. h = _mm_aesenc_si128(h,_k.ni.k[1]);
  312. h = _mm_aesenc_si128(h,_k.ni.k[2]);
  313. h = _mm_aesenc_si128(h,_k.ni.k[3]);
  314. h = _mm_aesenc_si128(h,_k.ni.k[4]);
  315. h = _mm_aesenc_si128(h,_k.ni.k[5]);
  316. h = _mm_aesenc_si128(h,_k.ni.k[6]);
  317. h = _mm_aesenc_si128(h,_k.ni.k[7]);
  318. h = _mm_aesenc_si128(h,_k.ni.k[8]);
  319. h = _mm_aesenc_si128(h,_k.ni.k[9]);
  320. h = _mm_aesenc_si128(h,_k.ni.k[10]);
  321. h = _mm_aesenc_si128(h,_k.ni.k[11]);
  322. h = _mm_aesenc_si128(h,_k.ni.k[12]);
  323. h = _mm_aesenc_si128(h,_k.ni.k[13]);
  324. h = _mm_aesenclast_si128(h,_k.ni.k[14]);
  325. __m128i hswap = _swap128_aesni(h);
  326. __m128i hh = _mult_block_aesni(hswap,h);
  327. __m128i hhh = _mult_block_aesni(hswap,hh);
  328. __m128i hhhh = _mult_block_aesni(hswap,hhh);
  329. _k.ni.h = hswap;
  330. _k.ni.hh = _swap128_aesni(hh);
  331. _k.ni.hhh = _swap128_aesni(hhh);
  332. _k.ni.hhhh = _swap128_aesni(hhhh);
  333. }
  334. static inline __m128i _assist128_aesni(__m128i a,__m128i b)
  335. {
  336. __m128i c;
  337. b = _mm_shuffle_epi32(b ,0xff);
  338. c = _mm_slli_si128(a, 0x04);
  339. a = _mm_xor_si128(a, c);
  340. c = _mm_slli_si128(c, 0x04);
  341. a = _mm_xor_si128(a, c);
  342. c = _mm_slli_si128(c, 0x04);
  343. a = _mm_xor_si128(a, c);
  344. a = _mm_xor_si128(a, b);
  345. return a;
  346. }
  347. /*static inline void _expand128_aesni(__m128i schedule[10],const void *const key)
  348. {
  349. __m128i t;
  350. schedule[0] = t = _mm_loadu_si128((const __m128i *)key);
  351. schedule[1] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  352. schedule[2] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  353. schedule[3] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  354. schedule[4] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  355. schedule[5] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10));
  356. schedule[6] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x20));
  357. schedule[7] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x40));
  358. schedule[8] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x80));
  359. schedule[9] = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x1b));
  360. schedule[10] = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x36));
  361. }*/
  362. static inline void _scramble_aesni(const uint8_t key[16],const uint8_t *in,uint8_t *out,unsigned int len)
  363. {
  364. __m128i t = _mm_loadu_si128((const __m128i *)key);
  365. __m128i k0 = t;
  366. __m128i k1 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  367. __m128i k2 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  368. __m128i k3 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  369. __m128i k4 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  370. __m128i k5 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10));
  371. while (len >= 64) {
  372. len -= 64;
  373. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  374. in += 16;
  375. __m128i d1 = _mm_loadu_si128((const __m128i *)in);
  376. in += 16;
  377. __m128i d2 = _mm_loadu_si128((const __m128i *)in);
  378. in += 16;
  379. __m128i d3 = _mm_loadu_si128((const __m128i *)in);
  380. in += 16;
  381. d0 = _mm_xor_si128(d0,k0);
  382. d1 = _mm_xor_si128(d1,k0);
  383. d2 = _mm_xor_si128(d2,k0);
  384. d3 = _mm_xor_si128(d3,k0);
  385. d0 = _mm_aesenc_si128(d0,k1);
  386. d1 = _mm_aesenc_si128(d1,k1);
  387. d2 = _mm_aesenc_si128(d2,k1);
  388. d3 = _mm_aesenc_si128(d3,k1);
  389. d0 = _mm_aesenc_si128(d0,k2);
  390. d1 = _mm_aesenc_si128(d1,k2);
  391. d2 = _mm_aesenc_si128(d2,k2);
  392. d3 = _mm_aesenc_si128(d3,k2);
  393. d0 = _mm_aesenc_si128(d0,k3);
  394. d1 = _mm_aesenc_si128(d1,k3);
  395. d2 = _mm_aesenc_si128(d2,k3);
  396. d3 = _mm_aesenc_si128(d3,k3);
  397. d0 = _mm_aesenc_si128(d0,k4);
  398. d1 = _mm_aesenc_si128(d1,k4);
  399. d2 = _mm_aesenc_si128(d2,k4);
  400. d3 = _mm_aesenc_si128(d3,k4);
  401. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5));
  402. out += 16;
  403. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d1,k5));
  404. out += 16;
  405. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d2,k5));
  406. out += 16;
  407. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d3,k5));
  408. out += 16;
  409. }
  410. while (len >= 16) {
  411. len -= 16;
  412. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  413. in += 16;
  414. d0 = _mm_xor_si128(d0,k0);
  415. d0 = _mm_aesenc_si128(d0,k1);
  416. d0 = _mm_aesenc_si128(d0,k2);
  417. d0 = _mm_aesenc_si128(d0,k3);
  418. d0 = _mm_aesenc_si128(d0,k4);
  419. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(d0,k5));
  420. out += 16;
  421. }
  422. if (len) {
  423. __m128i last = _mm_setzero_si128();
  424. last = _mm_xor_si128(last,k0);
  425. last = _mm_aesenc_si128(last,k1);
  426. last = _mm_aesenc_si128(last,k2);
  427. last = _mm_aesenc_si128(last,k3);
  428. last = _mm_aesenc_si128(last,k4);
  429. uint8_t lpad[16];
  430. _mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,k5));
  431. for(unsigned int i=0;i<len;++i) {
  432. out[i] = in[i] ^ lpad[i];
  433. }
  434. }
  435. }
  436. static inline void _unscramble_aesni(const uint8_t key[16],const uint8_t *in,uint8_t *out,unsigned int len)
  437. {
  438. __m128i t = _mm_loadu_si128((const __m128i *)key);
  439. __m128i dk5 = t; // k0
  440. __m128i k1 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x01));
  441. __m128i k2 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x02));
  442. __m128i k3 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x04));
  443. __m128i k4 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x08));
  444. __m128i dk0 = t = _assist128_aesni(t, _mm_aeskeygenassist_si128(t, 0x10)); // k5
  445. __m128i dk1 = _mm_aesimc_si128(k4);
  446. __m128i dk2 = _mm_aesimc_si128(k3);
  447. __m128i dk3 = _mm_aesimc_si128(k2);
  448. __m128i dk4 = _mm_aesimc_si128(k1);
  449. while (len >= 64) {
  450. len -= 64;
  451. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  452. in += 16;
  453. __m128i d1 = _mm_loadu_si128((const __m128i *)in);
  454. in += 16;
  455. __m128i d2 = _mm_loadu_si128((const __m128i *)in);
  456. in += 16;
  457. __m128i d3 = _mm_loadu_si128((const __m128i *)in);
  458. in += 16;
  459. d0 = _mm_xor_si128(d0,dk0);
  460. d1 = _mm_xor_si128(d1,dk0);
  461. d2 = _mm_xor_si128(d2,dk0);
  462. d3 = _mm_xor_si128(d3,dk0);
  463. d0 = _mm_aesdec_si128(d0,dk1);
  464. d1 = _mm_aesdec_si128(d1,dk1);
  465. d2 = _mm_aesdec_si128(d2,dk1);
  466. d3 = _mm_aesdec_si128(d3,dk1);
  467. d0 = _mm_aesdec_si128(d0,dk2);
  468. d1 = _mm_aesdec_si128(d1,dk2);
  469. d2 = _mm_aesdec_si128(d2,dk2);
  470. d3 = _mm_aesdec_si128(d3,dk2);
  471. d0 = _mm_aesdec_si128(d0,dk3);
  472. d1 = _mm_aesdec_si128(d1,dk3);
  473. d2 = _mm_aesdec_si128(d2,dk3);
  474. d3 = _mm_aesdec_si128(d3,dk3);
  475. d0 = _mm_aesdec_si128(d0,dk4);
  476. d1 = _mm_aesdec_si128(d1,dk4);
  477. d2 = _mm_aesdec_si128(d2,dk4);
  478. d3 = _mm_aesdec_si128(d3,dk4);
  479. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5));
  480. out += 16;
  481. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d1,dk5));
  482. out += 16;
  483. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d2,dk5));
  484. out += 16;
  485. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d3,dk5));
  486. out += 16;
  487. }
  488. while (len >= 16) {
  489. len -= 16;
  490. __m128i d0 = _mm_loadu_si128((const __m128i *)in);
  491. in += 16;
  492. d0 = _mm_xor_si128(d0,dk0);
  493. d0 = _mm_aesdec_si128(d0,dk1);
  494. d0 = _mm_aesdec_si128(d0,dk2);
  495. d0 = _mm_aesdec_si128(d0,dk3);
  496. d0 = _mm_aesdec_si128(d0,dk4);
  497. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(d0,dk5));
  498. out += 16;
  499. }
  500. if (len) {
  501. __m128i last = _mm_setzero_si128();
  502. last = _mm_xor_si128(last,dk5); // k0
  503. last = _mm_aesenc_si128(last,k1);
  504. last = _mm_aesenc_si128(last,k2);
  505. last = _mm_aesenc_si128(last,k3);
  506. last = _mm_aesenc_si128(last,k4);
  507. uint8_t lpad[16];
  508. _mm_storeu_si128((__m128i *)lpad,_mm_aesenclast_si128(last,dk0)); // k5
  509. for(unsigned int i=0;i<len;++i) {
  510. out[i] = in[i] ^ lpad[i];
  511. }
  512. }
  513. }
  514. inline void _encrypt_aesni(const void *in,void *out) const
  515. {
  516. __m128i tmp;
  517. tmp = _mm_loadu_si128((const __m128i *)in);
  518. tmp = _mm_xor_si128(tmp,_k.ni.k[0]);
  519. tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]);
  520. tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]);
  521. tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]);
  522. tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]);
  523. tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]);
  524. tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]);
  525. tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]);
  526. tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]);
  527. tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]);
  528. tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]);
  529. tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]);
  530. tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]);
  531. tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
  532. _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
  533. }
  534. inline void _decrypt_aesni(const void *in,void *out) const
  535. {
  536. __m128i tmp;
  537. tmp = _mm_loadu_si128((const __m128i *)in);
  538. tmp = _mm_xor_si128(tmp,_k.ni.k[14]);
  539. tmp = _mm_aesdec_si128(tmp,_k.ni.k[15]);
  540. tmp = _mm_aesdec_si128(tmp,_k.ni.k[16]);
  541. tmp = _mm_aesdec_si128(tmp,_k.ni.k[17]);
  542. tmp = _mm_aesdec_si128(tmp,_k.ni.k[18]);
  543. tmp = _mm_aesdec_si128(tmp,_k.ni.k[19]);
  544. tmp = _mm_aesdec_si128(tmp,_k.ni.k[20]);
  545. tmp = _mm_aesdec_si128(tmp,_k.ni.k[21]);
  546. tmp = _mm_aesdec_si128(tmp,_k.ni.k[22]);
  547. tmp = _mm_aesdec_si128(tmp,_k.ni.k[23]);
  548. tmp = _mm_aesdec_si128(tmp,_k.ni.k[24]);
  549. tmp = _mm_aesdec_si128(tmp,_k.ni.k[25]);
  550. tmp = _mm_aesdec_si128(tmp,_k.ni.k[26]);
  551. tmp = _mm_aesdec_si128(tmp,_k.ni.k[27]);
  552. _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(tmp,_k.ni.k[0]));
  553. }
  554. static inline __m128i _swap128_aesni(__m128i x) { return _mm_shuffle_epi8(x,_mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)); }
  555. static inline __m128i _mult_block_aesni(__m128i h,__m128i y)
  556. {
  557. __m128i t1,t2,t3,t4,t5,t6;
  558. y = _swap128_aesni(y);
  559. t1 = _mm_clmulepi64_si128(h,y,0x00);
  560. t2 = _mm_clmulepi64_si128(h,y,0x01);
  561. t3 = _mm_clmulepi64_si128(h,y,0x10);
  562. t4 = _mm_clmulepi64_si128(h,y,0x11);
  563. t2 = _mm_xor_si128(t2,t3);
  564. t3 = _mm_slli_si128(t2,8);
  565. t2 = _mm_srli_si128(t2,8);
  566. t1 = _mm_xor_si128(t1,t3);
  567. t4 = _mm_xor_si128(t4,t2);
  568. t5 = _mm_srli_epi32(t1,31);
  569. t1 = _mm_slli_epi32(t1,1);
  570. t6 = _mm_srli_epi32(t4,31);
  571. t4 = _mm_slli_epi32(t4,1);
  572. t3 = _mm_srli_si128(t5,12);
  573. t6 = _mm_slli_si128(t6,4);
  574. t5 = _mm_slli_si128(t5,4);
  575. t1 = _mm_or_si128(t1,t5);
  576. t4 = _mm_or_si128(t4,t6);
  577. t4 = _mm_or_si128(t4,t3);
  578. t5 = _mm_slli_epi32(t1,31);
  579. t6 = _mm_slli_epi32(t1,30);
  580. t3 = _mm_slli_epi32(t1,25);
  581. t5 = _mm_xor_si128(t5,t6);
  582. t5 = _mm_xor_si128(t5,t3);
  583. t6 = _mm_srli_si128(t5,4);
  584. t4 = _mm_xor_si128(t4,t6);
  585. t5 = _mm_slli_si128(t5,12);
  586. t1 = _mm_xor_si128(t1,t5);
  587. t4 = _mm_xor_si128(t4,t1);
  588. t5 = _mm_srli_epi32(t1,1);
  589. t2 = _mm_srli_epi32(t1,2);
  590. t3 = _mm_srli_epi32(t1,7);
  591. t4 = _mm_xor_si128(t4,t2);
  592. t4 = _mm_xor_si128(t4,t3);
  593. t4 = _mm_xor_si128(t4,t5);
  594. return _swap128_aesni(t4);
  595. }
  596. static inline __m128i _mult4xor_aesni(__m128i h1,__m128i h2,__m128i h3,__m128i h4,__m128i d1,__m128i d2,__m128i d3,__m128i d4)
  597. {
  598. __m128i t0,t1,t2,t3,t4,t5,t6,t7,t8,t9;
  599. d1 = _swap128_aesni(d1);
  600. d2 = _swap128_aesni(d2);
  601. d3 = _swap128_aesni(d3);
  602. d4 = _swap128_aesni(d4);
  603. t0 = _mm_clmulepi64_si128(h1,d1,0x00);
  604. t1 = _mm_clmulepi64_si128(h2,d2,0x00);
  605. t2 = _mm_clmulepi64_si128(h3,d3,0x00);
  606. t3 = _mm_clmulepi64_si128(h4,d4,0x00);
  607. t8 = _mm_xor_si128(t0,t1);
  608. t8 = _mm_xor_si128(t8,t2);
  609. t8 = _mm_xor_si128(t8,t3);
  610. t4 = _mm_clmulepi64_si128(h1,d1,0x11);
  611. t5 = _mm_clmulepi64_si128(h2,d2,0x11);
  612. t6 = _mm_clmulepi64_si128(h3,d3,0x11);
  613. t7 = _mm_clmulepi64_si128(h4,d4,0x11);
  614. t9 = _mm_xor_si128(t4,t5);
  615. t9 = _mm_xor_si128(t9,t6);
  616. t9 = _mm_xor_si128(t9,t7);
  617. t0 = _mm_shuffle_epi32(h1,78);
  618. t4 = _mm_shuffle_epi32(d1,78);
  619. t0 = _mm_xor_si128(t0,h1);
  620. t4 = _mm_xor_si128(t4,d1);
  621. t1 = _mm_shuffle_epi32(h2,78);
  622. t5 = _mm_shuffle_epi32(d2,78);
  623. t1 = _mm_xor_si128(t1,h2);
  624. t5 = _mm_xor_si128(t5,d2);
  625. t2 = _mm_shuffle_epi32(h3,78);
  626. t6 = _mm_shuffle_epi32(d3,78);
  627. t2 = _mm_xor_si128(t2,h3);
  628. t6 = _mm_xor_si128(t6,d3);
  629. t3 = _mm_shuffle_epi32(h4,78);
  630. t7 = _mm_shuffle_epi32(d4,78);
  631. t3 = _mm_xor_si128(t3,h4);
  632. t7 = _mm_xor_si128(t7,d4);
  633. t0 = _mm_clmulepi64_si128(t0,t4,0x00);
  634. t1 = _mm_clmulepi64_si128(t1,t5,0x00);
  635. t2 = _mm_clmulepi64_si128(t2,t6,0x00);
  636. t3 = _mm_clmulepi64_si128(t3,t7,0x00);
  637. t0 = _mm_xor_si128(t0,t8);
  638. t0 = _mm_xor_si128(t0,t9);
  639. t0 = _mm_xor_si128(t1,t0);
  640. t0 = _mm_xor_si128(t2,t0);
  641. t0 = _mm_xor_si128(t3,t0);
  642. t4 = _mm_slli_si128(t0,8);
  643. t0 = _mm_srli_si128(t0,8);
  644. t3 = _mm_xor_si128(t4,t8);
  645. t6 = _mm_xor_si128(t0,t9);
  646. t7 = _mm_srli_epi32(t3,31);
  647. t8 = _mm_srli_epi32(t6,31);
  648. t3 = _mm_slli_epi32(t3,1);
  649. t6 = _mm_slli_epi32(t6,1);
  650. t9 = _mm_srli_si128(t7,12);
  651. t8 = _mm_slli_si128(t8,4);
  652. t7 = _mm_slli_si128(t7,4);
  653. t3 = _mm_or_si128(t3,t7);
  654. t6 = _mm_or_si128(t6,t8);
  655. t6 = _mm_or_si128(t6,t9);
  656. t7 = _mm_slli_epi32(t3,31);
  657. t8 = _mm_slli_epi32(t3,30);
  658. t9 = _mm_slli_epi32(t3,25);
  659. t7 = _mm_xor_si128(t7,t8);
  660. t7 = _mm_xor_si128(t7,t9);
  661. t8 = _mm_srli_si128(t7,4);
  662. t7 = _mm_slli_si128(t7,12);
  663. t3 = _mm_xor_si128(t3,t7);
  664. t2 = _mm_srli_epi32(t3,1);
  665. t4 = _mm_srli_epi32(t3,2);
  666. t5 = _mm_srli_epi32(t3,7);
  667. t2 = _mm_xor_si128(t2,t4);
  668. t2 = _mm_xor_si128(t2,t5);
  669. t2 = _mm_xor_si128(t2,t8);
  670. t3 = _mm_xor_si128(t3,t2);
  671. t6 = _mm_xor_si128(t6,t3);
  672. return _swap128_aesni(t6);
  673. }
  674. static inline __m128i _ghash_aesni(__m128i h,__m128i y,__m128i x) { return _mult_block_aesni(h,_mm_xor_si128(y,x)); }
  675. static inline __m128i _increment_be_aesni(__m128i x)
  676. {
  677. x = _swap128_aesni(x);
  678. x = _mm_add_epi64(x,_mm_set_epi32(0,0,0,1));
  679. x = _swap128_aesni(x);
  680. return x;
  681. }
  682. static inline void _htoun64_aesni(void *network,const uint64_t host) { *((uint64_t *)network) = Utils::hton(host); }
  683. inline __m128i _create_j_aesni(const uint8_t *iv) const
  684. {
  685. uint8_t j[16];
  686. *((uint64_t *)j) = *((const uint64_t *)iv);
  687. *((uint32_t *)(j+8)) = *((const uint32_t *)(iv+8));
  688. j[12] = 0;
  689. j[13] = 0;
  690. j[14] = 0;
  691. j[15] = 1;
  692. return _mm_loadu_si128((__m128i *)j);
  693. }
  694. inline __m128i _icv_header_aesni(const void *assoc,unsigned int alen) const
  695. {
  696. unsigned int blocks,pblocks,rem,i;
  697. __m128i h1,h2,h3,h4,d1,d2,d3,d4;
  698. __m128i y,last;
  699. const __m128i *ab;
  700. h1 = _k.ni.hhhh;
  701. h2 = _k.ni.hhh;
  702. h3 = _k.ni.hh;
  703. h4 = _k.ni.h;
  704. y = _mm_setzero_si128();
  705. ab = (const __m128i *)assoc;
  706. blocks = alen / 16;
  707. pblocks = blocks - (blocks % 4);
  708. rem = alen % 16;
  709. for (i=0;i<pblocks;i+=4) {
  710. d1 = _mm_loadu_si128(ab + i + 0);
  711. d2 = _mm_loadu_si128(ab + i + 1);
  712. d3 = _mm_loadu_si128(ab + i + 2);
  713. d4 = _mm_loadu_si128(ab + i + 3);
  714. y = _mm_xor_si128(y, d1);
  715. y = _mult4xor_aesni(h1,h2,h3,h4,y,d2,d3,d4);
  716. }
  717. for (i = pblocks; i < blocks; i++)
  718. y = _ghash_aesni(_k.ni.h,y,_mm_loadu_si128(ab + i));
  719. if (rem) {
  720. last = _mm_setzero_si128();
  721. memcpy(&last,ab + blocks,rem);
  722. y = _ghash_aesni(_k.ni.h,y,last);
  723. }
  724. return y;
  725. }
  726. inline __m128i _icv_tailer_aesni(__m128i y,size_t alen,size_t dlen) const
  727. {
  728. __m128i b;
  729. _htoun64_aesni(&b, alen * 8);
  730. _htoun64_aesni((uint8_t *)&b + sizeof(uint64_t), dlen * 8);
  731. return _ghash_aesni(_k.ni.h, y, b);
  732. }
  733. inline void _icv_crypt_aesni(__m128i y,__m128i j,uint8_t *icv,unsigned int icvsize) const
  734. {
  735. __m128i t,b;
  736. t = _mm_xor_si128(j,_k.ni.k[0]);
  737. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  738. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  739. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  740. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  741. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  742. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  743. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  744. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  745. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  746. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  747. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  748. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  749. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  750. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  751. t = _mm_xor_si128(y, t);
  752. _mm_storeu_si128(&b, t);
  753. memcpy(icv,&b,icvsize);
  754. }
  755. inline __m128i _encrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y) const
  756. {
  757. __m128i t,b;
  758. memset(&b,0,sizeof(b));
  759. memcpy(&b,in,rem);
  760. t = _mm_xor_si128(cb,_k.ni.k[0]);
  761. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  762. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  763. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  764. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  765. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  766. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  767. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  768. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  769. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  770. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  771. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  772. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  773. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  774. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  775. b = _mm_xor_si128(t,b);
  776. memcpy(out,&b,rem);
  777. memset((u_char*)&b + rem,0,16 - rem);
  778. return _ghash_aesni(_k.ni.h,y,b);
  779. }
  780. inline void _encrypt_gcm256_aesni(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize) const
  781. {
  782. __m128i j = _create_j_aesni(iv);
  783. __m128i cb = _increment_be_aesni(j);
  784. __m128i y = _icv_header_aesni(assoc,alen);
  785. unsigned int blocks = len / 16;
  786. unsigned int pblocks = blocks - (blocks % 4);
  787. unsigned int rem = len % 16;
  788. __m128i *bi = (__m128i *)in;
  789. __m128i *bo = (__m128i *)out;
  790. unsigned int i;
  791. for (i=0;i<pblocks;i+=4) {
  792. __m128i d1 = _mm_loadu_si128(bi + i + 0);
  793. __m128i d2 = _mm_loadu_si128(bi + i + 1);
  794. __m128i d3 = _mm_loadu_si128(bi + i + 2);
  795. __m128i d4 = _mm_loadu_si128(bi + i + 3);
  796. __m128i k0 = _k.ni.k[0];
  797. __m128i k1 = _k.ni.k[1];
  798. __m128i k2 = _k.ni.k[2];
  799. __m128i k3 = _k.ni.k[3];
  800. __m128i t1 = _mm_xor_si128(cb,k0);
  801. cb = _increment_be_aesni(cb);
  802. __m128i t2 = _mm_xor_si128(cb,k0);
  803. cb = _increment_be_aesni(cb);
  804. __m128i t3 = _mm_xor_si128(cb,k0);
  805. cb = _increment_be_aesni(cb);
  806. __m128i t4 = _mm_xor_si128(cb,k0);
  807. cb = _increment_be_aesni(cb);
  808. t1 = _mm_aesenc_si128(t1,k1);
  809. t2 = _mm_aesenc_si128(t2,k1);
  810. t3 = _mm_aesenc_si128(t3,k1);
  811. t4 = _mm_aesenc_si128(t4,k1);
  812. t1 = _mm_aesenc_si128(t1,k2);
  813. t2 = _mm_aesenc_si128(t2,k2);
  814. t3 = _mm_aesenc_si128(t3,k2);
  815. t4 = _mm_aesenc_si128(t4,k2);
  816. t1 = _mm_aesenc_si128(t1,k3);
  817. t2 = _mm_aesenc_si128(t2,k3);
  818. t3 = _mm_aesenc_si128(t3,k3);
  819. t4 = _mm_aesenc_si128(t4,k3);
  820. __m128i k4 = _k.ni.k[4];
  821. __m128i k5 = _k.ni.k[5];
  822. __m128i k6 = _k.ni.k[6];
  823. __m128i k7 = _k.ni.k[7];
  824. t1 = _mm_aesenc_si128(t1,k4);
  825. t2 = _mm_aesenc_si128(t2,k4);
  826. t3 = _mm_aesenc_si128(t3,k4);
  827. t4 = _mm_aesenc_si128(t4,k4);
  828. t1 = _mm_aesenc_si128(t1,k5);
  829. t2 = _mm_aesenc_si128(t2,k5);
  830. t3 = _mm_aesenc_si128(t3,k5);
  831. t4 = _mm_aesenc_si128(t4,k5);
  832. t1 = _mm_aesenc_si128(t1,k6);
  833. t2 = _mm_aesenc_si128(t2,k6);
  834. t3 = _mm_aesenc_si128(t3,k6);
  835. t4 = _mm_aesenc_si128(t4,k6);
  836. t1 = _mm_aesenc_si128(t1,k7);
  837. t2 = _mm_aesenc_si128(t2,k7);
  838. t3 = _mm_aesenc_si128(t3,k7);
  839. t4 = _mm_aesenc_si128(t4,k7);
  840. __m128i k8 = _k.ni.k[8];
  841. __m128i k9 = _k.ni.k[9];
  842. __m128i k10 = _k.ni.k[10];
  843. __m128i k11 = _k.ni.k[11];
  844. t1 = _mm_aesenc_si128(t1,k8);
  845. t2 = _mm_aesenc_si128(t2,k8);
  846. t3 = _mm_aesenc_si128(t3,k8);
  847. t4 = _mm_aesenc_si128(t4,k8);
  848. t1 = _mm_aesenc_si128(t1,k9);
  849. t2 = _mm_aesenc_si128(t2,k9);
  850. t3 = _mm_aesenc_si128(t3,k9);
  851. t4 = _mm_aesenc_si128(t4,k9);
  852. t1 = _mm_aesenc_si128(t1,k10);
  853. t2 = _mm_aesenc_si128(t2,k10);
  854. t3 = _mm_aesenc_si128(t3,k10);
  855. t4 = _mm_aesenc_si128(t4,k10);
  856. t1 = _mm_aesenc_si128(t1,k11);
  857. t2 = _mm_aesenc_si128(t2,k11);
  858. t3 = _mm_aesenc_si128(t3,k11);
  859. t4 = _mm_aesenc_si128(t4,k11);
  860. __m128i k12 = _k.ni.k[12];
  861. __m128i k13 = _k.ni.k[13];
  862. __m128i k14 = _k.ni.k[14];
  863. t1 = _mm_aesenc_si128(t1,k12);
  864. t2 = _mm_aesenc_si128(t2,k12);
  865. t3 = _mm_aesenc_si128(t3,k12);
  866. t4 = _mm_aesenc_si128(t4,k12);
  867. t1 = _mm_aesenc_si128(t1,k13);
  868. t2 = _mm_aesenc_si128(t2,k13);
  869. t3 = _mm_aesenc_si128(t3,k13);
  870. t4 = _mm_aesenc_si128(t4,k13);
  871. t1 = _mm_aesenclast_si128(t1,k14);
  872. t2 = _mm_aesenclast_si128(t2,k14);
  873. t3 = _mm_aesenclast_si128(t3,k14);
  874. t4 = _mm_aesenclast_si128(t4,k14);
  875. t1 = _mm_xor_si128(t1,d1);
  876. t2 = _mm_xor_si128(t2,d2);
  877. t3 = _mm_xor_si128(t3,d3);
  878. t4 = _mm_xor_si128(t4,d4);
  879. y = _mm_xor_si128(y,t1);
  880. y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,t2,t3,t4);
  881. _mm_storeu_si128(bo + i + 0,t1);
  882. _mm_storeu_si128(bo + i + 1,t2);
  883. _mm_storeu_si128(bo + i + 2,t3);
  884. _mm_storeu_si128(bo + i + 3,t4);
  885. }
  886. for (i=pblocks;i<blocks;++i) {
  887. __m128i d1 = _mm_loadu_si128(bi + i);
  888. __m128i k0 = _k.ni.k[0];
  889. __m128i k1 = _k.ni.k[1];
  890. __m128i k2 = _k.ni.k[2];
  891. __m128i k3 = _k.ni.k[3];
  892. __m128i t1 = _mm_xor_si128(cb,k0);
  893. t1 = _mm_aesenc_si128(t1,k1);
  894. t1 = _mm_aesenc_si128(t1,k2);
  895. t1 = _mm_aesenc_si128(t1,k3);
  896. __m128i k4 = _k.ni.k[4];
  897. __m128i k5 = _k.ni.k[5];
  898. __m128i k6 = _k.ni.k[6];
  899. __m128i k7 = _k.ni.k[7];
  900. t1 = _mm_aesenc_si128(t1,k4);
  901. t1 = _mm_aesenc_si128(t1,k5);
  902. t1 = _mm_aesenc_si128(t1,k6);
  903. t1 = _mm_aesenc_si128(t1,k7);
  904. __m128i k8 = _k.ni.k[8];
  905. __m128i k9 = _k.ni.k[9];
  906. __m128i k10 = _k.ni.k[10];
  907. __m128i k11 = _k.ni.k[11];
  908. t1 = _mm_aesenc_si128(t1,k8);
  909. t1 = _mm_aesenc_si128(t1,k9);
  910. t1 = _mm_aesenc_si128(t1,k10);
  911. t1 = _mm_aesenc_si128(t1,k11);
  912. __m128i k12 = _k.ni.k[12];
  913. __m128i k13 = _k.ni.k[13];
  914. __m128i k14 = _k.ni.k[14];
  915. t1 = _mm_aesenc_si128(t1,k12);
  916. t1 = _mm_aesenc_si128(t1,k13);
  917. t1 = _mm_aesenclast_si128(t1,k14);
  918. t1 = _mm_xor_si128(t1,d1);
  919. _mm_storeu_si128(bo + i,t1);
  920. y = _ghash_aesni(_k.ni.h,y,t1);
  921. cb = _increment_be_aesni(cb);
  922. }
  923. if (rem)
  924. y = _encrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
  925. y = _icv_tailer_aesni(y,alen,len);
  926. _icv_crypt_aesni(y,j,icv,icvsize);
  927. }
  928. inline __m128i _decrypt_gcm_rem_aesni(unsigned int rem,const void *in,void *out,__m128i cb,__m128i y)
  929. {
  930. __m128i t,b;
  931. memset(&b,0,sizeof(b));
  932. memcpy(&b,in,rem);
  933. y = _ghash_aesni(_k.ni.h,y,b);
  934. t = _mm_xor_si128(cb,_k.ni.k[0]);
  935. t = _mm_aesenc_si128(t,_k.ni.k[1]);
  936. t = _mm_aesenc_si128(t,_k.ni.k[2]);
  937. t = _mm_aesenc_si128(t,_k.ni.k[3]);
  938. t = _mm_aesenc_si128(t,_k.ni.k[4]);
  939. t = _mm_aesenc_si128(t,_k.ni.k[5]);
  940. t = _mm_aesenc_si128(t,_k.ni.k[6]);
  941. t = _mm_aesenc_si128(t,_k.ni.k[7]);
  942. t = _mm_aesenc_si128(t,_k.ni.k[8]);
  943. t = _mm_aesenc_si128(t,_k.ni.k[9]);
  944. t = _mm_aesenc_si128(t,_k.ni.k[10]);
  945. t = _mm_aesenc_si128(t,_k.ni.k[11]);
  946. t = _mm_aesenc_si128(t,_k.ni.k[12]);
  947. t = _mm_aesenc_si128(t,_k.ni.k[13]);
  948. t = _mm_aesenclast_si128(t,_k.ni.k[14]);
  949. b = _mm_xor_si128(t,b);
  950. memcpy(out,&b,rem);
  951. return y;
  952. }
  953. inline void _decrypt_gcm256_aesni(unsigned int len,const uint8_t *in,uint8_t *out,const uint8_t *iv,unsigned int alen,const uint8_t *assoc,uint8_t *icv,unsigned int icvsize)
  954. {
  955. __m128i j = _create_j_aesni(iv);
  956. __m128i cb = _increment_be_aesni(j);
  957. __m128i y = _icv_header_aesni(assoc,alen);
  958. unsigned int blocks = len / 16;
  959. unsigned int pblocks = blocks - (blocks % 4);
  960. unsigned int rem = len % 16;
  961. __m128i *bi = (__m128i *)in;
  962. __m128i *bo = (__m128i *)out;
  963. unsigned int i;
  964. for (i=0;i<pblocks;i+=4) {
  965. __m128i d1 = _mm_loadu_si128(bi + i + 0);
  966. __m128i d2 = _mm_loadu_si128(bi + i + 1);
  967. __m128i d3 = _mm_loadu_si128(bi + i + 2);
  968. __m128i d4 = _mm_loadu_si128(bi + i + 3);
  969. y = _mm_xor_si128(y,d1);
  970. y = _mult4xor_aesni(_k.ni.hhhh,_k.ni.hhh,_k.ni.hh,_k.ni.h,y,d2,d3,d4);
  971. __m128i k0 = _k.ni.k[0];
  972. __m128i k1 = _k.ni.k[1];
  973. __m128i k2 = _k.ni.k[2];
  974. __m128i k3 = _k.ni.k[3];
  975. __m128i t1 = _mm_xor_si128(cb,k0);
  976. cb = _increment_be_aesni(cb);
  977. __m128i t2 = _mm_xor_si128(cb,k0);
  978. cb = _increment_be_aesni(cb);
  979. __m128i t3 = _mm_xor_si128(cb,k0);
  980. cb = _increment_be_aesni(cb);
  981. __m128i t4 = _mm_xor_si128(cb,k0);
  982. cb = _increment_be_aesni(cb);
  983. t1 = _mm_aesenc_si128(t1,k1);
  984. t2 = _mm_aesenc_si128(t2,k1);
  985. t3 = _mm_aesenc_si128(t3,k1);
  986. t4 = _mm_aesenc_si128(t4,k1);
  987. t1 = _mm_aesenc_si128(t1,k2);
  988. t2 = _mm_aesenc_si128(t2,k2);
  989. t3 = _mm_aesenc_si128(t3,k2);
  990. t4 = _mm_aesenc_si128(t4,k2);
  991. t1 = _mm_aesenc_si128(t1,k3);
  992. t2 = _mm_aesenc_si128(t2,k3);
  993. t3 = _mm_aesenc_si128(t3,k3);
  994. t4 = _mm_aesenc_si128(t4,k3);
  995. __m128i k4 = _k.ni.k[4];
  996. __m128i k5 = _k.ni.k[5];
  997. __m128i k6 = _k.ni.k[6];
  998. __m128i k7 = _k.ni.k[7];
  999. t1 = _mm_aesenc_si128(t1,k4);
  1000. t2 = _mm_aesenc_si128(t2,k4);
  1001. t3 = _mm_aesenc_si128(t3,k4);
  1002. t4 = _mm_aesenc_si128(t4,k4);
  1003. t1 = _mm_aesenc_si128(t1,k5);
  1004. t2 = _mm_aesenc_si128(t2,k5);
  1005. t3 = _mm_aesenc_si128(t3,k5);
  1006. t4 = _mm_aesenc_si128(t4,k5);
  1007. t1 = _mm_aesenc_si128(t1,k6);
  1008. t2 = _mm_aesenc_si128(t2,k6);
  1009. t3 = _mm_aesenc_si128(t3,k6);
  1010. t4 = _mm_aesenc_si128(t4,k6);
  1011. t1 = _mm_aesenc_si128(t1,k7);
  1012. t2 = _mm_aesenc_si128(t2,k7);
  1013. t3 = _mm_aesenc_si128(t3,k7);
  1014. t4 = _mm_aesenc_si128(t4,k7);
  1015. __m128i k8 = _k.ni.k[8];
  1016. __m128i k9 = _k.ni.k[9];
  1017. __m128i k10 = _k.ni.k[10];
  1018. __m128i k11 = _k.ni.k[11];
  1019. t1 = _mm_aesenc_si128(t1,k8);
  1020. t2 = _mm_aesenc_si128(t2,k8);
  1021. t3 = _mm_aesenc_si128(t3,k8);
  1022. t4 = _mm_aesenc_si128(t4,k8);
  1023. t1 = _mm_aesenc_si128(t1,k9);
  1024. t2 = _mm_aesenc_si128(t2,k9);
  1025. t3 = _mm_aesenc_si128(t3,k9);
  1026. t4 = _mm_aesenc_si128(t4,k9);
  1027. t1 = _mm_aesenc_si128(t1,k10);
  1028. t2 = _mm_aesenc_si128(t2,k10);
  1029. t3 = _mm_aesenc_si128(t3,k10);
  1030. t4 = _mm_aesenc_si128(t4,k10);
  1031. t1 = _mm_aesenc_si128(t1,k11);
  1032. t2 = _mm_aesenc_si128(t2,k11);
  1033. t3 = _mm_aesenc_si128(t3,k11);
  1034. t4 = _mm_aesenc_si128(t4,k11);
  1035. __m128i k12 = _k.ni.k[12];
  1036. __m128i k13 = _k.ni.k[13];
  1037. __m128i k14 = _k.ni.k[14];
  1038. t1 = _mm_aesenc_si128(t1,k12);
  1039. t2 = _mm_aesenc_si128(t2,k12);
  1040. t3 = _mm_aesenc_si128(t3,k12);
  1041. t4 = _mm_aesenc_si128(t4,k12);
  1042. t1 = _mm_aesenc_si128(t1,k13);
  1043. t2 = _mm_aesenc_si128(t2,k13);
  1044. t3 = _mm_aesenc_si128(t3,k13);
  1045. t4 = _mm_aesenc_si128(t4,k13);
  1046. t1 = _mm_aesenclast_si128(t1,k14);
  1047. t2 = _mm_aesenclast_si128(t2,k14);
  1048. t3 = _mm_aesenclast_si128(t3,k14);
  1049. t4 = _mm_aesenclast_si128(t4,k14);
  1050. t1 = _mm_xor_si128(t1,d1);
  1051. t2 = _mm_xor_si128(t2,d2);
  1052. t3 = _mm_xor_si128(t3,d3);
  1053. t4 = _mm_xor_si128(t4,d4);
  1054. _mm_storeu_si128(bo + i + 0,t1);
  1055. _mm_storeu_si128(bo + i + 1,t2);
  1056. _mm_storeu_si128(bo + i + 2,t3);
  1057. _mm_storeu_si128(bo + i + 3,t4);
  1058. }
  1059. for (i=pblocks;i<blocks;i++) {
  1060. __m128i d1 = _mm_loadu_si128(bi + i);
  1061. y = _ghash_aesni(_k.ni.h,y,d1);
  1062. __m128i k0 = _k.ni.k[0];
  1063. __m128i k1 = _k.ni.k[1];
  1064. __m128i k2 = _k.ni.k[2];
  1065. __m128i k3 = _k.ni.k[3];
  1066. __m128i t1 = _mm_xor_si128(cb,k0);
  1067. t1 = _mm_aesenc_si128(t1,k1);
  1068. t1 = _mm_aesenc_si128(t1,k2);
  1069. t1 = _mm_aesenc_si128(t1,k3);
  1070. __m128i k4 = _k.ni.k[4];
  1071. __m128i k5 = _k.ni.k[5];
  1072. __m128i k6 = _k.ni.k[6];
  1073. __m128i k7 = _k.ni.k[7];
  1074. t1 = _mm_aesenc_si128(t1,k4);
  1075. t1 = _mm_aesenc_si128(t1,k5);
  1076. t1 = _mm_aesenc_si128(t1,k6);
  1077. t1 = _mm_aesenc_si128(t1,k7);
  1078. __m128i k8 = _k.ni.k[8];
  1079. __m128i k9 = _k.ni.k[9];
  1080. __m128i k10 = _k.ni.k[10];
  1081. __m128i k11 = _k.ni.k[11];
  1082. t1 = _mm_aesenc_si128(t1,k8);
  1083. t1 = _mm_aesenc_si128(t1,k9);
  1084. t1 = _mm_aesenc_si128(t1,k10);
  1085. t1 = _mm_aesenc_si128(t1,k11);
  1086. __m128i k12 = _k.ni.k[12];
  1087. __m128i k13 = _k.ni.k[13];
  1088. __m128i k14 = _k.ni.k[14];
  1089. t1 = _mm_aesenc_si128(t1,k12);
  1090. t1 = _mm_aesenc_si128(t1,k13);
  1091. t1 = _mm_aesenclast_si128(t1,k14);
  1092. t1 = _mm_xor_si128(t1,d1);
  1093. _mm_storeu_si128(bo + i,t1);
  1094. cb = _increment_be_aesni(cb);
  1095. }
  1096. if (rem)
  1097. y = _decrypt_gcm_rem_aesni(rem,bi + blocks,bo + blocks,cb,y);
  1098. y = _icv_tailer_aesni(y,alen,len);
  1099. _icv_crypt_aesni(y,j,icv,icvsize);
  1100. }
  1101. #endif /* ZT_AES_AESNI ******************************************************/
  1102. };
  1103. } // namespace ZeroTier
  1104. #endif