AES.cpp 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2025-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Constants.hpp"
  14. #include "AES.hpp"
  15. #ifdef __GNUC__
  16. #pragma GCC diagnostic ignored "-Wstrict-aliasing"
  17. #endif
  18. #define Te1_r(x) ZT_ROR32(Te0[x], 8U)
  19. #define Te2_r(x) ZT_ROR32(Te0[x], 16U)
  20. #define Te3_r(x) ZT_ROR32(Te0[x], 24U)
  21. #define Td1_r(x) ZT_ROR32(Td0[x], 8U)
  22. #define Td2_r(x) ZT_ROR32(Td0[x], 16U)
  23. #define Td3_r(x) ZT_ROR32(Td0[x], 24U)
  24. namespace ZeroTier {
  25. // GMAC ---------------------------------------------------------------------------------------------------------------
  26. namespace {
  27. #ifdef ZT_AES_NEON
  28. ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
  29. {
  30. uint8x16_t r0, r1, t0, t1;
  31. r0 = vld1q_u8(b);
  32. const uint8x16_t z = veorq_u8(h, h);
  33. y = veorq_u8(r0, y);
  34. y = vrbitq_u8(y);
  35. const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
  36. t0 = vextq_u8(y, y, 8);
  37. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (r0) : "w" (h), "w" (y));
  38. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (r1) : "w" (h), "w" (y));
  39. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t1) : "w" (h), "w" (t0));
  40. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (h), "w" (t0));
  41. t0 = veorq_u8(t0, t1);
  42. t1 = vextq_u8(z, t0, 8);
  43. r0 = veorq_u8(r0, t1);
  44. t1 = vextq_u8(t0, z, 8);
  45. r1 = veorq_u8(r1, t1);
  46. __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (r1), "w" (p));
  47. t1 = vextq_u8(t0, z, 8);
  48. r1 = veorq_u8(r1, t1);
  49. t1 = vextq_u8(z, t0, 8);
  50. r0 = veorq_u8(r0, t1);
  51. __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t0) : "w" (r1), "w" (p));
  52. return vrbitq_u8(veorq_u8(r0, t0));
  53. }
  54. #endif // ZT_AES_NEON
  55. #define s_bmul32(N, x, y, rh, rl) \
  56. uint32_t x0t_##N = (x) & 0x11111111U; \
  57. uint32_t x1t_##N = (x) & 0x22222222U; \
  58. uint32_t x2t_##N = (x) & 0x44444444U; \
  59. uint32_t x3t_##N = (x) & 0x88888888U; \
  60. uint32_t y0t_##N = (y) & 0x11111111U; \
  61. uint32_t y1t_##N = (y) & 0x22222222U; \
  62. uint32_t y2t_##N = (y) & 0x44444444U; \
  63. uint32_t y3t_##N = (y) & 0x88888888U; \
  64. uint64_t z0t_##N = (((uint64_t)x0t_##N * y0t_##N) ^ ((uint64_t)x1t_##N * y3t_##N) ^ ((uint64_t)x2t_##N * y2t_##N) ^ ((uint64_t)x3t_##N * y1t_##N)) & 0x1111111111111111ULL; \
  65. uint64_t z1t_##N = (((uint64_t)x0t_##N * y1t_##N) ^ ((uint64_t)x1t_##N * y0t_##N) ^ ((uint64_t)x2t_##N * y3t_##N) ^ ((uint64_t)x3t_##N * y2t_##N)) & 0x2222222222222222ULL; \
  66. uint64_t z2t_##N = (((uint64_t)x0t_##N * y2t_##N) ^ ((uint64_t)x1t_##N * y1t_##N) ^ ((uint64_t)x2t_##N * y0t_##N) ^ ((uint64_t)x3t_##N * y3t_##N)) & 0x4444444444444444ULL; \
  67. z0t_##N |= z1t_##N; \
  68. z2t_##N |= z0t_##N; \
  69. uint64_t zt_##N = z2t_##N | ((((uint64_t)x0t_##N * y3t_##N) ^ ((uint64_t)x1t_##N * y2t_##N) ^ ((uint64_t)x2t_##N * y1t_##N) ^ ((uint64_t)x3t_##N * y0t_##N)) & 0x8888888888888888ULL); \
  70. (rh) = (uint32_t)(zt_##N >> 32U); \
  71. (rl) = (uint32_t)zt_##N;
  72. void s_gfmul(const uint64_t hh, const uint64_t hl, uint64_t &y0, uint64_t &y1) noexcept
  73. {
  74. uint32_t hhh = (uint32_t)(hh >> 32U);
  75. uint32_t hhl = (uint32_t)hh;
  76. uint32_t hlh = (uint32_t)(hl >> 32U);
  77. uint32_t hll = (uint32_t)hl;
  78. uint32_t hhXlh = hhh ^hlh;
  79. uint32_t hhXll = hhl ^hll;
  80. uint64_t yl = Utils::ntoh(y0);
  81. uint64_t yh = Utils::ntoh(y1);
  82. uint32_t cilh = (uint32_t)(yh >> 32U);
  83. uint32_t cill = (uint32_t)yh;
  84. uint32_t cihh = (uint32_t)(yl >> 32U);
  85. uint32_t cihl = (uint32_t)yl;
  86. uint32_t cihXlh = cihh ^cilh;
  87. uint32_t cihXll = cihl ^cill;
  88. uint32_t aah, aal, abh, abl, ach, acl;
  89. s_bmul32(M0, cihh, hhh, aah, aal);
  90. s_bmul32(M1, cihl, hhl, abh, abl);
  91. s_bmul32(M2, cihh ^ cihl, hhh ^ hhl, ach, acl);
  92. ach ^= aah ^ abh;
  93. acl ^= aal ^ abl;
  94. aal ^= ach;
  95. abh ^= acl;
  96. uint32_t bah, bal, bbh, bbl, bch, bcl;
  97. s_bmul32(M3, cilh, hlh, bah, bal);
  98. s_bmul32(M4, cill, hll, bbh, bbl);
  99. s_bmul32(M5, cilh ^ cill, hlh ^ hll, bch, bcl);
  100. bch ^= bah ^ bbh;
  101. bcl ^= bal ^ bbl;
  102. bal ^= bch;
  103. bbh ^= bcl;
  104. uint32_t cah, cal, cbh, cbl, cch, ccl;
  105. s_bmul32(M6, cihXlh, hhXlh, cah, cal);
  106. s_bmul32(M7, cihXll, hhXll, cbh, cbl);
  107. s_bmul32(M8, cihXlh ^ cihXll, hhXlh ^ hhXll, cch, ccl);
  108. cch ^= cah ^ cbh;
  109. ccl ^= cal ^ cbl;
  110. cal ^= cch;
  111. cbh ^= ccl;
  112. cah ^= bah ^ aah;
  113. cal ^= bal ^ aal;
  114. cbh ^= bbh ^ abh;
  115. cbl ^= bbl ^ abl;
  116. uint64_t zhh = ((uint64_t)aah << 32U) | aal;
  117. uint64_t zhl = (((uint64_t)abh << 32U) | abl) ^(((uint64_t)cah << 32U) | cal);
  118. uint64_t zlh = (((uint64_t)bah << 32U) | bal) ^(((uint64_t)cbh << 32U) | cbl);
  119. uint64_t zll = ((uint64_t)bbh << 32U) | bbl;
  120. zhh = zhh << 1U | zhl >> 63U;
  121. zhl = zhl << 1U | zlh >> 63U;
  122. zlh = zlh << 1U | zll >> 63U;
  123. zll <<= 1U;
  124. zlh ^= (zll << 63U) ^ (zll << 62U) ^ (zll << 57U);
  125. zhh ^= zlh ^ (zlh >> 1U) ^ (zlh >> 2U) ^ (zlh >> 7U);
  126. zhl ^= zll ^ (zll >> 1U) ^ (zll >> 2U) ^ (zll >> 7U) ^ (zlh << 63U) ^ (zlh << 62U) ^ (zlh << 57U);
  127. y0 = Utils::hton(zhh);
  128. y1 = Utils::hton(zhl);
  129. }
  130. } // anonymous namespace
  131. #ifdef ZT_AES_AESNI
  132. // SSE shuffle parameter to reverse bytes in a 128-bit vector.
  133. static const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
  134. static __m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
  135. {
  136. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  137. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  138. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  139. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  140. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  141. t2 = _mm_xor_si128(t2, t3);
  142. t3 = _mm_slli_si128(t2, 8);
  143. t2 = _mm_srli_si128(t2, 8);
  144. t1 = _mm_xor_si128(t1, t3);
  145. t4 = _mm_xor_si128(t4, t2);
  146. __m128i t5 = _mm_srli_epi32(t1, 31);
  147. t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
  148. t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
  149. t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
  150. t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
  151. t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
  152. return _mm_shuffle_epi8(t4, s_sseSwapBytes);
  153. }
  154. #endif
  155. void AES::GMAC::update(const void *const data, unsigned int len) noexcept
  156. {
  157. const uint8_t *in = reinterpret_cast<const uint8_t *>(data);
  158. _len += len;
  159. #ifdef ZT_AES_AESNI
  160. if (likely(Utils::CPUID.aes)) {
  161. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
  162. // Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
  163. if (_rp) {
  164. for (;;) {
  165. if (!len)
  166. return;
  167. --len;
  168. _r[_rp++] = *(in++);
  169. if (_rp == 16) {
  170. y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
  171. break;
  172. }
  173. }
  174. }
  175. if (likely(len >= 64)) {
  176. const __m128i sb = s_sseSwapBytes;
  177. const __m128i h = _aes._k.ni.h[0];
  178. const __m128i hh = _aes._k.ni.h[1];
  179. const __m128i hhh = _aes._k.ni.h[2];
  180. const __m128i hhhh = _aes._k.ni.h[3];
  181. const __m128i h2 = _aes._k.ni.h2[0];
  182. const __m128i hh2 = _aes._k.ni.h2[1];
  183. const __m128i hhh2 = _aes._k.ni.h2[2];
  184. const __m128i hhhh2 = _aes._k.ni.h2[3];
  185. const uint8_t *const end64 = in + (len & ~((unsigned int)63));
  186. len &= 63;
  187. do {
  188. __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
  189. __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
  190. __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
  191. __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
  192. in += 64;
  193. __m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
  194. __m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
  195. __m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
  196. a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
  197. b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
  198. c = _mm_srli_epi32(a, 31);
  199. a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
  200. b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
  201. c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
  202. a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
  203. b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
  204. y = _mm_shuffle_epi8(b, sb);
  205. } while (likely(in != end64));
  206. }
  207. while (len >= 16) {
  208. y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
  209. in += 16;
  210. len -= 16;
  211. }
  212. _mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
  213. // Any overflow is cached for a later run or finish().
  214. for (unsigned int i = 0; i < len; ++i)
  215. _r[i] = in[i];
  216. _rp = len; // len is always less than 16 here
  217. return;
  218. }
  219. #endif // ZT_AES_AESNI
  220. #ifdef ZT_AES_NEON
  221. if (Utils::ARMCAP.pmull) {
  222. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
  223. const uint8x16_t h = _aes._k.neon.h;
  224. if (_rp) {
  225. for(;;) {
  226. if (!len)
  227. return;
  228. --len;
  229. _r[_rp++] = *(in++);
  230. if (_rp == 16) {
  231. y = s_clmul_armneon_crypto(h, y, _r);
  232. break;
  233. }
  234. }
  235. }
  236. while (len >= 16) {
  237. y = s_clmul_armneon_crypto(h, y, in);
  238. in += 16;
  239. len -= 16;
  240. }
  241. vst1q_u8(reinterpret_cast<uint8_t *>(_y), y);
  242. for (unsigned int i = 0; i < len; ++i)
  243. _r[i] = in[i];
  244. _rp = len; // len is always less than 16 here
  245. return;
  246. }
  247. #endif // ZT_AES_NEON
  248. const uint64_t h0 = _aes._k.sw.h[0];
  249. const uint64_t h1 = _aes._k.sw.h[1];
  250. uint64_t y0 = _y[0];
  251. uint64_t y1 = _y[1];
  252. if (_rp) {
  253. for (;;) {
  254. if (!len)
  255. return;
  256. --len;
  257. _r[_rp++] = *(in++);
  258. if (_rp == 16) {
  259. y0 ^= Utils::loadMachineEndian< uint64_t >(_r);
  260. y1 ^= Utils::loadMachineEndian< uint64_t >(_r + 8);
  261. s_gfmul(h0, h1, y0, y1);
  262. break;
  263. }
  264. }
  265. }
  266. if (likely(((uintptr_t)in & 7U) == 0U)) {
  267. while (len >= 16) {
  268. y0 ^= *reinterpret_cast<const uint64_t *>(in);
  269. y1 ^= *reinterpret_cast<const uint64_t *>(in + 8);
  270. in += 16;
  271. s_gfmul(h0, h1, y0, y1);
  272. len -= 16;
  273. }
  274. } else {
  275. while (len >= 16) {
  276. y0 ^= Utils::loadMachineEndian< uint64_t >(in);
  277. y1 ^= Utils::loadMachineEndian< uint64_t >(in + 8);
  278. in += 16;
  279. s_gfmul(h0, h1, y0, y1);
  280. len -= 16;
  281. }
  282. }
  283. _y[0] = y0;
  284. _y[1] = y1;
  285. for (unsigned int i = 0; i < len; ++i)
  286. _r[i] = in[i];
  287. _rp = len; // len is always less than 16 here
  288. }
  289. void AES::GMAC::finish(uint8_t tag[16]) noexcept
  290. {
  291. #ifdef ZT_AES_AESNI
  292. if (likely(Utils::CPUID.aes)) {
  293. __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
  294. // Handle any remaining bytes, padding the last block with zeroes.
  295. if (_rp) {
  296. while (_rp < 16)
  297. _r[_rp++] = 0;
  298. y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
  299. }
  300. // Interleave encryption of IV with the final GHASH of y XOR (length * 8).
  301. // Then XOR these together to get the final tag.
  302. const __m128i *const k = _aes._k.ni.k;
  303. const __m128i h = _aes._k.ni.h[0];
  304. y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
  305. y = _mm_shuffle_epi8(y, s_sseSwapBytes);
  306. __m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
  307. __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
  308. __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
  309. __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
  310. __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
  311. encIV = _mm_aesenc_si128(encIV, k[1]);
  312. t2 = _mm_xor_si128(t2, t3);
  313. t3 = _mm_slli_si128(t2, 8);
  314. encIV = _mm_aesenc_si128(encIV, k[2]);
  315. t2 = _mm_srli_si128(t2, 8);
  316. t1 = _mm_xor_si128(t1, t3);
  317. encIV = _mm_aesenc_si128(encIV, k[3]);
  318. t4 = _mm_xor_si128(t4, t2);
  319. __m128i t5 = _mm_srli_epi32(t1, 31);
  320. t1 = _mm_slli_epi32(t1, 1);
  321. __m128i t6 = _mm_srli_epi32(t4, 31);
  322. encIV = _mm_aesenc_si128(encIV, k[4]);
  323. t4 = _mm_slli_epi32(t4, 1);
  324. t3 = _mm_srli_si128(t5, 12);
  325. encIV = _mm_aesenc_si128(encIV, k[5]);
  326. t6 = _mm_slli_si128(t6, 4);
  327. t5 = _mm_slli_si128(t5, 4);
  328. encIV = _mm_aesenc_si128(encIV, k[6]);
  329. t1 = _mm_or_si128(t1, t5);
  330. t4 = _mm_or_si128(t4, t6);
  331. encIV = _mm_aesenc_si128(encIV, k[7]);
  332. t4 = _mm_or_si128(t4, t3);
  333. t5 = _mm_slli_epi32(t1, 31);
  334. encIV = _mm_aesenc_si128(encIV, k[8]);
  335. t6 = _mm_slli_epi32(t1, 30);
  336. t3 = _mm_slli_epi32(t1, 25);
  337. encIV = _mm_aesenc_si128(encIV, k[9]);
  338. t5 = _mm_xor_si128(t5, t6);
  339. t5 = _mm_xor_si128(t5, t3);
  340. encIV = _mm_aesenc_si128(encIV, k[10]);
  341. t6 = _mm_srli_si128(t5, 4);
  342. t4 = _mm_xor_si128(t4, t6);
  343. encIV = _mm_aesenc_si128(encIV, k[11]);
  344. t5 = _mm_slli_si128(t5, 12);
  345. t1 = _mm_xor_si128(t1, t5);
  346. t4 = _mm_xor_si128(t4, t1);
  347. t5 = _mm_srli_epi32(t1, 1);
  348. encIV = _mm_aesenc_si128(encIV, k[12]);
  349. t2 = _mm_srli_epi32(t1, 2);
  350. t3 = _mm_srli_epi32(t1, 7);
  351. encIV = _mm_aesenc_si128(encIV, k[13]);
  352. t4 = _mm_xor_si128(t4, t2);
  353. t4 = _mm_xor_si128(t4, t3);
  354. encIV = _mm_aesenclast_si128(encIV, k[14]);
  355. t4 = _mm_xor_si128(t4, t5);
  356. _mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
  357. return;
  358. }
  359. #endif // ZT_AES_AESNI
  360. #ifdef ZT_AES_NEON
  361. if (Utils::ARMCAP.pmull) {
  362. uint64_t tmp[2];
  363. uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
  364. const uint8x16_t h = _aes._k.neon.h;
  365. if (_rp) {
  366. while (_rp < 16)
  367. _r[_rp++] = 0;
  368. y = s_clmul_armneon_crypto(h, y, _r);
  369. }
  370. tmp[0] = Utils::hton((uint64_t)_len << 3U);
  371. tmp[1] = 0;
  372. y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t *>(tmp));
  373. Utils::copy< 12 >(tmp, _iv);
  374. #if __BYTE_ORDER == __BIG_ENDIAN
  375. reinterpret_cast<uint32_t *>(tmp)[3] = 0x00000001;
  376. #else
  377. reinterpret_cast<uint32_t *>(tmp)[3] = 0x01000000;
  378. #endif
  379. _aes.encrypt(tmp, tmp);
  380. uint8x16_t yy = y;
  381. Utils::storeMachineEndian< uint64_t >(tag, tmp[0] ^ reinterpret_cast<const uint64_t *>(&yy)[0]);
  382. Utils::storeMachineEndian< uint64_t >(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t *>(&yy)[1]);
  383. return;
  384. }
  385. #endif // ZT_AES_NEON
  386. const uint64_t h0 = _aes._k.sw.h[0];
  387. const uint64_t h1 = _aes._k.sw.h[1];
  388. uint64_t y0 = _y[0];
  389. uint64_t y1 = _y[1];
  390. if (_rp) {
  391. while (_rp < 16)
  392. _r[_rp++] = 0;
  393. y0 ^= Utils::loadMachineEndian< uint64_t >(_r);
  394. y1 ^= Utils::loadMachineEndian< uint64_t >(_r + 8);
  395. s_gfmul(h0, h1, y0, y1);
  396. }
  397. y0 ^= Utils::hton((uint64_t)_len << 3U);
  398. s_gfmul(h0, h1, y0, y1);
  399. uint64_t iv2[2];
  400. Utils::copy< 12 >(iv2, _iv);
  401. #if __BYTE_ORDER == __BIG_ENDIAN
  402. reinterpret_cast<uint32_t *>(iv2)[3] = 0x00000001;
  403. #else
  404. reinterpret_cast<uint32_t *>(iv2)[3] = 0x01000000;
  405. #endif
  406. _aes.encrypt(iv2, iv2);
  407. Utils::storeMachineEndian< uint64_t >(tag, iv2[0] ^ y0);
  408. Utils::storeMachineEndian< uint64_t >(tag + 8, iv2[1] ^ y1);
  409. }
  410. // AES-CTR ------------------------------------------------------------------------------------------------------------
  411. #ifdef ZT_AES_AESNI
  412. /* Disable VAES stuff on compilers too old to compile these intrinsics,
  413. * and MinGW64 also seems not to support them so disable on Windows.
  414. * The performance gain can be significant but regular SSE is already so
  415. * fast it's highly unlikely to be a rate limiting factor except on massive
  416. * servers and network infrastructure stuff. */
  417. #if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
  418. #define ZT_AES_VAES512 1
  419. static
  420. __attribute__((__target__("sse4,avx,avx2,vaes,avx512f,avx512bw")))
  421. void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  422. {
  423. const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
  424. const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
  425. const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
  426. const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
  427. const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
  428. const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
  429. const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
  430. const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
  431. const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
  432. const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
  433. const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
  434. const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
  435. const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
  436. const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
  437. const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
  438. do {
  439. __m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
  440. __m512i d0 = _mm512_set_epi64(
  441. (long long)Utils::hton(c1 + 3ULL), (long long)c0,
  442. (long long)Utils::hton(c1 + 2ULL), (long long)c0,
  443. (long long)Utils::hton(c1 + 1ULL), (long long)c0,
  444. (long long)Utils::hton(c1), (long long)c0);
  445. c1 += 4;
  446. in += 64;
  447. len -= 64;
  448. d0 = _mm512_xor_si512(d0, kk0);
  449. d0 = _mm512_aesenc_epi128(d0, kk1);
  450. d0 = _mm512_aesenc_epi128(d0, kk2);
  451. d0 = _mm512_aesenc_epi128(d0, kk3);
  452. d0 = _mm512_aesenc_epi128(d0, kk4);
  453. d0 = _mm512_aesenc_epi128(d0, kk5);
  454. d0 = _mm512_aesenc_epi128(d0, kk6);
  455. d0 = _mm512_aesenc_epi128(d0, kk7);
  456. d0 = _mm512_aesenc_epi128(d0, kk8);
  457. d0 = _mm512_aesenc_epi128(d0, kk9);
  458. d0 = _mm512_aesenc_epi128(d0, kk10);
  459. d0 = _mm512_aesenc_epi128(d0, kk11);
  460. d0 = _mm512_aesenc_epi128(d0, kk12);
  461. d0 = _mm512_aesenc_epi128(d0, kk13);
  462. d0 = _mm512_aesenclast_epi128(d0, kk14);
  463. _mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
  464. out += 64;
  465. } while (likely(len >= 64));
  466. }
  467. #define ZT_AES_VAES256 1
  468. static
  469. __attribute__((__target__("sse4,avx,avx2,vaes")))
  470. void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
  471. {
  472. const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
  473. const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
  474. const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
  475. const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
  476. const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
  477. const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
  478. const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
  479. const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
  480. const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
  481. const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
  482. const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
  483. const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
  484. const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
  485. const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
  486. const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
  487. do {
  488. __m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
  489. __m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
  490. __m256i d0 = _mm256_set_epi64x(
  491. (long long)Utils::hton(c1 + 1ULL), (long long)c0,
  492. (long long)Utils::hton(c1), (long long)c0);
  493. __m256i d1 = _mm256_set_epi64x(
  494. (long long)Utils::hton(c1 + 3ULL), (long long)c0,
  495. (long long)Utils::hton(c1 + 2ULL), (long long)c0);
  496. c1 += 4;
  497. in += 64;
  498. len -= 64;
  499. d0 = _mm256_xor_si256(d0, kk0);
  500. d1 = _mm256_xor_si256(d1, kk0);
  501. d0 = _mm256_aesenc_epi128(d0, kk1);
  502. d1 = _mm256_aesenc_epi128(d1, kk1);
  503. d0 = _mm256_aesenc_epi128(d0, kk2);
  504. d1 = _mm256_aesenc_epi128(d1, kk2);
  505. d0 = _mm256_aesenc_epi128(d0, kk3);
  506. d1 = _mm256_aesenc_epi128(d1, kk3);
  507. d0 = _mm256_aesenc_epi128(d0, kk4);
  508. d1 = _mm256_aesenc_epi128(d1, kk4);
  509. d0 = _mm256_aesenc_epi128(d0, kk5);
  510. d1 = _mm256_aesenc_epi128(d1, kk5);
  511. d0 = _mm256_aesenc_epi128(d0, kk6);
  512. d1 = _mm256_aesenc_epi128(d1, kk6);
  513. d0 = _mm256_aesenc_epi128(d0, kk7);
  514. d1 = _mm256_aesenc_epi128(d1, kk7);
  515. d0 = _mm256_aesenc_epi128(d0, kk8);
  516. d1 = _mm256_aesenc_epi128(d1, kk8);
  517. d0 = _mm256_aesenc_epi128(d0, kk9);
  518. d1 = _mm256_aesenc_epi128(d1, kk9);
  519. d0 = _mm256_aesenc_epi128(d0, kk10);
  520. d1 = _mm256_aesenc_epi128(d1, kk10);
  521. d0 = _mm256_aesenc_epi128(d0, kk11);
  522. d1 = _mm256_aesenc_epi128(d1, kk11);
  523. d0 = _mm256_aesenc_epi128(d0, kk12);
  524. d1 = _mm256_aesenc_epi128(d1, kk12);
  525. d0 = _mm256_aesenc_epi128(d0, kk13);
  526. d1 = _mm256_aesenc_epi128(d1, kk13);
  527. d0 = _mm256_aesenclast_epi128(d0, kk14);
  528. d1 = _mm256_aesenclast_epi128(d1, kk14);
  529. _mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
  530. _mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
  531. out += 64;
  532. } while (likely(len >= 64));
  533. }
  534. #endif // does compiler support AVX2 and AVX512 AES intrinsics?
  535. #endif // ZT_AES_AESNI
  536. void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
  537. {
  538. const uint8_t *in = reinterpret_cast<const uint8_t *>(input);
  539. uint8_t *out = _out;
  540. #ifdef ZT_AES_AESNI
  541. if (likely(Utils::CPUID.aes)) {
  542. const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
  543. uint64_t c1 = Utils::ntoh(_ctr[1]);
  544. const __m128i *const k = _aes._k.ni.k;
  545. const __m128i k0 = k[0];
  546. const __m128i k1 = k[1];
  547. const __m128i k2 = k[2];
  548. const __m128i k3 = k[3];
  549. const __m128i k4 = k[4];
  550. const __m128i k5 = k[5];
  551. const __m128i k6 = k[6];
  552. const __m128i k7 = k[7];
  553. const __m128i k8 = k[8];
  554. const __m128i k9 = k[9];
  555. const __m128i k10 = k[10];
  556. const __m128i k11 = k[11];
  557. const __m128i k12 = k[12];
  558. const __m128i k13 = k[13];
  559. const __m128i k14 = k[14];
  560. // Complete any unfinished blocks from previous calls to crypt().
  561. unsigned int totalLen = _len;
  562. if ((totalLen & 15U)) {
  563. for (;;) {
  564. if (unlikely(!len)) {
  565. _ctr[1] = Utils::hton(c1);
  566. _len = totalLen;
  567. return;
  568. }
  569. --len;
  570. out[totalLen++] = *(in++);
  571. if (!(totalLen & 15U)) {
  572. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  573. d0 = _mm_xor_si128(d0, k0);
  574. d0 = _mm_aesenc_si128(d0, k1);
  575. d0 = _mm_aesenc_si128(d0, k2);
  576. d0 = _mm_aesenc_si128(d0, k3);
  577. d0 = _mm_aesenc_si128(d0, k4);
  578. d0 = _mm_aesenc_si128(d0, k5);
  579. d0 = _mm_aesenc_si128(d0, k6);
  580. d0 = _mm_aesenc_si128(d0, k7);
  581. d0 = _mm_aesenc_si128(d0, k8);
  582. d0 = _mm_aesenc_si128(d0, k9);
  583. d0 = _mm_aesenc_si128(d0, k10);
  584. __m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
  585. d0 = _mm_aesenc_si128(d0, k11);
  586. const __m128i p0 = _mm_loadu_si128(outblk);
  587. d0 = _mm_aesenc_si128(d0, k12);
  588. d0 = _mm_aesenc_si128(d0, k13);
  589. d0 = _mm_aesenclast_si128(d0, k14);
  590. _mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
  591. break;
  592. }
  593. }
  594. }
  595. out += totalLen;
  596. _len = totalLen + len;
  597. if (likely(len >= 64)) {
  598. #if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  599. if (Utils::CPUID.vaes && (len >= 256)) {
  600. if (Utils::CPUID.avx512f) {
  601. p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
  602. } else {
  603. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  604. }
  605. goto skip_conventional_aesni_64;
  606. }
  607. #endif
  608. #if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
  609. if (Utils::CPUID.vaes && (len >= 256)) {
  610. p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
  611. goto skip_conventional_aesni_64;
  612. }
  613. #endif
  614. const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
  615. len &= 63;
  616. __m128i d0, d1, d2, d3;
  617. do {
  618. const uint64_t c10 = Utils::hton(c1);
  619. const uint64_t c11 = Utils::hton(c1 + 1ULL);
  620. const uint64_t c12 = Utils::hton(c1 + 2ULL);
  621. const uint64_t c13 = Utils::hton(c1 + 3ULL);
  622. d0 = _mm_insert_epi64(dd, (long long)c10, 1);
  623. d1 = _mm_insert_epi64(dd, (long long)c11, 1);
  624. d2 = _mm_insert_epi64(dd, (long long)c12, 1);
  625. d3 = _mm_insert_epi64(dd, (long long)c13, 1);
  626. c1 += 4;
  627. d0 = _mm_xor_si128(d0, k0);
  628. d1 = _mm_xor_si128(d1, k0);
  629. d2 = _mm_xor_si128(d2, k0);
  630. d3 = _mm_xor_si128(d3, k0);
  631. d0 = _mm_aesenc_si128(d0, k1);
  632. d1 = _mm_aesenc_si128(d1, k1);
  633. d2 = _mm_aesenc_si128(d2, k1);
  634. d3 = _mm_aesenc_si128(d3, k1);
  635. d0 = _mm_aesenc_si128(d0, k2);
  636. d1 = _mm_aesenc_si128(d1, k2);
  637. d2 = _mm_aesenc_si128(d2, k2);
  638. d3 = _mm_aesenc_si128(d3, k2);
  639. d0 = _mm_aesenc_si128(d0, k3);
  640. d1 = _mm_aesenc_si128(d1, k3);
  641. d2 = _mm_aesenc_si128(d2, k3);
  642. d3 = _mm_aesenc_si128(d3, k3);
  643. d0 = _mm_aesenc_si128(d0, k4);
  644. d1 = _mm_aesenc_si128(d1, k4);
  645. d2 = _mm_aesenc_si128(d2, k4);
  646. d3 = _mm_aesenc_si128(d3, k4);
  647. d0 = _mm_aesenc_si128(d0, k5);
  648. d1 = _mm_aesenc_si128(d1, k5);
  649. d2 = _mm_aesenc_si128(d2, k5);
  650. d3 = _mm_aesenc_si128(d3, k5);
  651. d0 = _mm_aesenc_si128(d0, k6);
  652. d1 = _mm_aesenc_si128(d1, k6);
  653. d2 = _mm_aesenc_si128(d2, k6);
  654. d3 = _mm_aesenc_si128(d3, k6);
  655. d0 = _mm_aesenc_si128(d0, k7);
  656. d1 = _mm_aesenc_si128(d1, k7);
  657. d2 = _mm_aesenc_si128(d2, k7);
  658. d3 = _mm_aesenc_si128(d3, k7);
  659. d0 = _mm_aesenc_si128(d0, k8);
  660. d1 = _mm_aesenc_si128(d1, k8);
  661. d2 = _mm_aesenc_si128(d2, k8);
  662. d3 = _mm_aesenc_si128(d3, k8);
  663. d0 = _mm_aesenc_si128(d0, k9);
  664. d1 = _mm_aesenc_si128(d1, k9);
  665. d2 = _mm_aesenc_si128(d2, k9);
  666. d3 = _mm_aesenc_si128(d3, k9);
  667. d0 = _mm_aesenc_si128(d0, k10);
  668. d1 = _mm_aesenc_si128(d1, k10);
  669. d2 = _mm_aesenc_si128(d2, k10);
  670. d3 = _mm_aesenc_si128(d3, k10);
  671. d0 = _mm_aesenc_si128(d0, k11);
  672. d1 = _mm_aesenc_si128(d1, k11);
  673. d2 = _mm_aesenc_si128(d2, k11);
  674. d3 = _mm_aesenc_si128(d3, k11);
  675. d0 = _mm_aesenc_si128(d0, k12);
  676. d1 = _mm_aesenc_si128(d1, k12);
  677. d2 = _mm_aesenc_si128(d2, k12);
  678. d3 = _mm_aesenc_si128(d3, k12);
  679. d0 = _mm_aesenc_si128(d0, k13);
  680. d1 = _mm_aesenc_si128(d1, k13);
  681. d2 = _mm_aesenc_si128(d2, k13);
  682. d3 = _mm_aesenc_si128(d3, k13);
  683. d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
  684. d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
  685. d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
  686. d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
  687. in += 64;
  688. _mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
  689. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
  690. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
  691. _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
  692. out += 64;
  693. } while (likely(in != eof64));
  694. }
  695. skip_conventional_aesni_64:
  696. while (len >= 16) {
  697. __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
  698. d0 = _mm_xor_si128(d0, k0);
  699. d0 = _mm_aesenc_si128(d0, k1);
  700. d0 = _mm_aesenc_si128(d0, k2);
  701. d0 = _mm_aesenc_si128(d0, k3);
  702. d0 = _mm_aesenc_si128(d0, k4);
  703. d0 = _mm_aesenc_si128(d0, k5);
  704. d0 = _mm_aesenc_si128(d0, k6);
  705. d0 = _mm_aesenc_si128(d0, k7);
  706. d0 = _mm_aesenc_si128(d0, k8);
  707. d0 = _mm_aesenc_si128(d0, k9);
  708. d0 = _mm_aesenc_si128(d0, k10);
  709. d0 = _mm_aesenc_si128(d0, k11);
  710. d0 = _mm_aesenc_si128(d0, k12);
  711. d0 = _mm_aesenc_si128(d0, k13);
  712. _mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
  713. in += 16;
  714. len -= 16;
  715. out += 16;
  716. }
  717. // Any remaining input is placed in _out. This will be picked up and crypted
  718. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  719. // an even multiple of 16.
  720. for (unsigned int i = 0; i < len; ++i)
  721. out[i] = in[i];
  722. _ctr[1] = Utils::hton(c1);
  723. return;
  724. }
  725. #endif // ZT_AES_AESNI
  726. #ifdef ZT_AES_NEON
  727. if (Utils::ARMCAP.aes) {
  728. uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t *>(_ctr)));
  729. const uint32x4_t one = {0,0,0,1};
  730. uint8x16_t k0 = _aes._k.neon.ek[0];
  731. uint8x16_t k1 = _aes._k.neon.ek[1];
  732. uint8x16_t k2 = _aes._k.neon.ek[2];
  733. uint8x16_t k3 = _aes._k.neon.ek[3];
  734. uint8x16_t k4 = _aes._k.neon.ek[4];
  735. uint8x16_t k5 = _aes._k.neon.ek[5];
  736. uint8x16_t k6 = _aes._k.neon.ek[6];
  737. uint8x16_t k7 = _aes._k.neon.ek[7];
  738. uint8x16_t k8 = _aes._k.neon.ek[8];
  739. uint8x16_t k9 = _aes._k.neon.ek[9];
  740. uint8x16_t k10 = _aes._k.neon.ek[10];
  741. uint8x16_t k11 = _aes._k.neon.ek[11];
  742. uint8x16_t k12 = _aes._k.neon.ek[12];
  743. uint8x16_t k13 = _aes._k.neon.ek[13];
  744. uint8x16_t k14 = _aes._k.neon.ek[14];
  745. unsigned int totalLen = _len;
  746. if ((totalLen & 15U)) {
  747. for (;;) {
  748. if (unlikely(!len)) {
  749. vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
  750. _len = totalLen;
  751. return;
  752. }
  753. --len;
  754. out[totalLen++] = *(in++);
  755. if (!(totalLen & 15U)) {
  756. uint8_t *const otmp = out + (totalLen - 16);
  757. uint8x16_t d0 = vrev32q_u8(dd);
  758. uint8x16_t pt = vld1q_u8(otmp);
  759. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  760. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  761. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  762. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  763. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  764. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  765. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  766. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  767. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  768. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  769. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  770. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  771. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  772. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  773. vst1q_u8(otmp, veorq_u8(pt, d0));
  774. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  775. break;
  776. }
  777. }
  778. }
  779. out += totalLen;
  780. _len = totalLen + len;
  781. if (likely(len >= 64)) {
  782. const uint32x4_t four = vshlq_n_u32(one, 2);
  783. uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  784. uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
  785. uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
  786. for (;;) {
  787. len -= 64;
  788. uint8x16_t d0 = vrev32q_u8(dd);
  789. uint8x16_t d1 = vrev32q_u8(dd1);
  790. uint8x16_t d2 = vrev32q_u8(dd2);
  791. uint8x16_t d3 = vrev32q_u8(dd3);
  792. uint8x16_t pt0 = vld1q_u8(in);
  793. in += 16;
  794. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  795. d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
  796. d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
  797. d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
  798. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  799. d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
  800. d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
  801. d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
  802. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  803. d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
  804. d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
  805. d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
  806. uint8x16_t pt1 = vld1q_u8(in);
  807. in += 16;
  808. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  809. d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
  810. d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
  811. d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
  812. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  813. d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
  814. d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
  815. d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
  816. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  817. d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
  818. d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
  819. d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
  820. uint8x16_t pt2 = vld1q_u8(in);
  821. in += 16;
  822. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  823. d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
  824. d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
  825. d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
  826. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  827. d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
  828. d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
  829. d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
  830. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  831. d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
  832. d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
  833. d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
  834. uint8x16_t pt3 = vld1q_u8(in);
  835. in += 16;
  836. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  837. d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
  838. d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
  839. d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
  840. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  841. d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
  842. d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
  843. d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
  844. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  845. d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
  846. d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
  847. d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
  848. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  849. d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
  850. d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
  851. d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
  852. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  853. d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
  854. d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
  855. d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
  856. d0 = veorq_u8(pt0, d0);
  857. d1 = veorq_u8(pt1, d1);
  858. d2 = veorq_u8(pt2, d2);
  859. d3 = veorq_u8(pt3, d3);
  860. vst1q_u8(out, d0);
  861. vst1q_u8(out + 16, d1);
  862. vst1q_u8(out + 32, d2);
  863. vst1q_u8(out + 48, d3);
  864. out += 64;
  865. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
  866. if (unlikely(len < 64))
  867. break;
  868. dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
  869. dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
  870. dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
  871. }
  872. }
  873. while (len >= 16) {
  874. len -= 16;
  875. uint8x16_t d0 = vrev32q_u8(dd);
  876. uint8x16_t pt = vld1q_u8(in);
  877. in += 16;
  878. dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
  879. d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
  880. d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
  881. d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
  882. d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
  883. d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
  884. d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
  885. d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
  886. d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
  887. d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
  888. d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
  889. d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
  890. d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
  891. d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
  892. d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
  893. vst1q_u8(out, veorq_u8(pt, d0));
  894. out += 16;
  895. }
  896. // Any remaining input is placed in _out. This will be picked up and crypted
  897. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  898. // an even multiple of 16.
  899. for (unsigned int i = 0; i < len; ++i)
  900. out[i] = in[i];
  901. vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
  902. return;
  903. }
  904. #endif // ZT_AES_NEON
  905. uint64_t keyStream[2];
  906. uint32_t ctr = Utils::ntoh(reinterpret_cast<uint32_t *>(_ctr)[3]);
  907. unsigned int totalLen = _len;
  908. if ((totalLen & 15U)) {
  909. for (;;) {
  910. if (!len) {
  911. _len = (totalLen + len);
  912. return;
  913. }
  914. --len;
  915. out[totalLen++] = *(in++);
  916. if (!(totalLen & 15U)) {
  917. _aes._encryptSW(reinterpret_cast<const uint8_t *>(_ctr), reinterpret_cast<uint8_t *>(keyStream));
  918. reinterpret_cast<uint32_t *>(_ctr)[3] = Utils::hton(++ctr);
  919. uint8_t *outblk = out + (totalLen - 16);
  920. for (int i = 0; i < 16; ++i)
  921. outblk[i] ^= reinterpret_cast<uint8_t *>(keyStream)[i];
  922. break;
  923. }
  924. }
  925. }
  926. out += totalLen;
  927. _len = (totalLen + len);
  928. if (likely(len >= 16)) {
  929. const uint32_t *const restrict rk = _aes._k.sw.ek;
  930. const uint32_t ctr0rk0 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[0]) ^rk[0];
  931. const uint32_t ctr1rk1 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[1]) ^rk[1];
  932. const uint32_t ctr2rk2 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[2]) ^rk[2];
  933. const uint32_t m8 = 0x000000ff;
  934. const uint32_t m8_8 = 0x0000ff00;
  935. const uint32_t m8_16 = 0x00ff0000;
  936. const uint32_t m8_24 = 0xff000000;
  937. if (likely((((uintptr_t)out & 7U) == 0U) && (((uintptr_t)in & 7U) == 0U))) {
  938. do {
  939. uint32_t s0, s1, s2, s3, t0, t1, t2, t3;
  940. s0 = ctr0rk0;
  941. s1 = ctr1rk1;
  942. s2 = ctr2rk2;
  943. s3 = ctr++ ^ rk[3];
  944. const uint64_t in0 = *reinterpret_cast<const uint64_t *>(in);
  945. const uint64_t in1 = *reinterpret_cast<const uint64_t *>(in + 8);
  946. in += 16;
  947. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[4];
  948. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[5];
  949. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[6];
  950. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[7];
  951. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[8];
  952. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[9];
  953. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[10];
  954. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[11];
  955. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[12];
  956. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[13];
  957. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[14];
  958. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[15];
  959. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[16];
  960. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[17];
  961. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[18];
  962. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[19];
  963. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[20];
  964. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[21];
  965. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[22];
  966. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[23];
  967. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[24];
  968. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[25];
  969. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[26];
  970. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[27];
  971. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[28];
  972. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[29];
  973. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[30];
  974. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[31];
  975. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[32];
  976. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[33];
  977. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[34];
  978. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[35];
  979. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[36];
  980. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[37];
  981. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[38];
  982. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[39];
  983. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[40];
  984. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[41];
  985. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[42];
  986. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[43];
  987. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[44];
  988. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[45];
  989. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[46];
  990. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[47];
  991. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[48];
  992. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[49];
  993. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[50];
  994. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[51];
  995. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[52];
  996. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[53];
  997. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[54];
  998. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[55];
  999. s0 = (Te2_r(t0 >> 24U) & m8_24) ^ (Te3_r((t1 >> 16U) & m8) & m8_16) ^ (Te0[(t2 >> 8U) & m8] & m8_8) ^ (Te1_r(t3 & m8) & m8) ^ rk[56];
  1000. s1 = (Te2_r(t1 >> 24U) & m8_24) ^ (Te3_r((t2 >> 16U) & m8) & m8_16) ^ (Te0[(t3 >> 8U) & m8] & m8_8) ^ (Te1_r(t0 & m8) & m8) ^ rk[57];
  1001. s2 = (Te2_r(t2 >> 24U) & m8_24) ^ (Te3_r((t3 >> 16U) & m8) & m8_16) ^ (Te0[(t0 >> 8U) & m8] & m8_8) ^ (Te1_r(t1 & m8) & m8) ^ rk[58];
  1002. s3 = (Te2_r(t3 >> 24U) & m8_24) ^ (Te3_r((t0 >> 16U) & m8) & m8_16) ^ (Te0[(t1 >> 8U) & m8] & m8_8) ^ (Te1_r(t2 & m8) & m8) ^ rk[59];
  1003. *reinterpret_cast<uint64_t *>(out) = in0 ^ Utils::hton(((uint64_t)s0 << 32U) | (uint64_t)s1);
  1004. *reinterpret_cast<uint64_t *>(out + 8) = in1 ^ Utils::hton(((uint64_t)s2 << 32U) | (uint64_t)s3);
  1005. out += 16;
  1006. } while ((len -= 16) >= 16);
  1007. } else {
  1008. do {
  1009. uint32_t s0, s1, s2, s3, t0, t1, t2, t3;
  1010. s0 = ctr0rk0;
  1011. s1 = ctr1rk1;
  1012. s2 = ctr2rk2;
  1013. s3 = ctr++ ^ rk[3];
  1014. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[4];
  1015. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[5];
  1016. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[6];
  1017. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[7];
  1018. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[8];
  1019. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[9];
  1020. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[10];
  1021. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[11];
  1022. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[12];
  1023. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[13];
  1024. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[14];
  1025. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[15];
  1026. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[16];
  1027. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[17];
  1028. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[18];
  1029. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[19];
  1030. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[20];
  1031. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[21];
  1032. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[22];
  1033. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[23];
  1034. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[24];
  1035. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[25];
  1036. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[26];
  1037. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[27];
  1038. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[28];
  1039. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[29];
  1040. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[30];
  1041. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[31];
  1042. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[32];
  1043. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[33];
  1044. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[34];
  1045. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[35];
  1046. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[36];
  1047. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[37];
  1048. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[38];
  1049. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[39];
  1050. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[40];
  1051. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[41];
  1052. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[42];
  1053. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[43];
  1054. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[44];
  1055. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[45];
  1056. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[46];
  1057. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[47];
  1058. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[48];
  1059. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[49];
  1060. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[50];
  1061. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[51];
  1062. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[52];
  1063. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[53];
  1064. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[54];
  1065. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[55];
  1066. s0 = (Te2_r(t0 >> 24U) & m8_24) ^ (Te3_r((t1 >> 16U) & m8) & m8_16) ^ (Te0[(t2 >> 8U) & m8] & m8_8) ^ (Te1_r(t3 & m8) & m8) ^ rk[56];
  1067. s1 = (Te2_r(t1 >> 24U) & m8_24) ^ (Te3_r((t2 >> 16U) & m8) & m8_16) ^ (Te0[(t3 >> 8U) & m8] & m8_8) ^ (Te1_r(t0 & m8) & m8) ^ rk[57];
  1068. s2 = (Te2_r(t2 >> 24U) & m8_24) ^ (Te3_r((t3 >> 16U) & m8) & m8_16) ^ (Te0[(t0 >> 8U) & m8] & m8_8) ^ (Te1_r(t1 & m8) & m8) ^ rk[58];
  1069. s3 = (Te2_r(t3 >> 24U) & m8_24) ^ (Te3_r((t0 >> 16U) & m8) & m8_16) ^ (Te0[(t1 >> 8U) & m8] & m8_8) ^ (Te1_r(t2 & m8) & m8) ^ rk[59];
  1070. out[0] = in[0] ^ (uint8_t)(s0 >> 24U);
  1071. out[1] = in[1] ^ (uint8_t)(s0 >> 16U);
  1072. out[2] = in[2] ^ (uint8_t)(s0 >> 8U);
  1073. out[3] = in[3] ^ (uint8_t)s0;
  1074. out[4] = in[4] ^ (uint8_t)(s1 >> 24U);
  1075. out[5] = in[5] ^ (uint8_t)(s1 >> 16U);
  1076. out[6] = in[6] ^ (uint8_t)(s1 >> 8U);
  1077. out[7] = in[7] ^ (uint8_t)s1;
  1078. out[8] = in[8] ^ (uint8_t)(s2 >> 24U);
  1079. out[9] = in[9] ^ (uint8_t)(s2 >> 16U);
  1080. out[10] = in[10] ^ (uint8_t)(s2 >> 8U);
  1081. out[11] = in[11] ^ (uint8_t)s2;
  1082. out[12] = in[12] ^ (uint8_t)(s3 >> 24U);
  1083. out[13] = in[13] ^ (uint8_t)(s3 >> 16U);
  1084. out[14] = in[14] ^ (uint8_t)(s3 >> 8U);
  1085. out[15] = in[15] ^ (uint8_t)s3;
  1086. out += 16;
  1087. in += 16;
  1088. } while ((len -= 16) >= 16);
  1089. }
  1090. reinterpret_cast<uint32_t *>(_ctr)[3] = Utils::hton(ctr);
  1091. }
  1092. // Any remaining input is placed in _out. This will be picked up and crypted
  1093. // on subsequent calls to crypt() or finish() as it'll mean _len will not be
  1094. // an even multiple of 16.
  1095. while (len) {
  1096. --len;
  1097. *(out++) = *(in++);
  1098. }
  1099. }
  1100. void AES::CTR::finish() noexcept
  1101. {
  1102. uint8_t tmp[16];
  1103. const unsigned int rem = _len & 15U;
  1104. if (rem) {
  1105. _aes.encrypt(_ctr, tmp);
  1106. for (unsigned int i = 0, j = _len - rem; i < rem; ++i)
  1107. _out[j + i] ^= tmp[i];
  1108. }
  1109. }
  1110. // Software AES and AES key expansion ---------------------------------------------------------------------------------
  1111. const uint32_t AES::Te0[256] = {0xc66363a5, 0xf87c7c84, 0xee777799, 0xf67b7b8d, 0xfff2f20d, 0xd66b6bbd, 0xde6f6fb1, 0x91c5c554, 0x60303050, 0x02010103, 0xce6767a9, 0x562b2b7d, 0xe7fefe19, 0xb5d7d762, 0x4dababe6, 0xec76769a, 0x8fcaca45, 0x1f82829d, 0x89c9c940, 0xfa7d7d87, 0xeffafa15, 0xb25959eb, 0x8e4747c9, 0xfbf0f00b, 0x41adadec, 0xb3d4d467, 0x5fa2a2fd, 0x45afafea, 0x239c9cbf, 0x53a4a4f7, 0xe4727296, 0x9bc0c05b, 0x75b7b7c2, 0xe1fdfd1c, 0x3d9393ae, 0x4c26266a, 0x6c36365a, 0x7e3f3f41, 0xf5f7f702, 0x83cccc4f, 0x6834345c, 0x51a5a5f4, 0xd1e5e534, 0xf9f1f108, 0xe2717193, 0xabd8d873, 0x62313153,
  1112. 0x2a15153f, 0x0804040c, 0x95c7c752, 0x46232365, 0x9dc3c35e, 0x30181828, 0x379696a1, 0x0a05050f, 0x2f9a9ab5, 0x0e070709, 0x24121236, 0x1b80809b, 0xdfe2e23d, 0xcdebeb26, 0x4e272769, 0x7fb2b2cd, 0xea75759f,
  1113. 0x1209091b, 0x1d83839e, 0x582c2c74, 0x341a1a2e, 0x361b1b2d, 0xdc6e6eb2, 0xb45a5aee, 0x5ba0a0fb, 0xa45252f6, 0x763b3b4d, 0xb7d6d661, 0x7db3b3ce, 0x5229297b, 0xdde3e33e, 0x5e2f2f71, 0x13848497, 0xa65353f5, 0xb9d1d168, 0x00000000, 0xc1eded2c, 0x40202060, 0xe3fcfc1f, 0x79b1b1c8, 0xb65b5bed, 0xd46a6abe, 0x8dcbcb46, 0x67bebed9, 0x7239394b, 0x944a4ade, 0x984c4cd4, 0xb05858e8, 0x85cfcf4a, 0xbbd0d06b, 0xc5efef2a, 0x4faaaae5, 0xedfbfb16, 0x864343c5, 0x9a4d4dd7, 0x66333355, 0x11858594, 0x8a4545cf, 0xe9f9f910, 0x04020206, 0xfe7f7f81, 0xa05050f0, 0x783c3c44, 0x259f9fba,
  1114. 0x4ba8a8e3, 0xa25151f3, 0x5da3a3fe, 0x804040c0, 0x058f8f8a, 0x3f9292ad, 0x219d9dbc, 0x70383848, 0xf1f5f504, 0x63bcbcdf, 0x77b6b6c1, 0xafdada75, 0x42212163, 0x20101030, 0xe5ffff1a, 0xfdf3f30e, 0xbfd2d26d,
  1115. 0x81cdcd4c, 0x180c0c14, 0x26131335, 0xc3ecec2f, 0xbe5f5fe1, 0x359797a2, 0x884444cc, 0x2e171739, 0x93c4c457, 0x55a7a7f2, 0xfc7e7e82, 0x7a3d3d47, 0xc86464ac, 0xba5d5de7, 0x3219192b, 0xe6737395, 0xc06060a0, 0x19818198, 0x9e4f4fd1, 0xa3dcdc7f, 0x44222266, 0x542a2a7e, 0x3b9090ab, 0x0b888883, 0x8c4646ca, 0xc7eeee29, 0x6bb8b8d3, 0x2814143c, 0xa7dede79, 0xbc5e5ee2, 0x160b0b1d, 0xaddbdb76, 0xdbe0e03b, 0x64323256, 0x743a3a4e, 0x140a0a1e, 0x924949db, 0x0c06060a, 0x4824246c, 0xb85c5ce4, 0x9fc2c25d, 0xbdd3d36e, 0x43acacef, 0xc46262a6, 0x399191a8, 0x319595a4, 0xd3e4e437,
  1116. 0xf279798b, 0xd5e7e732, 0x8bc8c843, 0x6e373759, 0xda6d6db7, 0x018d8d8c, 0xb1d5d564, 0x9c4e4ed2, 0x49a9a9e0, 0xd86c6cb4, 0xac5656fa, 0xf3f4f407, 0xcfeaea25, 0xca6565af, 0xf47a7a8e, 0x47aeaee9, 0x10080818,
  1117. 0x6fbabad5, 0xf0787888, 0x4a25256f, 0x5c2e2e72, 0x381c1c24, 0x57a6a6f1, 0x73b4b4c7, 0x97c6c651, 0xcbe8e823, 0xa1dddd7c, 0xe874749c, 0x3e1f1f21, 0x964b4bdd, 0x61bdbddc, 0x0d8b8b86, 0x0f8a8a85, 0xe0707090, 0x7c3e3e42, 0x71b5b5c4, 0xcc6666aa, 0x904848d8, 0x06030305, 0xf7f6f601, 0x1c0e0e12, 0xc26161a3, 0x6a35355f, 0xae5757f9, 0x69b9b9d0, 0x17868691, 0x99c1c158, 0x3a1d1d27, 0x279e9eb9, 0xd9e1e138, 0xebf8f813, 0x2b9898b3, 0x22111133, 0xd26969bb, 0xa9d9d970, 0x078e8e89, 0x339494a7, 0x2d9b9bb6, 0x3c1e1e22, 0x15878792, 0xc9e9e920, 0x87cece49, 0xaa5555ff, 0x50282878,
  1118. 0xa5dfdf7a, 0x038c8c8f, 0x59a1a1f8, 0x09898980, 0x1a0d0d17, 0x65bfbfda, 0xd7e6e631, 0x844242c6, 0xd06868b8, 0x824141c3, 0x299999b0, 0x5a2d2d77, 0x1e0f0f11, 0x7bb0b0cb, 0xa85454fc, 0x6dbbbbd6, 0x2c16163a};
  1119. const uint32_t AES::Te4[256] = {0x63636363, 0x7c7c7c7c, 0x77777777, 0x7b7b7b7b, 0xf2f2f2f2, 0x6b6b6b6b, 0x6f6f6f6f, 0xc5c5c5c5, 0x30303030, 0x01010101, 0x67676767, 0x2b2b2b2b, 0xfefefefe, 0xd7d7d7d7, 0xabababab, 0x76767676, 0xcacacaca, 0x82828282, 0xc9c9c9c9, 0x7d7d7d7d, 0xfafafafa, 0x59595959, 0x47474747, 0xf0f0f0f0, 0xadadadad, 0xd4d4d4d4, 0xa2a2a2a2, 0xafafafaf, 0x9c9c9c9c, 0xa4a4a4a4, 0x72727272, 0xc0c0c0c0, 0xb7b7b7b7, 0xfdfdfdfd, 0x93939393, 0x26262626, 0x36363636, 0x3f3f3f3f, 0xf7f7f7f7, 0xcccccccc, 0x34343434, 0xa5a5a5a5, 0xe5e5e5e5, 0xf1f1f1f1, 0x71717171, 0xd8d8d8d8, 0x31313131,
  1120. 0x15151515, 0x04040404, 0xc7c7c7c7, 0x23232323, 0xc3c3c3c3, 0x18181818, 0x96969696, 0x05050505, 0x9a9a9a9a, 0x07070707, 0x12121212, 0x80808080, 0xe2e2e2e2, 0xebebebeb, 0x27272727, 0xb2b2b2b2, 0x75757575,
  1121. 0x09090909, 0x83838383, 0x2c2c2c2c, 0x1a1a1a1a, 0x1b1b1b1b, 0x6e6e6e6e, 0x5a5a5a5a, 0xa0a0a0a0, 0x52525252, 0x3b3b3b3b, 0xd6d6d6d6, 0xb3b3b3b3, 0x29292929, 0xe3e3e3e3, 0x2f2f2f2f, 0x84848484, 0x53535353, 0xd1d1d1d1, 0x00000000, 0xedededed, 0x20202020, 0xfcfcfcfc, 0xb1b1b1b1, 0x5b5b5b5b, 0x6a6a6a6a, 0xcbcbcbcb, 0xbebebebe, 0x39393939, 0x4a4a4a4a, 0x4c4c4c4c, 0x58585858, 0xcfcfcfcf, 0xd0d0d0d0, 0xefefefef, 0xaaaaaaaa, 0xfbfbfbfb, 0x43434343, 0x4d4d4d4d, 0x33333333, 0x85858585, 0x45454545, 0xf9f9f9f9, 0x02020202, 0x7f7f7f7f, 0x50505050, 0x3c3c3c3c, 0x9f9f9f9f,
  1122. 0xa8a8a8a8, 0x51515151, 0xa3a3a3a3, 0x40404040, 0x8f8f8f8f, 0x92929292, 0x9d9d9d9d, 0x38383838, 0xf5f5f5f5, 0xbcbcbcbc, 0xb6b6b6b6, 0xdadadada, 0x21212121, 0x10101010, 0xffffffff, 0xf3f3f3f3, 0xd2d2d2d2,
  1123. 0xcdcdcdcd, 0x0c0c0c0c, 0x13131313, 0xecececec, 0x5f5f5f5f, 0x97979797, 0x44444444, 0x17171717, 0xc4c4c4c4, 0xa7a7a7a7, 0x7e7e7e7e, 0x3d3d3d3d, 0x64646464, 0x5d5d5d5d, 0x19191919, 0x73737373, 0x60606060, 0x81818181, 0x4f4f4f4f, 0xdcdcdcdc, 0x22222222, 0x2a2a2a2a, 0x90909090, 0x88888888, 0x46464646, 0xeeeeeeee, 0xb8b8b8b8, 0x14141414, 0xdededede, 0x5e5e5e5e, 0x0b0b0b0b, 0xdbdbdbdb, 0xe0e0e0e0, 0x32323232, 0x3a3a3a3a, 0x0a0a0a0a, 0x49494949, 0x06060606, 0x24242424, 0x5c5c5c5c, 0xc2c2c2c2, 0xd3d3d3d3, 0xacacacac, 0x62626262, 0x91919191, 0x95959595, 0xe4e4e4e4,
  1124. 0x79797979, 0xe7e7e7e7, 0xc8c8c8c8, 0x37373737, 0x6d6d6d6d, 0x8d8d8d8d, 0xd5d5d5d5, 0x4e4e4e4e, 0xa9a9a9a9, 0x6c6c6c6c, 0x56565656, 0xf4f4f4f4, 0xeaeaeaea, 0x65656565, 0x7a7a7a7a, 0xaeaeaeae, 0x08080808,
  1125. 0xbabababa, 0x78787878, 0x25252525, 0x2e2e2e2e, 0x1c1c1c1c, 0xa6a6a6a6, 0xb4b4b4b4, 0xc6c6c6c6, 0xe8e8e8e8, 0xdddddddd, 0x74747474, 0x1f1f1f1f, 0x4b4b4b4b, 0xbdbdbdbd, 0x8b8b8b8b, 0x8a8a8a8a, 0x70707070, 0x3e3e3e3e, 0xb5b5b5b5, 0x66666666, 0x48484848, 0x03030303, 0xf6f6f6f6, 0x0e0e0e0e, 0x61616161, 0x35353535, 0x57575757, 0xb9b9b9b9, 0x86868686, 0xc1c1c1c1, 0x1d1d1d1d, 0x9e9e9e9e, 0xe1e1e1e1, 0xf8f8f8f8, 0x98989898, 0x11111111, 0x69696969, 0xd9d9d9d9, 0x8e8e8e8e, 0x94949494, 0x9b9b9b9b, 0x1e1e1e1e, 0x87878787, 0xe9e9e9e9, 0xcececece, 0x55555555, 0x28282828,
  1126. 0xdfdfdfdf, 0x8c8c8c8c, 0xa1a1a1a1, 0x89898989, 0x0d0d0d0d, 0xbfbfbfbf, 0xe6e6e6e6, 0x42424242, 0x68686868, 0x41414141, 0x99999999, 0x2d2d2d2d, 0x0f0f0f0f, 0xb0b0b0b0, 0x54545454, 0xbbbbbbbb, 0x16161616};
  1127. const uint32_t AES::Td0[256] = {0x51f4a750, 0x7e416553, 0x1a17a4c3, 0x3a275e96, 0x3bab6bcb, 0x1f9d45f1, 0xacfa58ab, 0x4be30393, 0x2030fa55, 0xad766df6, 0x88cc7691, 0xf5024c25, 0x4fe5d7fc, 0xc52acbd7, 0x26354480, 0xb562a38f, 0xdeb15a49, 0x25ba1b67, 0x45ea0e98, 0x5dfec0e1, 0xc32f7502, 0x814cf012, 0x8d4697a3, 0x6bd3f9c6, 0x038f5fe7, 0x15929c95, 0xbf6d7aeb, 0x955259da, 0xd4be832d, 0x587421d3, 0x49e06929, 0x8ec9c844, 0x75c2896a, 0xf48e7978, 0x99583e6b, 0x27b971dd, 0xbee14fb6, 0xf088ad17, 0xc920ac66, 0x7dce3ab4, 0x63df4a18, 0xe51a3182, 0x97513360, 0x62537f45, 0xb16477e0, 0xbb6bae84, 0xfe81a01c,
  1128. 0xf9082b94, 0x70486858, 0x8f45fd19, 0x94de6c87, 0x527bf8b7, 0xab73d323, 0x724b02e2, 0xe31f8f57, 0x6655ab2a, 0xb2eb2807, 0x2fb5c203, 0x86c57b9a, 0xd33708a5, 0x302887f2, 0x23bfa5b2, 0x02036aba, 0xed16825c,
  1129. 0x8acf1c2b, 0xa779b492, 0xf307f2f0, 0x4e69e2a1, 0x65daf4cd, 0x0605bed5, 0xd134621f, 0xc4a6fe8a, 0x342e539d, 0xa2f355a0, 0x058ae132, 0xa4f6eb75, 0x0b83ec39, 0x4060efaa, 0x5e719f06, 0xbd6e1051, 0x3e218af9, 0x96dd063d, 0xdd3e05ae, 0x4de6bd46, 0x91548db5, 0x71c45d05, 0x0406d46f, 0x605015ff, 0x1998fb24, 0xd6bde997, 0x894043cc, 0x67d99e77, 0xb0e842bd, 0x07898b88, 0xe7195b38, 0x79c8eedb, 0xa17c0a47, 0x7c420fe9, 0xf8841ec9, 0x00000000, 0x09808683, 0x322bed48, 0x1e1170ac, 0x6c5a724e, 0xfd0efffb, 0x0f853856, 0x3daed51e, 0x362d3927, 0x0a0fd964, 0x685ca621, 0x9b5b54d1,
  1130. 0x24362e3a, 0x0c0a67b1, 0x9357e70f, 0xb4ee96d2, 0x1b9b919e, 0x80c0c54f, 0x61dc20a2, 0x5a774b69, 0x1c121a16, 0xe293ba0a, 0xc0a02ae5, 0x3c22e043, 0x121b171d, 0x0e090d0b, 0xf28bc7ad, 0x2db6a8b9, 0x141ea9c8,
  1131. 0x57f11985, 0xaf75074c, 0xee99ddbb, 0xa37f60fd, 0xf701269f, 0x5c72f5bc, 0x44663bc5, 0x5bfb7e34, 0x8b432976, 0xcb23c6dc, 0xb6edfc68, 0xb8e4f163, 0xd731dcca, 0x42638510, 0x13972240, 0x84c61120, 0x854a247d, 0xd2bb3df8, 0xaef93211, 0xc729a16d, 0x1d9e2f4b, 0xdcb230f3, 0x0d8652ec, 0x77c1e3d0, 0x2bb3166c, 0xa970b999, 0x119448fa, 0x47e96422, 0xa8fc8cc4, 0xa0f03f1a, 0x567d2cd8, 0x223390ef, 0x87494ec7, 0xd938d1c1, 0x8ccaa2fe, 0x98d40b36, 0xa6f581cf, 0xa57ade28, 0xdab78e26, 0x3fadbfa4, 0x2c3a9de4, 0x5078920d, 0x6a5fcc9b, 0x547e4662, 0xf68d13c2, 0x90d8b8e8, 0x2e39f75e,
  1132. 0x82c3aff5, 0x9f5d80be, 0x69d0937c, 0x6fd52da9, 0xcf2512b3, 0xc8ac993b, 0x10187da7, 0xe89c636e, 0xdb3bbb7b, 0xcd267809, 0x6e5918f4, 0xec9ab701, 0x834f9aa8, 0xe6956e65, 0xaaffe67e, 0x21bccf08, 0xef15e8e6,
  1133. 0xbae79bd9, 0x4a6f36ce, 0xea9f09d4, 0x29b07cd6, 0x31a4b2af, 0x2a3f2331, 0xc6a59430, 0x35a266c0, 0x744ebc37, 0xfc82caa6, 0xe090d0b0, 0x33a7d815, 0xf104984a, 0x41ecdaf7, 0x7fcd500e, 0x1791f62f, 0x764dd68d, 0x43efb04d, 0xccaa4d54, 0xe49604df, 0x9ed1b5e3, 0x4c6a881b, 0xc12c1fb8, 0x4665517f, 0x9d5eea04, 0x018c355d, 0xfa877473, 0xfb0b412e, 0xb3671d5a, 0x92dbd252, 0xe9105633, 0x6dd64713, 0x9ad7618c, 0x37a10c7a, 0x59f8148e, 0xeb133c89, 0xcea927ee, 0xb761c935, 0xe11ce5ed, 0x7a47b13c, 0x9cd2df59, 0x55f2733f, 0x1814ce79, 0x73c737bf, 0x53f7cdea, 0x5ffdaa5b, 0xdf3d6f14,
  1134. 0x7844db86, 0xcaaff381, 0xb968c43e, 0x3824342c, 0xc2a3405f, 0x161dc372, 0xbce2250c, 0x283c498b, 0xff0d9541, 0x39a80171, 0x080cb3de, 0xd8b4e49c, 0x6456c190, 0x7bcb8461, 0xd532b670, 0x486c5c74, 0xd0b85742};
  1135. const uint8_t AES::Td4[256] = {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d,
  1136. 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
  1137. 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c,
  1138. 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
  1139. const uint32_t AES::rcon[15] = {0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, 0x6c000000, 0xd8000000, 0xab000000, 0x4d000000, 0x9a000000};
  1140. void AES::_initSW(const uint8_t key[32]) noexcept
  1141. {
  1142. uint32_t *rk = _k.sw.ek;
  1143. rk[0] = Utils::loadBigEndian< uint32_t >(key);
  1144. rk[1] = Utils::loadBigEndian< uint32_t >(key + 4);
  1145. rk[2] = Utils::loadBigEndian< uint32_t >(key + 8);
  1146. rk[3] = Utils::loadBigEndian< uint32_t >(key + 12);
  1147. rk[4] = Utils::loadBigEndian< uint32_t >(key + 16);
  1148. rk[5] = Utils::loadBigEndian< uint32_t >(key + 20);
  1149. rk[6] = Utils::loadBigEndian< uint32_t >(key + 24);
  1150. rk[7] = Utils::loadBigEndian< uint32_t >(key + 28);
  1151. for (int i = 0;;) {
  1152. uint32_t temp = rk[7];
  1153. rk[8] = rk[0] ^ (Te2_r((temp >> 16U) & 0xffU) & 0xff000000U) ^ (Te3_r((temp >> 8U) & 0xffU) & 0x00ff0000U) ^ (Te0[(temp) & 0xffU] & 0x0000ff00U) ^ (Te1_r(temp >> 24U) & 0x000000ffU) ^ rcon[i];
  1154. rk[9] = rk[1] ^ rk[8];
  1155. rk[10] = rk[2] ^ rk[9];
  1156. rk[11] = rk[3] ^ rk[10];
  1157. if (++i == 7)
  1158. break;
  1159. temp = rk[11];
  1160. rk[12] = rk[4] ^ (Te2_r(temp >> 24U) & 0xff000000U) ^ (Te3_r((temp >> 16U) & 0xffU) & 0x00ff0000U) ^ (Te0[(temp >> 8U) & 0xffU] & 0x0000ff00U) ^ (Te1_r((temp) & 0xffU) & 0x000000ffU);
  1161. rk[13] = rk[5] ^ rk[12];
  1162. rk[14] = rk[6] ^ rk[13];
  1163. rk[15] = rk[7] ^ rk[14];
  1164. rk += 8;
  1165. }
  1166. _encryptSW((const uint8_t *)Utils::ZERO256, (uint8_t *)_k.sw.h);
  1167. _k.sw.h[0] = Utils::ntoh(_k.sw.h[0]);
  1168. _k.sw.h[1] = Utils::ntoh(_k.sw.h[1]);
  1169. for (int i = 0; i < 60; ++i)
  1170. _k.sw.dk[i] = _k.sw.ek[i];
  1171. rk = _k.sw.dk;
  1172. for (int i = 0, j = 56; i < j; i += 4, j -= 4) {
  1173. uint32_t temp = rk[i];
  1174. rk[i] = rk[j];
  1175. rk[j] = temp;
  1176. temp = rk[i + 1];
  1177. rk[i + 1] = rk[j + 1];
  1178. rk[j + 1] = temp;
  1179. temp = rk[i + 2];
  1180. rk[i + 2] = rk[j + 2];
  1181. rk[j + 2] = temp;
  1182. temp = rk[i + 3];
  1183. rk[i + 3] = rk[j + 3];
  1184. rk[j + 3] = temp;
  1185. }
  1186. for (int i = 1; i < 14; ++i) {
  1187. rk += 4;
  1188. rk[0] = Td0[Te4[(rk[0] >> 24U)] & 0xffU] ^ Td1_r(Te4[(rk[0] >> 16U) & 0xffU] & 0xffU) ^ Td2_r(Te4[(rk[0] >> 8U) & 0xffU] & 0xffU) ^ Td3_r(Te4[(rk[0]) & 0xffU] & 0xffU);
  1189. rk[1] = Td0[Te4[(rk[1] >> 24U)] & 0xffU] ^ Td1_r(Te4[(rk[1] >> 16U) & 0xffU] & 0xffU) ^ Td2_r(Te4[(rk[1] >> 8U) & 0xffU] & 0xffU) ^ Td3_r(Te4[(rk[1]) & 0xffU] & 0xffU);
  1190. rk[2] = Td0[Te4[(rk[2] >> 24U)] & 0xffU] ^ Td1_r(Te4[(rk[2] >> 16U) & 0xffU] & 0xffU) ^ Td2_r(Te4[(rk[2] >> 8U) & 0xffU] & 0xffU) ^ Td3_r(Te4[(rk[2]) & 0xffU] & 0xffU);
  1191. rk[3] = Td0[Te4[(rk[3] >> 24U)] & 0xffU] ^ Td1_r(Te4[(rk[3] >> 16U) & 0xffU] & 0xffU) ^ Td2_r(Te4[(rk[3] >> 8U) & 0xffU] & 0xffU) ^ Td3_r(Te4[(rk[3]) & 0xffU] & 0xffU);
  1192. }
  1193. }
  1194. void AES::_encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
  1195. {
  1196. const uint32_t *const restrict rk = _k.sw.ek;
  1197. const uint32_t m8 = 0x000000ff;
  1198. const uint32_t m8_8 = 0x0000ff00;
  1199. const uint32_t m8_16 = 0x00ff0000;
  1200. const uint32_t m8_24 = 0xff000000;
  1201. uint32_t s0 = Utils::loadBigEndian< uint32_t >(in) ^rk[0];
  1202. uint32_t s1 = Utils::loadBigEndian< uint32_t >(in + 4) ^rk[1];
  1203. uint32_t s2 = Utils::loadBigEndian< uint32_t >(in + 8) ^rk[2];
  1204. uint32_t s3 = Utils::loadBigEndian< uint32_t >(in + 12) ^rk[3];
  1205. uint32_t t0, t1, t2, t3;
  1206. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[4];
  1207. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[5];
  1208. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[6];
  1209. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[7];
  1210. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[8];
  1211. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[9];
  1212. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[10];
  1213. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[11];
  1214. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[12];
  1215. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[13];
  1216. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[14];
  1217. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[15];
  1218. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[16];
  1219. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[17];
  1220. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[18];
  1221. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[19];
  1222. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[20];
  1223. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[21];
  1224. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[22];
  1225. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[23];
  1226. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[24];
  1227. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[25];
  1228. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[26];
  1229. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[27];
  1230. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[28];
  1231. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[29];
  1232. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[30];
  1233. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[31];
  1234. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[32];
  1235. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[33];
  1236. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[34];
  1237. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[35];
  1238. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[36];
  1239. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[37];
  1240. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[38];
  1241. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[39];
  1242. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[40];
  1243. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[41];
  1244. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[42];
  1245. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[43];
  1246. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[44];
  1247. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[45];
  1248. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[46];
  1249. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[47];
  1250. s0 = Te0[t0 >> 24U] ^ Te1_r((t1 >> 16U) & m8) ^ Te2_r((t2 >> 8U) & m8) ^ Te3_r(t3 & m8) ^ rk[48];
  1251. s1 = Te0[t1 >> 24U] ^ Te1_r((t2 >> 16U) & m8) ^ Te2_r((t3 >> 8U) & m8) ^ Te3_r(t0 & m8) ^ rk[49];
  1252. s2 = Te0[t2 >> 24U] ^ Te1_r((t3 >> 16U) & m8) ^ Te2_r((t0 >> 8U) & m8) ^ Te3_r(t1 & m8) ^ rk[50];
  1253. s3 = Te0[t3 >> 24U] ^ Te1_r((t0 >> 16U) & m8) ^ Te2_r((t1 >> 8U) & m8) ^ Te3_r(t2 & m8) ^ rk[51];
  1254. t0 = Te0[s0 >> 24U] ^ Te1_r((s1 >> 16U) & m8) ^ Te2_r((s2 >> 8U) & m8) ^ Te3_r(s3 & m8) ^ rk[52];
  1255. t1 = Te0[s1 >> 24U] ^ Te1_r((s2 >> 16U) & m8) ^ Te2_r((s3 >> 8U) & m8) ^ Te3_r(s0 & m8) ^ rk[53];
  1256. t2 = Te0[s2 >> 24U] ^ Te1_r((s3 >> 16U) & m8) ^ Te2_r((s0 >> 8U) & m8) ^ Te3_r(s1 & m8) ^ rk[54];
  1257. t3 = Te0[s3 >> 24U] ^ Te1_r((s0 >> 16U) & m8) ^ Te2_r((s1 >> 8U) & m8) ^ Te3_r(s2 & m8) ^ rk[55];
  1258. s0 = (Te2_r(t0 >> 24U) & m8_24) ^ (Te3_r((t1 >> 16U) & m8) & m8_16) ^ (Te0[(t2 >> 8U) & m8] & m8_8) ^ (Te1_r(t3 & m8) & m8) ^ rk[56];
  1259. s1 = (Te2_r(t1 >> 24U) & m8_24) ^ (Te3_r((t2 >> 16U) & m8) & m8_16) ^ (Te0[(t3 >> 8U) & m8] & m8_8) ^ (Te1_r(t0 & m8) & m8) ^ rk[57];
  1260. s2 = (Te2_r(t2 >> 24U) & m8_24) ^ (Te3_r((t3 >> 16U) & m8) & m8_16) ^ (Te0[(t0 >> 8U) & m8] & m8_8) ^ (Te1_r(t1 & m8) & m8) ^ rk[58];
  1261. s3 = (Te2_r(t3 >> 24U) & m8_24) ^ (Te3_r((t0 >> 16U) & m8) & m8_16) ^ (Te0[(t1 >> 8U) & m8] & m8_8) ^ (Te1_r(t2 & m8) & m8) ^ rk[59];
  1262. Utils::storeBigEndian< uint32_t >(out, s0);
  1263. Utils::storeBigEndian< uint32_t >(out + 4, s1);
  1264. Utils::storeBigEndian< uint32_t >(out + 8, s2);
  1265. Utils::storeBigEndian< uint32_t >(out + 12, s3);
  1266. }
  1267. void AES::_decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
  1268. {
  1269. const uint32_t *restrict rk = _k.sw.dk;
  1270. const uint32_t m8 = 0x000000ff;
  1271. uint32_t s0 = Utils::loadBigEndian< uint32_t >(in) ^rk[0];
  1272. uint32_t s1 = Utils::loadBigEndian< uint32_t >(in + 4) ^rk[1];
  1273. uint32_t s2 = Utils::loadBigEndian< uint32_t >(in + 8) ^rk[2];
  1274. uint32_t s3 = Utils::loadBigEndian< uint32_t >(in + 12) ^rk[3];
  1275. uint32_t t0, t1, t2, t3;
  1276. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[4];
  1277. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[5];
  1278. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[6];
  1279. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[7];
  1280. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[8];
  1281. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[9];
  1282. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[10];
  1283. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[11];
  1284. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[12];
  1285. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[13];
  1286. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[14];
  1287. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[15];
  1288. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[16];
  1289. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[17];
  1290. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[18];
  1291. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[19];
  1292. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[20];
  1293. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[21];
  1294. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[22];
  1295. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[23];
  1296. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[24];
  1297. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[25];
  1298. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[26];
  1299. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[27];
  1300. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[28];
  1301. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[29];
  1302. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[30];
  1303. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[31];
  1304. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[32];
  1305. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[33];
  1306. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[34];
  1307. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[35];
  1308. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[36];
  1309. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[37];
  1310. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[38];
  1311. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[39];
  1312. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[40];
  1313. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[41];
  1314. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[42];
  1315. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[43];
  1316. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[44];
  1317. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[45];
  1318. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[46];
  1319. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[47];
  1320. s0 = Td0[t0 >> 24U] ^ Td1_r((t3 >> 16U) & m8) ^ Td2_r((t2 >> 8U) & m8) ^ Td3_r(t1 & m8) ^ rk[48];
  1321. s1 = Td0[t1 >> 24U] ^ Td1_r((t0 >> 16U) & m8) ^ Td2_r((t3 >> 8U) & m8) ^ Td3_r(t2 & m8) ^ rk[49];
  1322. s2 = Td0[t2 >> 24U] ^ Td1_r((t1 >> 16U) & m8) ^ Td2_r((t0 >> 8U) & m8) ^ Td3_r(t3 & m8) ^ rk[50];
  1323. s3 = Td0[t3 >> 24U] ^ Td1_r((t2 >> 16U) & m8) ^ Td2_r((t1 >> 8U) & m8) ^ Td3_r(t0 & m8) ^ rk[51];
  1324. t0 = Td0[s0 >> 24U] ^ Td1_r((s3 >> 16U) & m8) ^ Td2_r((s2 >> 8U) & m8) ^ Td3_r(s1 & m8) ^ rk[52];
  1325. t1 = Td0[s1 >> 24U] ^ Td1_r((s0 >> 16U) & m8) ^ Td2_r((s3 >> 8U) & m8) ^ Td3_r(s2 & m8) ^ rk[53];
  1326. t2 = Td0[s2 >> 24U] ^ Td1_r((s1 >> 16U) & m8) ^ Td2_r((s0 >> 8U) & m8) ^ Td3_r(s3 & m8) ^ rk[54];
  1327. t3 = Td0[s3 >> 24U] ^ Td1_r((s2 >> 16U) & m8) ^ Td2_r((s1 >> 8U) & m8) ^ Td3_r(s0 & m8) ^ rk[55];
  1328. s0 = (Td4[t0 >> 24U] << 24U) ^ (Td4[(t3 >> 16U) & m8] << 16U) ^ (Td4[(t2 >> 8U) & m8] << 8U) ^ (Td4[(t1) & m8]) ^ rk[56];
  1329. s1 = (Td4[t1 >> 24U] << 24U) ^ (Td4[(t0 >> 16U) & m8] << 16U) ^ (Td4[(t3 >> 8U) & m8] << 8U) ^ (Td4[(t2) & m8]) ^ rk[57];
  1330. s2 = (Td4[t2 >> 24U] << 24U) ^ (Td4[(t1 >> 16U) & m8] << 16U) ^ (Td4[(t0 >> 8U) & m8] << 8U) ^ (Td4[(t3) & m8]) ^ rk[58];
  1331. s3 = (Td4[t3 >> 24U] << 24U) ^ (Td4[(t2 >> 16U) & m8] << 16U) ^ (Td4[(t1 >> 8U) & m8] << 8U) ^ (Td4[(t0) & m8]) ^ rk[59];
  1332. Utils::storeBigEndian< uint32_t >(out, s0);
  1333. Utils::storeBigEndian< uint32_t >(out + 4, s1);
  1334. Utils::storeBigEndian< uint32_t >(out + 8, s2);
  1335. Utils::storeBigEndian< uint32_t >(out + 12, s3);
  1336. }
  1337. #ifdef ZT_AES_AESNI
  1338. static __m128i _init256_1_aesni(__m128i a, __m128i b) noexcept
  1339. {
  1340. __m128i x, y;
  1341. b = _mm_shuffle_epi32(b, 0xff);
  1342. y = _mm_slli_si128(a, 0x04);
  1343. x = _mm_xor_si128(a, y);
  1344. y = _mm_slli_si128(y, 0x04);
  1345. x = _mm_xor_si128(x, y);
  1346. y = _mm_slli_si128(y, 0x04);
  1347. x = _mm_xor_si128(x, y);
  1348. x = _mm_xor_si128(x, b);
  1349. return x;
  1350. }
  1351. static __m128i _init256_2_aesni(__m128i a, __m128i b) noexcept
  1352. {
  1353. __m128i x, y, z;
  1354. y = _mm_aeskeygenassist_si128(a, 0x00);
  1355. z = _mm_shuffle_epi32(y, 0xaa);
  1356. y = _mm_slli_si128(b, 0x04);
  1357. x = _mm_xor_si128(b, y);
  1358. y = _mm_slli_si128(y, 0x04);
  1359. x = _mm_xor_si128(x, y);
  1360. y = _mm_slli_si128(y, 0x04);
  1361. x = _mm_xor_si128(x, y);
  1362. x = _mm_xor_si128(x, z);
  1363. return x;
  1364. }
  1365. void AES::_init_aesni(const uint8_t key[32]) noexcept
  1366. {
  1367. __m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
  1368. _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
  1369. _k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
  1370. _k.ni.k[2] = k2 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
  1371. _k.ni.k[3] = k3 = t2 = _init256_2_aesni(t1, t2);
  1372. _k.ni.k[4] = k4 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
  1373. _k.ni.k[5] = k5 = t2 = _init256_2_aesni(t1, t2);
  1374. _k.ni.k[6] = k6 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
  1375. _k.ni.k[7] = k7 = t2 = _init256_2_aesni(t1, t2);
  1376. _k.ni.k[8] = k8 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
  1377. _k.ni.k[9] = k9 = t2 = _init256_2_aesni(t1, t2);
  1378. _k.ni.k[10] = k10 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
  1379. _k.ni.k[11] = k11 = t2 = _init256_2_aesni(t1, t2);
  1380. _k.ni.k[12] = k12 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
  1381. _k.ni.k[13] = k13 = t2 = _init256_2_aesni(t1, t2);
  1382. _k.ni.k[14] = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
  1383. _k.ni.k[15] = _mm_aesimc_si128(k13);
  1384. _k.ni.k[16] = _mm_aesimc_si128(k12);
  1385. _k.ni.k[17] = _mm_aesimc_si128(k11);
  1386. _k.ni.k[18] = _mm_aesimc_si128(k10);
  1387. _k.ni.k[19] = _mm_aesimc_si128(k9);
  1388. _k.ni.k[20] = _mm_aesimc_si128(k8);
  1389. _k.ni.k[21] = _mm_aesimc_si128(k7);
  1390. _k.ni.k[22] = _mm_aesimc_si128(k6);
  1391. _k.ni.k[23] = _mm_aesimc_si128(k5);
  1392. _k.ni.k[24] = _mm_aesimc_si128(k4);
  1393. _k.ni.k[25] = _mm_aesimc_si128(k3);
  1394. _k.ni.k[26] = _mm_aesimc_si128(k2);
  1395. _k.ni.k[27] = _mm_aesimc_si128(k1);
  1396. __m128i h = _k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
  1397. h = _mm_aesenc_si128(h, k1);
  1398. h = _mm_aesenc_si128(h, k2);
  1399. h = _mm_aesenc_si128(h, k3);
  1400. h = _mm_aesenc_si128(h, k4);
  1401. h = _mm_aesenc_si128(h, k5);
  1402. h = _mm_aesenc_si128(h, k6);
  1403. h = _mm_aesenc_si128(h, k7);
  1404. h = _mm_aesenc_si128(h, k8);
  1405. h = _mm_aesenc_si128(h, k9);
  1406. h = _mm_aesenc_si128(h, k10);
  1407. h = _mm_aesenc_si128(h, k11);
  1408. h = _mm_aesenc_si128(h, k12);
  1409. h = _mm_aesenc_si128(h, k13);
  1410. h = _mm_aesenclast_si128(h, _k.ni.k[14]);
  1411. __m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
  1412. __m128i hh = p_gmacPCLMUL128(hswap, h);
  1413. __m128i hhh = p_gmacPCLMUL128(hswap, hh);
  1414. __m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
  1415. _k.ni.h[0] = hswap;
  1416. _k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
  1417. _k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
  1418. _k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
  1419. _k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
  1420. _k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
  1421. _k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
  1422. _k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
  1423. }
  1424. void AES::_encrypt_aesni(const void *const in, void *const out) const noexcept
  1425. {
  1426. __m128i tmp = _mm_loadu_si128((const __m128i *)in);
  1427. tmp = _mm_xor_si128(tmp, _k.ni.k[0]);
  1428. tmp = _mm_aesenc_si128(tmp, _k.ni.k[1]);
  1429. tmp = _mm_aesenc_si128(tmp, _k.ni.k[2]);
  1430. tmp = _mm_aesenc_si128(tmp, _k.ni.k[3]);
  1431. tmp = _mm_aesenc_si128(tmp, _k.ni.k[4]);
  1432. tmp = _mm_aesenc_si128(tmp, _k.ni.k[5]);
  1433. tmp = _mm_aesenc_si128(tmp, _k.ni.k[6]);
  1434. tmp = _mm_aesenc_si128(tmp, _k.ni.k[7]);
  1435. tmp = _mm_aesenc_si128(tmp, _k.ni.k[8]);
  1436. tmp = _mm_aesenc_si128(tmp, _k.ni.k[9]);
  1437. tmp = _mm_aesenc_si128(tmp, _k.ni.k[10]);
  1438. tmp = _mm_aesenc_si128(tmp, _k.ni.k[11]);
  1439. tmp = _mm_aesenc_si128(tmp, _k.ni.k[12]);
  1440. tmp = _mm_aesenc_si128(tmp, _k.ni.k[13]);
  1441. _mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, _k.ni.k[14]));
  1442. }
  1443. void AES::_decrypt_aesni(const void *in, void *out) const noexcept
  1444. {
  1445. __m128i tmp = _mm_loadu_si128((const __m128i *)in);
  1446. tmp = _mm_xor_si128(tmp, _k.ni.k[14]);
  1447. tmp = _mm_aesdec_si128(tmp, _k.ni.k[15]);
  1448. tmp = _mm_aesdec_si128(tmp, _k.ni.k[16]);
  1449. tmp = _mm_aesdec_si128(tmp, _k.ni.k[17]);
  1450. tmp = _mm_aesdec_si128(tmp, _k.ni.k[18]);
  1451. tmp = _mm_aesdec_si128(tmp, _k.ni.k[19]);
  1452. tmp = _mm_aesdec_si128(tmp, _k.ni.k[20]);
  1453. tmp = _mm_aesdec_si128(tmp, _k.ni.k[21]);
  1454. tmp = _mm_aesdec_si128(tmp, _k.ni.k[22]);
  1455. tmp = _mm_aesdec_si128(tmp, _k.ni.k[23]);
  1456. tmp = _mm_aesdec_si128(tmp, _k.ni.k[24]);
  1457. tmp = _mm_aesdec_si128(tmp, _k.ni.k[25]);
  1458. tmp = _mm_aesdec_si128(tmp, _k.ni.k[26]);
  1459. tmp = _mm_aesdec_si128(tmp, _k.ni.k[27]);
  1460. _mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, _k.ni.k[0]));
  1461. }
  1462. #endif // ZT_AES_AESNI
  1463. #ifdef ZT_AES_NEON
  1464. #define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
  1465. #define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
  1466. #define ZT_INIT_ARMNEON_CRYPTO_NK 8
  1467. #define ZT_INIT_ARMNEON_CRYPTO_NB 4
  1468. #define ZT_INIT_ARMNEON_CRYPTO_NR 14
  1469. void AES::_init_armneon_crypto(const uint8_t key[32]) noexcept
  1470. {
  1471. static const uint8_t s_sbox[256] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,
  1472. 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea,
  1473. 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
  1474. uint64_t h[2];
  1475. uint32_t *const w = reinterpret_cast<uint32_t *>(_k.neon.ek);
  1476. for (unsigned int i=0;i<ZT_INIT_ARMNEON_CRYPTO_NK;++i) {
  1477. const unsigned int j = i * 4;
  1478. w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
  1479. }
  1480. for (unsigned int i=ZT_INIT_ARMNEON_CRYPTO_NK;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
  1481. uint32_t t = w[i - 1];
  1482. const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
  1483. if (imod == 0) {
  1484. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
  1485. } else if (imod == 4) {
  1486. t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
  1487. }
  1488. w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
  1489. }
  1490. for (unsigned int i=0;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i)
  1491. w[i] = Utils::hton(w[i]);
  1492. _k.neon.dk[0] = _k.neon.ek[14];
  1493. for (int i=1;i<14;++i)
  1494. _k.neon.dk[i] = vaesimcq_u8(_k.neon.ek[14 - i]);
  1495. _k.neon.dk[14] = _k.neon.ek[0];
  1496. _encrypt_armneon_crypto(Utils::ZERO256, h);
  1497. Utils::copy<16>(&(_k.neon.h), h);
  1498. _k.neon.h = vrbitq_u8(_k.neon.h);
  1499. _k.sw.h[0] = Utils::ntoh(h[0]);
  1500. _k.sw.h[1] = Utils::ntoh(h[1]);
  1501. }
  1502. void AES::_encrypt_armneon_crypto(const void *const in, void *const out) const noexcept
  1503. {
  1504. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
  1505. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[0]));
  1506. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[1]));
  1507. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[2]));
  1508. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[3]));
  1509. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[4]));
  1510. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[5]));
  1511. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[6]));
  1512. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[7]));
  1513. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[8]));
  1514. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[9]));
  1515. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[10]));
  1516. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[11]));
  1517. tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[12]));
  1518. tmp = veorq_u8(vaeseq_u8(tmp, _k.neon.ek[13]), _k.neon.ek[14]);
  1519. vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
  1520. }
  1521. void AES::_decrypt_armneon_crypto(const void *const in, void *const out) const noexcept
  1522. {
  1523. uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
  1524. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[0]));
  1525. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[1]));
  1526. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[2]));
  1527. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[3]));
  1528. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[4]));
  1529. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[5]));
  1530. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[6]));
  1531. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[7]));
  1532. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[8]));
  1533. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[9]));
  1534. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[10]));
  1535. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[11]));
  1536. tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[12]));
  1537. tmp = veorq_u8(vaesdq_u8(tmp, _k.neon.dk[13]), _k.neon.dk[14]);
  1538. vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
  1539. }
  1540. #endif // ZT_AES_NEON
  1541. } // namespace ZeroTier