Node.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2018 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #include <stdio.h>
  27. #include <stdlib.h>
  28. #include <stdarg.h>
  29. #include <string.h>
  30. #include <stdint.h>
  31. #include "../version.h"
  32. #include "Constants.hpp"
  33. #include "SharedPtr.hpp"
  34. #include "Node.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "NetworkController.hpp"
  37. #include "Switch.hpp"
  38. #include "Multicaster.hpp"
  39. #include "Topology.hpp"
  40. #include "Buffer.hpp"
  41. #include "Packet.hpp"
  42. #include "Address.hpp"
  43. #include "Identity.hpp"
  44. #include "SelfAwareness.hpp"
  45. #include "Network.hpp"
  46. #include "Trace.hpp"
  47. namespace ZeroTier {
  48. /****************************************************************************/
  49. /* Public Node interface (C++, exposed via CAPI bindings) */
  50. /****************************************************************************/
  51. Node::Node(void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now) :
  52. _RR(this),
  53. RR(&_RR),
  54. _uPtr(uptr),
  55. _networks(8),
  56. _now(now),
  57. _lastPingCheck(0),
  58. _lastHousekeepingRun(0),
  59. _lastMemoizedTraceSettings(0)
  60. {
  61. if (callbacks->version != 0)
  62. throw ZT_EXCEPTION_INVALID_ARGUMENT;
  63. ZT_FAST_MEMCPY(&_cb,callbacks,sizeof(ZT_Node_Callbacks));
  64. // Initialize non-cryptographic PRNG from a good random source
  65. Utils::getSecureRandom((void *)_prngState,sizeof(_prngState));
  66. _online = false;
  67. memset(_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr));
  68. memset(_expectingRepliesTo,0,sizeof(_expectingRepliesTo));
  69. memset(_lastIdentityVerification,0,sizeof(_lastIdentityVerification));
  70. uint64_t idtmp[2];
  71. idtmp[0] = 0; idtmp[1] = 0;
  72. char tmp[2048];
  73. int n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,tmp,sizeof(tmp) - 1);
  74. if (n > 0) {
  75. tmp[n] = (char)0;
  76. if (RR->identity.fromString(tmp)) {
  77. RR->identity.toString(false,RR->publicIdentityStr);
  78. RR->identity.toString(true,RR->secretIdentityStr);
  79. } else {
  80. n = -1;
  81. }
  82. }
  83. if (n <= 0) {
  84. RR->identity.generate();
  85. RR->identity.toString(false,RR->publicIdentityStr);
  86. RR->identity.toString(true,RR->secretIdentityStr);
  87. idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
  88. stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,RR->secretIdentityStr,(unsigned int)strlen(RR->secretIdentityStr));
  89. stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
  90. } else {
  91. idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
  92. n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,tmp,sizeof(tmp) - 1);
  93. if ((n > 0)&&(n < (int)sizeof(RR->publicIdentityStr))&&(n < (int)sizeof(tmp))) {
  94. if (memcmp(tmp,RR->publicIdentityStr,n))
  95. stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
  96. }
  97. }
  98. char *m = (char *)0;
  99. try {
  100. const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0);
  101. const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0);
  102. const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0);
  103. const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0);
  104. const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0);
  105. m = reinterpret_cast<char *>(::malloc(16 + ts + sws + mcs + topologys + sas));
  106. if (!m)
  107. throw std::bad_alloc();
  108. RR->rtmem = m;
  109. while (((uintptr_t)m & 0xf) != 0) ++m;
  110. RR->t = new (m) Trace(RR);
  111. m += ts;
  112. RR->sw = new (m) Switch(RR);
  113. m += sws;
  114. RR->mc = new (m) Multicaster(RR);
  115. m += mcs;
  116. RR->topology = new (m) Topology(RR,tptr);
  117. m += topologys;
  118. RR->sa = new (m) SelfAwareness(RR);
  119. } catch ( ... ) {
  120. if (RR->sa) RR->sa->~SelfAwareness();
  121. if (RR->topology) RR->topology->~Topology();
  122. if (RR->mc) RR->mc->~Multicaster();
  123. if (RR->sw) RR->sw->~Switch();
  124. if (RR->t) RR->t->~Trace();
  125. ::free(m);
  126. throw;
  127. }
  128. postEvent(tptr,ZT_EVENT_UP);
  129. }
  130. Node::~Node()
  131. {
  132. {
  133. Mutex::Lock _l(_networks_m);
  134. _networks.clear(); // destroy all networks before shutdown
  135. }
  136. if (RR->sa) RR->sa->~SelfAwareness();
  137. if (RR->topology) RR->topology->~Topology();
  138. if (RR->mc) RR->mc->~Multicaster();
  139. if (RR->sw) RR->sw->~Switch();
  140. if (RR->t) RR->t->~Trace();
  141. ::free(RR->rtmem);
  142. }
  143. ZT_ResultCode Node::processWirePacket(
  144. void *tptr,
  145. int64_t now,
  146. int64_t localSocket,
  147. const struct sockaddr_storage *remoteAddress,
  148. const void *packetData,
  149. unsigned int packetLength,
  150. volatile int64_t *nextBackgroundTaskDeadline)
  151. {
  152. _now = now;
  153. RR->sw->onRemotePacket(tptr,localSocket,*(reinterpret_cast<const InetAddress *>(remoteAddress)),packetData,packetLength);
  154. return ZT_RESULT_OK;
  155. }
  156. ZT_ResultCode Node::processVirtualNetworkFrame(
  157. void *tptr,
  158. int64_t now,
  159. uint64_t nwid,
  160. uint64_t sourceMac,
  161. uint64_t destMac,
  162. unsigned int etherType,
  163. unsigned int vlanId,
  164. const void *frameData,
  165. unsigned int frameLength,
  166. volatile int64_t *nextBackgroundTaskDeadline)
  167. {
  168. _now = now;
  169. SharedPtr<Network> nw(this->network(nwid));
  170. if (nw) {
  171. RR->sw->onLocalEthernet(tptr,nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength);
  172. return ZT_RESULT_OK;
  173. } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
  174. }
  175. // Closure used to ping upstream and active/online peers
  176. class _PingPeersThatNeedPing
  177. {
  178. public:
  179. _PingPeersThatNeedPing(const RuntimeEnvironment *renv,void *tPtr,Hashtable< Address,std::vector<InetAddress> > &alwaysContact,int64_t now) :
  180. RR(renv),
  181. _tPtr(tPtr),
  182. _alwaysContact(alwaysContact),
  183. _now(now),
  184. _bestCurrentUpstream(RR->topology->getUpstreamPeer())
  185. {
  186. }
  187. inline void operator()(Topology &t,const SharedPtr<Peer> &p)
  188. {
  189. const std::vector<InetAddress> *const alwaysContactEndpoints = _alwaysContact.get(p->address());
  190. if (alwaysContactEndpoints) {
  191. const unsigned int sent = p->doPingAndKeepalive(_tPtr,_now);
  192. bool contacted = (sent != 0);
  193. if ((sent & 0x1) == 0) { // bit 0x1 == IPv4 sent
  194. for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) {
  195. const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
  196. if (addr.ss_family == AF_INET) {
  197. p->sendHELLO(_tPtr,-1,addr,_now);
  198. contacted = true;
  199. break;
  200. }
  201. }
  202. }
  203. if ((sent & 0x2) == 0) { // bit 0x2 == IPv6 sent
  204. for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) {
  205. const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
  206. if (addr.ss_family == AF_INET6) {
  207. p->sendHELLO(_tPtr,-1,addr,_now);
  208. contacted = true;
  209. break;
  210. }
  211. }
  212. }
  213. if ((!contacted)&&(_bestCurrentUpstream)) {
  214. const SharedPtr<Path> up(_bestCurrentUpstream->getBestPath(_now,true));
  215. if (up)
  216. p->sendHELLO(_tPtr,up->localSocket(),up->address(),_now);
  217. }
  218. _alwaysContact.erase(p->address()); // after this we'll WHOIS all upstreams that remain
  219. } else if (p->isActive(_now)) {
  220. p->doPingAndKeepalive(_tPtr,_now);
  221. }
  222. }
  223. private:
  224. const RuntimeEnvironment *RR;
  225. void *_tPtr;
  226. Hashtable< Address,std::vector<InetAddress> > &_alwaysContact;
  227. const int64_t _now;
  228. const SharedPtr<Peer> _bestCurrentUpstream;
  229. };
  230. ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
  231. {
  232. _now = now;
  233. Mutex::Lock bl(_backgroundTasksLock);
  234. unsigned long timeUntilNextPingCheck = ZT_PING_CHECK_INVERVAL;
  235. const int64_t timeSinceLastPingCheck = now - _lastPingCheck;
  236. if (timeSinceLastPingCheck >= ZT_PING_CHECK_INVERVAL) {
  237. try {
  238. _lastPingCheck = now;
  239. // Get designated VL1 upstreams
  240. Hashtable< Address,std::vector<InetAddress> > alwaysContact;
  241. RR->topology->getUpstreamsToContact(alwaysContact);
  242. // Check last receive time on designated upstreams to see if we seem to be online
  243. int64_t lastReceivedFromUpstream = 0;
  244. {
  245. Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
  246. Address *upstreamAddress = (Address *)0;
  247. std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
  248. while (i.next(upstreamAddress,upstreamStableEndpoints)) {
  249. SharedPtr<Peer> p(RR->topology->getPeerNoCache(*upstreamAddress));
  250. if (p)
  251. lastReceivedFromUpstream = std::max(p->lastReceive(),lastReceivedFromUpstream);
  252. }
  253. }
  254. // Get peers we should stay connected to according to network configs
  255. // Also get networks and whether they need config so we only have to do one pass over networks
  256. std::vector< std::pair< SharedPtr<Network>,bool > > networkConfigNeeded;
  257. {
  258. Mutex::Lock l(_networks_m);
  259. Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(_networks);
  260. uint64_t *nwid = (uint64_t *)0;
  261. SharedPtr<Network> *network = (SharedPtr<Network> *)0;
  262. while (i.next(nwid,network)) {
  263. (*network)->config().getAlwaysContactAddresses(alwaysContact);
  264. networkConfigNeeded.push_back( std::pair< SharedPtr<Network>,bool >(*network,(((now - (*network)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!(*network)->hasConfig()))) );
  265. }
  266. }
  267. // Ping active peers, upstreams, and others that we should always contact
  268. _PingPeersThatNeedPing pfunc(RR,tptr,alwaysContact,now);
  269. RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc);
  270. // Run WHOIS to create Peer for alwaysContact addresses that could not be contacted
  271. {
  272. Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
  273. Address *upstreamAddress = (Address *)0;
  274. std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
  275. while (i.next(upstreamAddress,upstreamStableEndpoints))
  276. RR->sw->requestWhois(tptr,now,*upstreamAddress);
  277. }
  278. // Refresh network config or broadcast network updates to members as needed
  279. for(std::vector< std::pair< SharedPtr<Network>,bool > >::const_iterator n(networkConfigNeeded.begin());n!=networkConfigNeeded.end();++n) {
  280. if (n->second)
  281. n->first->requestConfiguration(tptr);
  282. n->first->sendUpdatesToMembers(tptr);
  283. }
  284. // Update online status, post status change as event
  285. const bool oldOnline = _online;
  286. _online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amUpstream()));
  287. if (oldOnline != _online)
  288. postEvent(tptr,_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
  289. } catch ( ... ) {
  290. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  291. }
  292. } else {
  293. timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck;
  294. }
  295. if ((now - _lastMemoizedTraceSettings) >= (ZT_HOUSEKEEPING_PERIOD / 4)) {
  296. _lastMemoizedTraceSettings = now;
  297. RR->t->updateMemoizedSettings();
  298. }
  299. if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
  300. _lastHousekeepingRun = now;
  301. try {
  302. RR->topology->doPeriodicTasks(tptr,now);
  303. RR->sa->clean(now);
  304. RR->mc->clean(now);
  305. } catch ( ... ) {
  306. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  307. }
  308. }
  309. try {
  310. *nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min(timeUntilNextPingCheck,RR->sw->doTimerTasks(tptr,now)),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY);
  311. } catch ( ... ) {
  312. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  313. }
  314. return ZT_RESULT_OK;
  315. }
  316. ZT_ResultCode Node::join(uint64_t nwid,void *uptr,void *tptr)
  317. {
  318. Mutex::Lock _l(_networks_m);
  319. SharedPtr<Network> &nw = _networks[nwid];
  320. if (!nw)
  321. nw = SharedPtr<Network>(new Network(RR,tptr,nwid,uptr,(const NetworkConfig *)0));
  322. return ZT_RESULT_OK;
  323. }
  324. ZT_ResultCode Node::leave(uint64_t nwid,void **uptr,void *tptr)
  325. {
  326. ZT_VirtualNetworkConfig ctmp;
  327. void **nUserPtr = (void **)0;
  328. {
  329. Mutex::Lock _l(_networks_m);
  330. SharedPtr<Network> *nw = _networks.get(nwid);
  331. if (!nw)
  332. return ZT_RESULT_OK;
  333. if (uptr)
  334. *uptr = (*nw)->userPtr();
  335. (*nw)->externalConfig(&ctmp);
  336. (*nw)->destroy();
  337. nUserPtr = (*nw)->userPtr();
  338. }
  339. if (nUserPtr)
  340. RR->node->configureVirtualNetworkPort(tptr,nwid,nUserPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
  341. {
  342. Mutex::Lock _l(_networks_m);
  343. _networks.erase(nwid);
  344. }
  345. uint64_t tmp[2];
  346. tmp[0] = nwid; tmp[1] = 0;
  347. RR->node->stateObjectDelete(tptr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp);
  348. return ZT_RESULT_OK;
  349. }
  350. ZT_ResultCode Node::multicastSubscribe(void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
  351. {
  352. SharedPtr<Network> nw(this->network(nwid));
  353. if (nw) {
  354. nw->multicastSubscribe(tptr,MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
  355. return ZT_RESULT_OK;
  356. } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
  357. }
  358. ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
  359. {
  360. SharedPtr<Network> nw(this->network(nwid));
  361. if (nw) {
  362. nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
  363. return ZT_RESULT_OK;
  364. } else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
  365. }
  366. ZT_ResultCode Node::orbit(void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
  367. {
  368. RR->topology->addMoon(tptr,moonWorldId,Address(moonSeed));
  369. return ZT_RESULT_OK;
  370. }
  371. ZT_ResultCode Node::deorbit(void *tptr,uint64_t moonWorldId)
  372. {
  373. RR->topology->removeMoon(tptr,moonWorldId);
  374. return ZT_RESULT_OK;
  375. }
  376. uint64_t Node::address() const
  377. {
  378. return RR->identity.address().toInt();
  379. }
  380. void Node::status(ZT_NodeStatus *status) const
  381. {
  382. status->address = RR->identity.address().toInt();
  383. status->publicIdentity = RR->publicIdentityStr;
  384. status->secretIdentity = RR->secretIdentityStr;
  385. status->online = _online ? 1 : 0;
  386. }
  387. ZT_PeerList *Node::peers() const
  388. {
  389. std::vector< std::pair< Address,SharedPtr<Peer> > > peers(RR->topology->allPeers());
  390. std::sort(peers.begin(),peers.end());
  391. char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));
  392. if (!buf)
  393. return (ZT_PeerList *)0;
  394. ZT_PeerList *pl = (ZT_PeerList *)buf;
  395. pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList));
  396. pl->peerCount = 0;
  397. for(std::vector< std::pair< Address,SharedPtr<Peer> > >::iterator pi(peers.begin());pi!=peers.end();++pi) {
  398. ZT_Peer *p = &(pl->peers[pl->peerCount++]);
  399. p->address = pi->second->address().toInt();
  400. if (pi->second->remoteVersionKnown()) {
  401. p->versionMajor = pi->second->remoteVersionMajor();
  402. p->versionMinor = pi->second->remoteVersionMinor();
  403. p->versionRev = pi->second->remoteVersionRevision();
  404. } else {
  405. p->versionMajor = -1;
  406. p->versionMinor = -1;
  407. p->versionRev = -1;
  408. }
  409. p->latency = pi->second->latency(_now);
  410. if (p->latency >= 0xffff)
  411. p->latency = -1;
  412. p->role = RR->topology->role(pi->second->identity().address());
  413. std::vector< SharedPtr<Path> > paths(pi->second->paths(_now));
  414. SharedPtr<Path> bestp(pi->second->getBestPath(_now,false));
  415. p->pathCount = 0;
  416. for(std::vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) {
  417. ZT_FAST_MEMCPY(&(p->paths[p->pathCount].address),&((*path)->address()),sizeof(struct sockaddr_storage));
  418. p->paths[p->pathCount].lastSend = (*path)->lastOut();
  419. p->paths[p->pathCount].lastReceive = (*path)->lastIn();
  420. p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
  421. p->paths[p->pathCount].expired = 0;
  422. p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0;
  423. ++p->pathCount;
  424. }
  425. }
  426. return pl;
  427. }
  428. ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
  429. {
  430. Mutex::Lock _l(_networks_m);
  431. const SharedPtr<Network> *nw = _networks.get(nwid);
  432. if (nw) {
  433. ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
  434. (*nw)->externalConfig(nc);
  435. return nc;
  436. }
  437. return (ZT_VirtualNetworkConfig *)0;
  438. }
  439. ZT_VirtualNetworkList *Node::networks() const
  440. {
  441. Mutex::Lock _l(_networks_m);
  442. char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size()));
  443. if (!buf)
  444. return (ZT_VirtualNetworkList *)0;
  445. ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf;
  446. nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
  447. nl->networkCount = 0;
  448. Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(*const_cast< Hashtable< uint64_t,SharedPtr<Network> > *>(&_networks));
  449. uint64_t *k = (uint64_t *)0;
  450. SharedPtr<Network> *v = (SharedPtr<Network> *)0;
  451. while (i.next(k,v))
  452. (*v)->externalConfig(&(nl->networks[nl->networkCount++]));
  453. return nl;
  454. }
  455. void Node::freeQueryResult(void *qr)
  456. {
  457. if (qr)
  458. ::free(qr);
  459. }
  460. int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr)
  461. {
  462. if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress *>(addr)))) {
  463. Mutex::Lock _l(_directPaths_m);
  464. if (std::find(_directPaths.begin(),_directPaths.end(),*(reinterpret_cast<const InetAddress *>(addr))) == _directPaths.end()) {
  465. _directPaths.push_back(*(reinterpret_cast<const InetAddress *>(addr)));
  466. return 1;
  467. }
  468. }
  469. return 0;
  470. }
  471. void Node::clearLocalInterfaceAddresses()
  472. {
  473. Mutex::Lock _l(_directPaths_m);
  474. _directPaths.clear();
  475. }
  476. int Node::sendUserMessage(void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
  477. {
  478. try {
  479. if (RR->identity.address().toInt() != dest) {
  480. Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE);
  481. outp.append(typeId);
  482. outp.append(data,len);
  483. outp.compress();
  484. RR->sw->send(tptr,outp,true);
  485. return 1;
  486. }
  487. } catch ( ... ) {}
  488. return 0;
  489. }
  490. void Node::setNetconfMaster(void *networkControllerInstance)
  491. {
  492. RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
  493. if (networkControllerInstance)
  494. RR->localNetworkController->init(RR->identity,this);
  495. }
  496. /****************************************************************************/
  497. /* Node methods used only within node/ */
  498. /****************************************************************************/
  499. bool Node::shouldUsePathForZeroTierTraffic(void *tPtr,const Address &ztaddr,const int64_t localSocket,const InetAddress &remoteAddress)
  500. {
  501. if (!Path::isAddressValidForPath(remoteAddress))
  502. return false;
  503. if (RR->topology->isProhibitedEndpoint(ztaddr,remoteAddress))
  504. return false;
  505. {
  506. Mutex::Lock _l(_networks_m);
  507. Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(_networks);
  508. uint64_t *k = (uint64_t *)0;
  509. SharedPtr<Network> *v = (SharedPtr<Network> *)0;
  510. while (i.next(k,v)) {
  511. if ((*v)->hasConfig()) {
  512. for(unsigned int k=0;k<(*v)->config().staticIpCount;++k) {
  513. if ((*v)->config().staticIps[k].containsAddress(remoteAddress))
  514. return false;
  515. }
  516. }
  517. }
  518. }
  519. return ( (_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast<ZT_Node *>(this),_uPtr,tPtr,ztaddr.toInt(),localSocket,reinterpret_cast<const struct sockaddr_storage *>(&remoteAddress)) != 0) : true);
  520. }
  521. uint64_t Node::prng()
  522. {
  523. // https://en.wikipedia.org/wiki/Xorshift#xorshift.2B
  524. uint64_t x = _prngState[0];
  525. const uint64_t y = _prngState[1];
  526. _prngState[0] = y;
  527. x ^= x << 23;
  528. const uint64_t z = x ^ y ^ (x >> 17) ^ (y >> 26);
  529. _prngState[1] = z;
  530. return z + y;
  531. }
  532. ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork, const ZT_PhysicalPathConfiguration *pathConfig)
  533. {
  534. RR->topology->setPhysicalPathConfiguration(pathNetwork,pathConfig);
  535. return ZT_RESULT_OK;
  536. }
  537. World Node::planet() const
  538. {
  539. return RR->topology->planet();
  540. }
  541. std::vector<World> Node::moons() const
  542. {
  543. return RR->topology->moons();
  544. }
  545. void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig)
  546. {
  547. if (destination == RR->identity.address()) {
  548. SharedPtr<Network> n(network(nwid));
  549. if (!n) return;
  550. n->setConfiguration((void *)0,nc,true);
  551. } else {
  552. Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> *dconf = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
  553. try {
  554. if (nc.toDictionary(*dconf,sendLegacyFormatConfig)) {
  555. uint64_t configUpdateId = prng();
  556. if (!configUpdateId) ++configUpdateId;
  557. const unsigned int totalSize = dconf->sizeBytes();
  558. unsigned int chunkIndex = 0;
  559. while (chunkIndex < totalSize) {
  560. const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
  561. Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
  562. if (requestPacketId) {
  563. outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
  564. outp.append(requestPacketId);
  565. }
  566. const unsigned int sigStart = outp.size();
  567. outp.append(nwid);
  568. outp.append((uint16_t)chunkLen);
  569. outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
  570. outp.append((uint8_t)0); // no flags
  571. outp.append((uint64_t)configUpdateId);
  572. outp.append((uint32_t)totalSize);
  573. outp.append((uint32_t)chunkIndex);
  574. C25519::Signature sig(RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart));
  575. outp.append((uint8_t)1);
  576. outp.append((uint16_t)ZT_C25519_SIGNATURE_LEN);
  577. outp.append(sig.data,ZT_C25519_SIGNATURE_LEN);
  578. outp.compress();
  579. RR->sw->send((void *)0,outp,true);
  580. chunkIndex += chunkLen;
  581. }
  582. }
  583. delete dconf;
  584. } catch ( ... ) {
  585. delete dconf;
  586. throw;
  587. }
  588. }
  589. }
  590. void Node::ncSendRevocation(const Address &destination,const Revocation &rev)
  591. {
  592. if (destination == RR->identity.address()) {
  593. SharedPtr<Network> n(network(rev.networkId()));
  594. if (!n) return;
  595. n->addCredential((void *)0,RR->identity.address(),rev);
  596. } else {
  597. Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
  598. outp.append((uint8_t)0x00);
  599. outp.append((uint16_t)0);
  600. outp.append((uint16_t)0);
  601. outp.append((uint16_t)1);
  602. rev.serialize(outp);
  603. outp.append((uint16_t)0);
  604. RR->sw->send((void *)0,outp,true);
  605. }
  606. }
  607. void Node::ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode)
  608. {
  609. if (destination == RR->identity.address()) {
  610. SharedPtr<Network> n(network(nwid));
  611. if (!n) return;
  612. switch(errorCode) {
  613. case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
  614. case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
  615. n->setNotFound();
  616. break;
  617. case NetworkController::NC_ERROR_ACCESS_DENIED:
  618. n->setAccessDenied();
  619. break;
  620. default: break;
  621. }
  622. } else if (requestPacketId) {
  623. Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
  624. outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
  625. outp.append(requestPacketId);
  626. switch(errorCode) {
  627. //case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
  628. //case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
  629. default:
  630. outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
  631. break;
  632. case NetworkController::NC_ERROR_ACCESS_DENIED:
  633. outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
  634. break;
  635. }
  636. outp.append(nwid);
  637. RR->sw->send((void *)0,outp,true);
  638. } // else we can't send an ERROR() in response to nothing, so discard
  639. }
  640. } // namespace ZeroTier
  641. /****************************************************************************/
  642. /* CAPI bindings */
  643. /****************************************************************************/
  644. extern "C" {
  645. enum ZT_ResultCode ZT_Node_new(ZT_Node **node,void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now)
  646. {
  647. *node = (ZT_Node *)0;
  648. try {
  649. *node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr,tptr,callbacks,now));
  650. return ZT_RESULT_OK;
  651. } catch (std::bad_alloc &exc) {
  652. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  653. } catch (std::runtime_error &exc) {
  654. return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
  655. } catch ( ... ) {
  656. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  657. }
  658. }
  659. void ZT_Node_delete(ZT_Node *node)
  660. {
  661. try {
  662. delete (reinterpret_cast<ZeroTier::Node *>(node));
  663. } catch ( ... ) {}
  664. }
  665. enum ZT_ResultCode ZT_Node_processWirePacket(
  666. ZT_Node *node,
  667. void *tptr,
  668. int64_t now,
  669. int64_t localSocket,
  670. const struct sockaddr_storage *remoteAddress,
  671. const void *packetData,
  672. unsigned int packetLength,
  673. volatile int64_t *nextBackgroundTaskDeadline)
  674. {
  675. try {
  676. return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr,now,localSocket,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline);
  677. } catch (std::bad_alloc &exc) {
  678. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  679. } catch ( ... ) {
  680. return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up
  681. }
  682. }
  683. enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
  684. ZT_Node *node,
  685. void *tptr,
  686. int64_t now,
  687. uint64_t nwid,
  688. uint64_t sourceMac,
  689. uint64_t destMac,
  690. unsigned int etherType,
  691. unsigned int vlanId,
  692. const void *frameData,
  693. unsigned int frameLength,
  694. volatile int64_t *nextBackgroundTaskDeadline)
  695. {
  696. try {
  697. return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr,now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline);
  698. } catch (std::bad_alloc &exc) {
  699. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  700. } catch ( ... ) {
  701. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  702. }
  703. }
  704. enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
  705. {
  706. try {
  707. return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr,now,nextBackgroundTaskDeadline);
  708. } catch (std::bad_alloc &exc) {
  709. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  710. } catch ( ... ) {
  711. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  712. }
  713. }
  714. enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid,void *uptr,void *tptr)
  715. {
  716. try {
  717. return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid,uptr,tptr);
  718. } catch (std::bad_alloc &exc) {
  719. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  720. } catch ( ... ) {
  721. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  722. }
  723. }
  724. enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid,void **uptr,void *tptr)
  725. {
  726. try {
  727. return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid,uptr,tptr);
  728. } catch (std::bad_alloc &exc) {
  729. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  730. } catch ( ... ) {
  731. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  732. }
  733. }
  734. enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
  735. {
  736. try {
  737. return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr,nwid,multicastGroup,multicastAdi);
  738. } catch (std::bad_alloc &exc) {
  739. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  740. } catch ( ... ) {
  741. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  742. }
  743. }
  744. enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
  745. {
  746. try {
  747. return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi);
  748. } catch (std::bad_alloc &exc) {
  749. return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
  750. } catch ( ... ) {
  751. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  752. }
  753. }
  754. enum ZT_ResultCode ZT_Node_orbit(ZT_Node *node,void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
  755. {
  756. try {
  757. return reinterpret_cast<ZeroTier::Node *>(node)->orbit(tptr,moonWorldId,moonSeed);
  758. } catch ( ... ) {
  759. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  760. }
  761. }
  762. enum ZT_ResultCode ZT_Node_deorbit(ZT_Node *node,void *tptr,uint64_t moonWorldId)
  763. {
  764. try {
  765. return reinterpret_cast<ZeroTier::Node *>(node)->deorbit(tptr,moonWorldId);
  766. } catch ( ... ) {
  767. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  768. }
  769. }
  770. uint64_t ZT_Node_address(ZT_Node *node)
  771. {
  772. return reinterpret_cast<ZeroTier::Node *>(node)->address();
  773. }
  774. void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status)
  775. {
  776. try {
  777. reinterpret_cast<ZeroTier::Node *>(node)->status(status);
  778. } catch ( ... ) {}
  779. }
  780. ZT_PeerList *ZT_Node_peers(ZT_Node *node)
  781. {
  782. try {
  783. return reinterpret_cast<ZeroTier::Node *>(node)->peers();
  784. } catch ( ... ) {
  785. return (ZT_PeerList *)0;
  786. }
  787. }
  788. ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid)
  789. {
  790. try {
  791. return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
  792. } catch ( ... ) {
  793. return (ZT_VirtualNetworkConfig *)0;
  794. }
  795. }
  796. ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
  797. {
  798. try {
  799. return reinterpret_cast<ZeroTier::Node *>(node)->networks();
  800. } catch ( ... ) {
  801. return (ZT_VirtualNetworkList *)0;
  802. }
  803. }
  804. void ZT_Node_freeQueryResult(ZT_Node *node,void *qr)
  805. {
  806. try {
  807. reinterpret_cast<ZeroTier::Node *>(node)->freeQueryResult(qr);
  808. } catch ( ... ) {}
  809. }
  810. int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr)
  811. {
  812. try {
  813. return reinterpret_cast<ZeroTier::Node *>(node)->addLocalInterfaceAddress(addr);
  814. } catch ( ... ) {
  815. return 0;
  816. }
  817. }
  818. void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node)
  819. {
  820. try {
  821. reinterpret_cast<ZeroTier::Node *>(node)->clearLocalInterfaceAddresses();
  822. } catch ( ... ) {}
  823. }
  824. int ZT_Node_sendUserMessage(ZT_Node *node,void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
  825. {
  826. try {
  827. return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr,dest,typeId,data,len);
  828. } catch ( ... ) {
  829. return 0;
  830. }
  831. }
  832. void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance)
  833. {
  834. try {
  835. reinterpret_cast<ZeroTier::Node *>(node)->setNetconfMaster(networkControllerInstance);
  836. } catch ( ... ) {}
  837. }
  838. enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig)
  839. {
  840. try {
  841. return reinterpret_cast<ZeroTier::Node *>(node)->setPhysicalPathConfiguration(pathNetwork,pathConfig);
  842. } catch ( ... ) {
  843. return ZT_RESULT_FATAL_ERROR_INTERNAL;
  844. }
  845. }
  846. void ZT_version(int *major,int *minor,int *revision)
  847. {
  848. if (major) *major = ZEROTIER_ONE_VERSION_MAJOR;
  849. if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR;
  850. if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION;
  851. }
  852. } // extern "C"