Cluster.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #ifdef ZT_ENABLE_CLUSTER
  28. #include <stdint.h>
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include <math.h>
  33. #include <map>
  34. #include <algorithm>
  35. #include <set>
  36. #include <utility>
  37. #include <list>
  38. #include <stdexcept>
  39. #include "../version.h"
  40. #include "Cluster.hpp"
  41. #include "RuntimeEnvironment.hpp"
  42. #include "MulticastGroup.hpp"
  43. #include "CertificateOfMembership.hpp"
  44. #include "Salsa20.hpp"
  45. #include "Poly1305.hpp"
  46. #include "Identity.hpp"
  47. #include "Topology.hpp"
  48. #include "Packet.hpp"
  49. #include "Switch.hpp"
  50. #include "Node.hpp"
  51. #include "Array.hpp"
  52. namespace ZeroTier {
  53. static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
  54. throw()
  55. {
  56. double dx = ((double)x2 - (double)x1);
  57. double dy = ((double)y2 - (double)y1);
  58. double dz = ((double)z2 - (double)z1);
  59. return sqrt((dx * dx) + (dy * dy) + (dz * dz));
  60. }
  61. // An entry in _ClusterSendQueue
  62. struct _ClusterSendQueueEntry
  63. {
  64. uint64_t timestamp;
  65. Address fromPeerAddress;
  66. Address toPeerAddress;
  67. // if we ever support larger transport MTUs this must be increased
  68. unsigned char data[ZT_CLUSTER_SEND_QUEUE_DATA_MAX];
  69. unsigned int len;
  70. bool unite;
  71. };
  72. // A multi-index map with entry memory pooling -- this allows our queue to
  73. // be O(log(N)) and is complex enough that it makes the code a lot cleaner
  74. // to break it out from Cluster.
  75. class _ClusterSendQueue
  76. {
  77. public:
  78. _ClusterSendQueue() :
  79. _poolCount(0) {}
  80. ~_ClusterSendQueue() {} // memory is automatically freed when _chunks is destroyed
  81. inline void enqueue(uint64_t now,const Address &from,const Address &to,const void *data,unsigned int len,bool unite)
  82. {
  83. if (len > ZT_CLUSTER_SEND_QUEUE_DATA_MAX)
  84. return;
  85. Mutex::Lock _l(_lock);
  86. // Delete oldest queue entry for this sender if this enqueue() would take them over the per-sender limit
  87. {
  88. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(from,(_ClusterSendQueueEntry *)0)));
  89. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator oldest(qi);
  90. unsigned long countForSender = 0;
  91. while ((qi != _bySrc.end())&&(qi->first == from)) {
  92. if (qi->second->timestamp < oldest->second->timestamp)
  93. oldest = qi;
  94. ++countForSender;
  95. ++qi;
  96. }
  97. if (countForSender >= ZT_CLUSTER_MAX_QUEUE_PER_SENDER) {
  98. _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(oldest->second->toPeerAddress,oldest->second));
  99. _pool[_poolCount++] = oldest->second;
  100. _bySrc.erase(oldest);
  101. }
  102. }
  103. _ClusterSendQueueEntry *e;
  104. if (_poolCount > 0) {
  105. e = _pool[--_poolCount];
  106. } else {
  107. if (_chunks.size() >= ZT_CLUSTER_MAX_QUEUE_CHUNKS)
  108. return; // queue is totally full!
  109. _chunks.push_back(Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE>());
  110. e = &(_chunks.back().data[0]);
  111. for(unsigned int i=1;i<ZT_CLUSTER_QUEUE_CHUNK_SIZE;++i)
  112. _pool[_poolCount++] = &(_chunks.back().data[i]);
  113. }
  114. e->timestamp = now;
  115. e->fromPeerAddress = from;
  116. e->toPeerAddress = to;
  117. memcpy(e->data,data,len);
  118. e->len = len;
  119. e->unite = unite;
  120. _bySrc.insert(std::pair<Address,_ClusterSendQueueEntry *>(from,e));
  121. _byDest.insert(std::pair<Address,_ClusterSendQueueEntry *>(to,e));
  122. }
  123. inline void expire(uint64_t now)
  124. {
  125. Mutex::Lock _l(_lock);
  126. for(std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_bySrc.begin());qi!=_bySrc.end();) {
  127. if ((now - qi->second->timestamp) > ZT_CLUSTER_QUEUE_EXPIRATION) {
  128. _byDest.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->toPeerAddress,qi->second));
  129. _pool[_poolCount++] = qi->second;
  130. _bySrc.erase(qi++);
  131. } else ++qi;
  132. }
  133. }
  134. /**
  135. * Get and dequeue entries for a given destination address
  136. *
  137. * After use these entries must be returned with returnToPool()!
  138. *
  139. * @param dest Destination address
  140. * @param results Array to fill with results
  141. * @param maxResults Size of results[] in pointers
  142. * @return Number of actual results returned
  143. */
  144. inline unsigned int getByDest(const Address &dest,_ClusterSendQueueEntry **results,unsigned int maxResults)
  145. {
  146. unsigned int count = 0;
  147. Mutex::Lock _l(_lock);
  148. std::set< std::pair<Address,_ClusterSendQueueEntry *> >::iterator qi(_byDest.lower_bound(std::pair<Address,_ClusterSendQueueEntry *>(dest,(_ClusterSendQueueEntry *)0)));
  149. while ((qi != _byDest.end())&&(qi->first == dest)) {
  150. _bySrc.erase(std::pair<Address,_ClusterSendQueueEntry *>(qi->second->fromPeerAddress,qi->second));
  151. results[count++] = qi->second;
  152. if (count == maxResults)
  153. break;
  154. _byDest.erase(qi++);
  155. }
  156. return count;
  157. }
  158. /**
  159. * Return entries to pool after use
  160. *
  161. * @param entries Array of entries
  162. * @param count Number of entries
  163. */
  164. inline void returnToPool(_ClusterSendQueueEntry **entries,unsigned int count)
  165. {
  166. Mutex::Lock _l(_lock);
  167. for(unsigned int i=0;i<count;++i)
  168. _pool[_poolCount++] = entries[i];
  169. }
  170. private:
  171. std::list< Array<_ClusterSendQueueEntry,ZT_CLUSTER_QUEUE_CHUNK_SIZE> > _chunks;
  172. _ClusterSendQueueEntry *_pool[ZT_CLUSTER_QUEUE_CHUNK_SIZE * ZT_CLUSTER_MAX_QUEUE_CHUNKS];
  173. unsigned long _poolCount;
  174. std::set< std::pair<Address,_ClusterSendQueueEntry *> > _bySrc;
  175. std::set< std::pair<Address,_ClusterSendQueueEntry *> > _byDest;
  176. Mutex _lock;
  177. };
  178. Cluster::Cluster(
  179. const RuntimeEnvironment *renv,
  180. uint16_t id,
  181. const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
  182. int32_t x,
  183. int32_t y,
  184. int32_t z,
  185. void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
  186. void *sendFunctionArg,
  187. int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
  188. void *addressToLocationFunctionArg) :
  189. RR(renv),
  190. _sendQueue(new _ClusterSendQueue()),
  191. _sendFunction(sendFunction),
  192. _sendFunctionArg(sendFunctionArg),
  193. _addressToLocationFunction(addressToLocationFunction),
  194. _addressToLocationFunctionArg(addressToLocationFunctionArg),
  195. _x(x),
  196. _y(y),
  197. _z(z),
  198. _id(id),
  199. _zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
  200. _members(new _Member[ZT_CLUSTER_MAX_MEMBERS]),
  201. _lastFlushed(0),
  202. _lastCleanedRemotePeers(0),
  203. _lastCleanedQueue(0)
  204. {
  205. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  206. // Generate master secret by hashing the secret from our Identity key pair
  207. RR->identity.sha512PrivateKey(_masterSecret);
  208. // Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
  209. memcpy(stmp,_masterSecret,sizeof(stmp));
  210. stmp[0] ^= Utils::hton(id);
  211. SHA512::hash(stmp,stmp,sizeof(stmp));
  212. SHA512::hash(stmp,stmp,sizeof(stmp));
  213. memcpy(_key,stmp,sizeof(_key));
  214. Utils::burn(stmp,sizeof(stmp));
  215. }
  216. Cluster::~Cluster()
  217. {
  218. Utils::burn(_masterSecret,sizeof(_masterSecret));
  219. Utils::burn(_key,sizeof(_key));
  220. delete [] _members;
  221. delete _sendQueue;
  222. }
  223. void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
  224. {
  225. Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
  226. {
  227. // FORMAT: <[16] iv><[8] MAC><... data>
  228. if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
  229. return;
  230. // 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
  231. char keytmp[32];
  232. memcpy(keytmp,_key,32);
  233. for(int i=0;i<8;++i)
  234. keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
  235. Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
  236. Utils::burn(keytmp,sizeof(keytmp));
  237. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  238. char polykey[ZT_POLY1305_KEY_LEN];
  239. memset(polykey,0,sizeof(polykey));
  240. s20.encrypt12(polykey,polykey,sizeof(polykey));
  241. // Compute 16-byte MAC
  242. char mac[ZT_POLY1305_MAC_LEN];
  243. Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
  244. // Check first 8 bytes of MAC against 64-bit MAC in stream
  245. if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
  246. return;
  247. // Decrypt!
  248. dmsg.setSize(len - 24);
  249. s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
  250. }
  251. if (dmsg.size() < 4)
  252. return;
  253. const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
  254. unsigned int ptr = 2;
  255. if (fromMemberId == _id) // sanity check: we don't talk to ourselves
  256. return;
  257. const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
  258. ptr += 2;
  259. if (toMemberId != _id) // sanity check: message not for us?
  260. return;
  261. { // make sure sender is actually considered a member
  262. Mutex::Lock _l3(_memberIds_m);
  263. if (std::find(_memberIds.begin(),_memberIds.end(),fromMemberId) == _memberIds.end())
  264. return;
  265. }
  266. try {
  267. while (ptr < dmsg.size()) {
  268. const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
  269. const unsigned int nextPtr = ptr + mlen;
  270. if (nextPtr > dmsg.size())
  271. break;
  272. int mtype = -1;
  273. try {
  274. switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
  275. default:
  276. break;
  277. case CLUSTER_MESSAGE_ALIVE: {
  278. _Member &m = _members[fromMemberId];
  279. Mutex::Lock mlck(m.lock);
  280. ptr += 7; // skip version stuff, not used yet
  281. m.x = dmsg.at<int32_t>(ptr); ptr += 4;
  282. m.y = dmsg.at<int32_t>(ptr); ptr += 4;
  283. m.z = dmsg.at<int32_t>(ptr); ptr += 4;
  284. ptr += 8; // skip local clock, not used
  285. m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
  286. m.peers = dmsg.at<uint64_t>(ptr); ptr += 8;
  287. ptr += 8; // skip flags, unused
  288. #ifdef ZT_TRACE
  289. std::string addrs;
  290. #endif
  291. unsigned int physicalAddressCount = dmsg[ptr++];
  292. m.zeroTierPhysicalEndpoints.clear();
  293. for(unsigned int i=0;i<physicalAddressCount;++i) {
  294. m.zeroTierPhysicalEndpoints.push_back(InetAddress());
  295. ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
  296. if (!(m.zeroTierPhysicalEndpoints.back())) {
  297. m.zeroTierPhysicalEndpoints.pop_back();
  298. }
  299. #ifdef ZT_TRACE
  300. else {
  301. if (addrs.length() > 0)
  302. addrs.push_back(',');
  303. addrs.append(m.zeroTierPhysicalEndpoints.back().toString());
  304. }
  305. #endif
  306. }
  307. #ifdef ZT_TRACE
  308. if ((RR->node->now() - m.lastReceivedAliveAnnouncement) >= ZT_CLUSTER_TIMEOUT) {
  309. TRACE("[%u] I'm alive! peers close to %d,%d,%d can be redirected to: %s",(unsigned int)fromMemberId,m.x,m.y,m.z,addrs.c_str());
  310. }
  311. #endif
  312. m.lastReceivedAliveAnnouncement = RR->node->now();
  313. } break;
  314. case CLUSTER_MESSAGE_HAVE_PEER: {
  315. Identity id;
  316. ptr += id.deserialize(dmsg,ptr);
  317. if (id) {
  318. RR->topology->saveIdentity(id);
  319. {
  320. Mutex::Lock _l(_remotePeers_m);
  321. _remotePeers[std::pair<Address,unsigned int>(id.address(),(unsigned int)fromMemberId)] = RR->node->now();
  322. }
  323. _ClusterSendQueueEntry *q[16384]; // 16384 is "tons"
  324. unsigned int qc = _sendQueue->getByDest(id.address(),q,16384);
  325. for(unsigned int i=0;i<qc;++i)
  326. this->sendViaCluster(q[i]->fromPeerAddress,q[i]->toPeerAddress,q[i]->data,q[i]->len,q[i]->unite);
  327. _sendQueue->returnToPool(q,qc);
  328. TRACE("[%u] has %s (retried %u queued sends)",(unsigned int)fromMemberId,id.address().toString().c_str(),qc);
  329. }
  330. } break;
  331. case CLUSTER_MESSAGE_WANT_PEER: {
  332. const Address zeroTierAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  333. SharedPtr<Peer> peer(RR->topology->getPeerNoCache(zeroTierAddress));
  334. if ( (peer) && (peer->hasClusterOptimalPath(RR->node->now())) ) {
  335. Buffer<1024> buf;
  336. peer->identity().serialize(buf);
  337. Mutex::Lock _l2(_members[fromMemberId].lock);
  338. _send(fromMemberId,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  339. }
  340. } break;
  341. case CLUSTER_MESSAGE_REMOTE_PACKET: {
  342. const unsigned int plen = dmsg.at<uint16_t>(ptr); ptr += 2;
  343. if (plen) {
  344. Packet remotep(dmsg.field(ptr,plen),plen); ptr += plen;
  345. //TRACE("remote %s from %s via %u (%u bytes)",Packet::verbString(remotep.verb()),remotep.source().toString().c_str(),fromMemberId,plen);
  346. switch(remotep.verb()) {
  347. case Packet::VERB_WHOIS: _doREMOTE_WHOIS(fromMemberId,remotep); break;
  348. case Packet::VERB_MULTICAST_GATHER: _doREMOTE_MULTICAST_GATHER(fromMemberId,remotep); break;
  349. default: break; // ignore things we don't care about across cluster
  350. }
  351. }
  352. } break;
  353. case CLUSTER_MESSAGE_PROXY_UNITE: {
  354. const Address localPeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  355. const Address remotePeerAddress(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  356. const unsigned int numRemotePeerPaths = dmsg[ptr++];
  357. InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
  358. for(unsigned int i=0;i<numRemotePeerPaths;++i)
  359. ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
  360. TRACE("[%u] requested that we unite local %s with remote %s",(unsigned int)fromMemberId,localPeerAddress.toString().c_str(),remotePeerAddress.toString().c_str());
  361. const uint64_t now = RR->node->now();
  362. SharedPtr<Peer> localPeer(RR->topology->getPeerNoCache(localPeerAddress));
  363. if ((localPeer)&&(numRemotePeerPaths > 0)) {
  364. InetAddress bestLocalV4,bestLocalV6;
  365. localPeer->getBestActiveAddresses(now,bestLocalV4,bestLocalV6);
  366. InetAddress bestRemoteV4,bestRemoteV6;
  367. for(unsigned int i=0;i<numRemotePeerPaths;++i) {
  368. if ((bestRemoteV4)&&(bestRemoteV6))
  369. break;
  370. switch(remotePeerPaths[i].ss_family) {
  371. case AF_INET:
  372. if (!bestRemoteV4)
  373. bestRemoteV4 = remotePeerPaths[i];
  374. break;
  375. case AF_INET6:
  376. if (!bestRemoteV6)
  377. bestRemoteV6 = remotePeerPaths[i];
  378. break;
  379. }
  380. }
  381. Packet rendezvousForLocal(localPeerAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  382. rendezvousForLocal.append((uint8_t)0);
  383. remotePeerAddress.appendTo(rendezvousForLocal);
  384. Buffer<2048> rendezvousForRemote;
  385. remotePeerAddress.appendTo(rendezvousForRemote);
  386. rendezvousForRemote.append((uint8_t)Packet::VERB_RENDEZVOUS);
  387. rendezvousForRemote.addSize(2); // space for actual packet payload length
  388. rendezvousForRemote.append((uint8_t)0); // flags == 0
  389. localPeerAddress.appendTo(rendezvousForRemote);
  390. bool haveMatch = false;
  391. if ((bestLocalV6)&&(bestRemoteV6)) {
  392. haveMatch = true;
  393. rendezvousForLocal.append((uint16_t)bestRemoteV6.port());
  394. rendezvousForLocal.append((uint8_t)16);
  395. rendezvousForLocal.append(bestRemoteV6.rawIpData(),16);
  396. rendezvousForRemote.append((uint16_t)bestLocalV6.port());
  397. rendezvousForRemote.append((uint8_t)16);
  398. rendezvousForRemote.append(bestLocalV6.rawIpData(),16);
  399. rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 16));
  400. } else if ((bestLocalV4)&&(bestRemoteV4)) {
  401. haveMatch = true;
  402. rendezvousForLocal.append((uint16_t)bestRemoteV4.port());
  403. rendezvousForLocal.append((uint8_t)4);
  404. rendezvousForLocal.append(bestRemoteV4.rawIpData(),4);
  405. rendezvousForRemote.append((uint16_t)bestLocalV4.port());
  406. rendezvousForRemote.append((uint8_t)4);
  407. rendezvousForRemote.append(bestLocalV4.rawIpData(),4);
  408. rendezvousForRemote.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(9 + 4));
  409. }
  410. if (haveMatch) {
  411. {
  412. Mutex::Lock _l2(_members[fromMemberId].lock);
  413. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,rendezvousForRemote.data(),rendezvousForRemote.size());
  414. }
  415. RR->sw->send(rendezvousForLocal,true,0);
  416. }
  417. }
  418. } break;
  419. case CLUSTER_MESSAGE_PROXY_SEND: {
  420. const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
  421. const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
  422. const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
  423. Packet outp(rcpt,RR->identity.address(),verb);
  424. outp.append(dmsg.field(ptr,len),len); ptr += len;
  425. RR->sw->send(outp,true,0);
  426. //TRACE("[%u] proxy send %s to %s length %u",(unsigned int)fromMemberId,Packet::verbString(verb),rcpt.toString().c_str(),len);
  427. } break;
  428. }
  429. } catch ( ... ) {
  430. TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
  431. // drop invalids
  432. }
  433. ptr = nextPtr;
  434. }
  435. } catch ( ... ) {
  436. TRACE("invalid message (outer loop), discarding");
  437. // drop invalids
  438. }
  439. }
  440. void Cluster::broadcastHavePeer(const Identity &id)
  441. {
  442. Buffer<1024> buf;
  443. id.serialize(buf);
  444. Mutex::Lock _l(_memberIds_m);
  445. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  446. Mutex::Lock _l2(_members[*mid].lock);
  447. _send(*mid,CLUSTER_MESSAGE_HAVE_PEER,buf.data(),buf.size());
  448. }
  449. }
  450. void Cluster::sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite)
  451. {
  452. if (len > ZT_PROTO_MAX_PACKET_LENGTH) // sanity check
  453. return;
  454. const uint64_t now = RR->node->now();
  455. uint64_t mostRecentTs = 0;
  456. unsigned int mostRecentMemberId = 0xffffffff;
  457. {
  458. Mutex::Lock _l2(_remotePeers_m);
  459. std::map< std::pair<Address,unsigned int>,uint64_t >::const_iterator rpe(_remotePeers.lower_bound(std::pair<Address,unsigned int>(toPeerAddress,0)));
  460. for(;;) {
  461. if ((rpe == _remotePeers.end())||(rpe->first.first != toPeerAddress))
  462. break;
  463. else if (rpe->second > mostRecentTs) {
  464. mostRecentTs = rpe->second;
  465. mostRecentMemberId = rpe->first.second;
  466. }
  467. ++rpe;
  468. }
  469. }
  470. const uint64_t age = now - mostRecentTs;
  471. if (age >= (ZT_PEER_ACTIVITY_TIMEOUT / 3)) {
  472. const bool enqueueAndWait = ((age >= ZT_PEER_ACTIVITY_TIMEOUT)||(mostRecentMemberId > 0xffff));
  473. // Poll everyone with WANT_PEER if the age of our most recent entry is
  474. // approaching expiration (or has expired, or does not exist).
  475. char tmp[ZT_ADDRESS_LENGTH];
  476. toPeerAddress.copyTo(tmp,ZT_ADDRESS_LENGTH);
  477. {
  478. Mutex::Lock _l(_memberIds_m);
  479. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  480. Mutex::Lock _l2(_members[*mid].lock);
  481. _send(*mid,CLUSTER_MESSAGE_WANT_PEER,tmp,ZT_ADDRESS_LENGTH);
  482. }
  483. }
  484. // If there isn't a good place to send via, then enqueue this for retrying
  485. // later and return after having broadcasted a WANT_PEER.
  486. if (enqueueAndWait) {
  487. TRACE("sendViaCluster %s -> %s enqueueing to wait for HAVE_PEER",fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str());
  488. _sendQueue->enqueue(now,fromPeerAddress,toPeerAddress,data,len,unite);
  489. return;
  490. }
  491. }
  492. Buffer<1024> buf;
  493. if (unite) {
  494. InetAddress v4,v6;
  495. if (fromPeerAddress) {
  496. SharedPtr<Peer> fromPeer(RR->topology->getPeerNoCache(fromPeerAddress));
  497. if (fromPeer)
  498. fromPeer->getBestActiveAddresses(now,v4,v6);
  499. }
  500. uint8_t addrCount = 0;
  501. if (v4)
  502. ++addrCount;
  503. if (v6)
  504. ++addrCount;
  505. if (addrCount) {
  506. toPeerAddress.appendTo(buf);
  507. fromPeerAddress.appendTo(buf);
  508. buf.append(addrCount);
  509. if (v4)
  510. v4.serialize(buf);
  511. if (v6)
  512. v6.serialize(buf);
  513. }
  514. }
  515. {
  516. Mutex::Lock _l2(_members[mostRecentMemberId].lock);
  517. if (buf.size() > 0)
  518. _send(mostRecentMemberId,CLUSTER_MESSAGE_PROXY_UNITE,buf.data(),buf.size());
  519. if (_members[mostRecentMemberId].zeroTierPhysicalEndpoints.size() > 0) {
  520. TRACE("sendViaCluster relaying %u bytes from %s to %s by way of %u",len,fromPeerAddress.toString().c_str(),toPeerAddress.toString().c_str(),(unsigned int)mostRecentMemberId);
  521. RR->node->putPacket(InetAddress(),_members[mostRecentMemberId].zeroTierPhysicalEndpoints.front(),data,len);
  522. }
  523. }
  524. }
  525. void Cluster::sendDistributedQuery(const Packet &pkt)
  526. {
  527. Buffer<4096> buf;
  528. buf.append((uint16_t)pkt.size());
  529. buf.append(pkt.data(),pkt.size());
  530. Mutex::Lock _l(_memberIds_m);
  531. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  532. Mutex::Lock _l2(_members[*mid].lock);
  533. _send(*mid,CLUSTER_MESSAGE_REMOTE_PACKET,buf.data(),buf.size());
  534. }
  535. }
  536. void Cluster::doPeriodicTasks()
  537. {
  538. const uint64_t now = RR->node->now();
  539. if ((now - _lastFlushed) >= ZT_CLUSTER_FLUSH_PERIOD) {
  540. _lastFlushed = now;
  541. Mutex::Lock _l(_memberIds_m);
  542. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  543. Mutex::Lock _l2(_members[*mid].lock);
  544. if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
  545. _members[*mid].lastAnnouncedAliveTo = now;
  546. Buffer<2048> alive;
  547. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
  548. alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
  549. alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  550. alive.append((uint8_t)ZT_PROTO_VERSION);
  551. if (_addressToLocationFunction) {
  552. alive.append((int32_t)_x);
  553. alive.append((int32_t)_y);
  554. alive.append((int32_t)_z);
  555. } else {
  556. alive.append((int32_t)0);
  557. alive.append((int32_t)0);
  558. alive.append((int32_t)0);
  559. }
  560. alive.append((uint64_t)now);
  561. alive.append((uint64_t)0); // TODO: compute and send load average
  562. alive.append((uint64_t)RR->topology->countActive(now));
  563. alive.append((uint64_t)0); // unused/reserved flags
  564. alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
  565. for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
  566. pe->serialize(alive);
  567. _send(*mid,CLUSTER_MESSAGE_ALIVE,alive.data(),alive.size());
  568. }
  569. _flush(*mid);
  570. }
  571. }
  572. if ((now - _lastCleanedRemotePeers) >= (ZT_PEER_ACTIVITY_TIMEOUT * 2)) {
  573. _lastCleanedRemotePeers = now;
  574. Mutex::Lock _l(_remotePeers_m);
  575. for(std::map< std::pair<Address,unsigned int>,uint64_t >::iterator rp(_remotePeers.begin());rp!=_remotePeers.end();) {
  576. if ((now - rp->second) >= ZT_PEER_ACTIVITY_TIMEOUT)
  577. _remotePeers.erase(rp++);
  578. else ++rp;
  579. }
  580. }
  581. if ((now - _lastCleanedQueue) >= ZT_CLUSTER_QUEUE_EXPIRATION) {
  582. _lastCleanedQueue = now;
  583. _sendQueue->expire(now);
  584. }
  585. }
  586. void Cluster::addMember(uint16_t memberId)
  587. {
  588. if ((memberId >= ZT_CLUSTER_MAX_MEMBERS)||(memberId == _id))
  589. return;
  590. Mutex::Lock _l2(_members[memberId].lock);
  591. {
  592. Mutex::Lock _l(_memberIds_m);
  593. if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
  594. return;
  595. _memberIds.push_back(memberId);
  596. std::sort(_memberIds.begin(),_memberIds.end());
  597. }
  598. _members[memberId].clear();
  599. // Generate this member's message key from the master and its ID
  600. uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
  601. memcpy(stmp,_masterSecret,sizeof(stmp));
  602. stmp[0] ^= Utils::hton(memberId);
  603. SHA512::hash(stmp,stmp,sizeof(stmp));
  604. SHA512::hash(stmp,stmp,sizeof(stmp));
  605. memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
  606. Utils::burn(stmp,sizeof(stmp));
  607. // Prepare q
  608. _members[memberId].q.clear();
  609. char iv[16];
  610. Utils::getSecureRandom(iv,16);
  611. _members[memberId].q.append(iv,16);
  612. _members[memberId].q.addSize(8); // room for MAC
  613. _members[memberId].q.append((uint16_t)_id);
  614. _members[memberId].q.append((uint16_t)memberId);
  615. }
  616. void Cluster::removeMember(uint16_t memberId)
  617. {
  618. Mutex::Lock _l(_memberIds_m);
  619. std::vector<uint16_t> newMemberIds;
  620. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  621. if (*mid != memberId)
  622. newMemberIds.push_back(*mid);
  623. }
  624. _memberIds = newMemberIds;
  625. }
  626. bool Cluster::findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload)
  627. {
  628. if (_addressToLocationFunction) {
  629. // Pick based on location if it can be determined
  630. int px = 0,py = 0,pz = 0;
  631. if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
  632. TRACE("no geolocation data for %s (geo-lookup is lazy/async so it may work next time)",peerPhysicalAddress.toIpString().c_str());
  633. return false;
  634. }
  635. // Find member closest to this peer
  636. const uint64_t now = RR->node->now();
  637. std::vector<InetAddress> best;
  638. const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
  639. double bestDistance = (offload ? 2147483648.0 : currentDistance);
  640. unsigned int bestMember = _id;
  641. {
  642. Mutex::Lock _l(_memberIds_m);
  643. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  644. _Member &m = _members[*mid];
  645. Mutex::Lock _ml(m.lock);
  646. // Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
  647. if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
  648. const double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
  649. if (mdist < bestDistance) {
  650. bestDistance = mdist;
  651. bestMember = *mid;
  652. best = m.zeroTierPhysicalEndpoints;
  653. }
  654. }
  655. }
  656. }
  657. // Redirect to a closer member if it has a ZeroTier endpoint address in the same ss_family
  658. for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
  659. if (a->ss_family == peerPhysicalAddress.ss_family) {
  660. TRACE("%s at [%d,%d,%d] is %f from us but %f from %u, can redirect to %s",peerAddress.toString().c_str(),px,py,pz,currentDistance,bestDistance,bestMember,a->toString().c_str());
  661. redirectTo = *a;
  662. return true;
  663. }
  664. }
  665. TRACE("%s at [%d,%d,%d] is %f from us, no better endpoints found",peerAddress.toString().c_str(),px,py,pz,currentDistance);
  666. return false;
  667. } else {
  668. // TODO: pick based on load if no location info?
  669. return false;
  670. }
  671. }
  672. void Cluster::status(ZT_ClusterStatus &status) const
  673. {
  674. const uint64_t now = RR->node->now();
  675. memset(&status,0,sizeof(ZT_ClusterStatus));
  676. status.myId = _id;
  677. {
  678. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  679. s->id = _id;
  680. s->alive = 1;
  681. s->x = _x;
  682. s->y = _y;
  683. s->z = _z;
  684. s->load = 0; // TODO
  685. s->peers = RR->topology->countActive(now);
  686. for(std::vector<InetAddress>::const_iterator ep(_zeroTierPhysicalEndpoints.begin());ep!=_zeroTierPhysicalEndpoints.end();++ep) {
  687. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  688. break;
  689. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  690. }
  691. }
  692. {
  693. Mutex::Lock _l1(_memberIds_m);
  694. for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
  695. if (status.clusterSize >= ZT_CLUSTER_MAX_MEMBERS) // sanity check
  696. break;
  697. _Member &m = _members[*mid];
  698. Mutex::Lock ml(m.lock);
  699. ZT_ClusterMemberStatus *const s = &(status.members[status.clusterSize++]);
  700. s->id = *mid;
  701. s->msSinceLastHeartbeat = (unsigned int)std::min((uint64_t)(~((unsigned int)0)),(now - m.lastReceivedAliveAnnouncement));
  702. s->alive = (s->msSinceLastHeartbeat < ZT_CLUSTER_TIMEOUT) ? 1 : 0;
  703. s->x = m.x;
  704. s->y = m.y;
  705. s->z = m.z;
  706. s->load = m.load;
  707. s->peers = m.peers;
  708. for(std::vector<InetAddress>::const_iterator ep(m.zeroTierPhysicalEndpoints.begin());ep!=m.zeroTierPhysicalEndpoints.end();++ep) {
  709. if (s->numZeroTierPhysicalEndpoints >= ZT_CLUSTER_MAX_ZT_PHYSICAL_ADDRESSES) // sanity check
  710. break;
  711. memcpy(&(s->zeroTierPhysicalEndpoints[s->numZeroTierPhysicalEndpoints++]),&(*ep),sizeof(struct sockaddr_storage));
  712. }
  713. }
  714. }
  715. }
  716. void Cluster::_send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len)
  717. {
  718. if ((len + 3) > (ZT_CLUSTER_MAX_MESSAGE_LENGTH - (24 + 2 + 2))) // sanity check
  719. return;
  720. _Member &m = _members[memberId];
  721. // assumes m.lock is locked!
  722. if ((m.q.size() + len + 3) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
  723. _flush(memberId);
  724. m.q.append((uint16_t)(len + 1));
  725. m.q.append((uint8_t)type);
  726. m.q.append(msg,len);
  727. }
  728. void Cluster::_flush(uint16_t memberId)
  729. {
  730. _Member &m = _members[memberId];
  731. // assumes m.lock is locked!
  732. if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
  733. // Create key from member's key and IV
  734. char keytmp[32];
  735. memcpy(keytmp,m.key,32);
  736. for(int i=0;i<8;++i)
  737. keytmp[i] ^= m.q[i];
  738. Salsa20 s20(keytmp,256,m.q.field(8,8));
  739. Utils::burn(keytmp,sizeof(keytmp));
  740. // One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
  741. char polykey[ZT_POLY1305_KEY_LEN];
  742. memset(polykey,0,sizeof(polykey));
  743. s20.encrypt12(polykey,polykey,sizeof(polykey));
  744. // Encrypt m.q in place
  745. s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
  746. // Add MAC for authentication (encrypt-then-MAC)
  747. char mac[ZT_POLY1305_MAC_LEN];
  748. Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
  749. memcpy(m.q.field(16,8),mac,8);
  750. // Send!
  751. _sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
  752. // Prepare for more
  753. m.q.clear();
  754. char iv[16];
  755. Utils::getSecureRandom(iv,16);
  756. m.q.append(iv,16);
  757. m.q.addSize(8); // room for MAC
  758. m.q.append((uint16_t)_id); // from member ID
  759. m.q.append((uint16_t)memberId); // to member ID
  760. }
  761. }
  762. void Cluster::_doREMOTE_WHOIS(uint64_t fromMemberId,const Packet &remotep)
  763. {
  764. if (remotep.payloadLength() >= ZT_ADDRESS_LENGTH) {
  765. Identity queried(RR->topology->getIdentity(Address(remotep.payload(),ZT_ADDRESS_LENGTH)));
  766. if (queried) {
  767. Buffer<1024> routp;
  768. remotep.source().appendTo(routp);
  769. routp.append((uint8_t)Packet::VERB_OK);
  770. routp.addSize(2); // space for length
  771. routp.append((uint8_t)Packet::VERB_WHOIS);
  772. routp.append(remotep.packetId());
  773. queried.serialize(routp);
  774. routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
  775. TRACE("responding to remote WHOIS from %s @ %u with identity of %s",remotep.source().toString().c_str(),(unsigned int)fromMemberId,queried.address().toString().c_str());
  776. Mutex::Lock _l2(_members[fromMemberId].lock);
  777. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
  778. }
  779. }
  780. }
  781. void Cluster::_doREMOTE_MULTICAST_GATHER(uint64_t fromMemberId,const Packet &remotep)
  782. {
  783. const uint64_t nwid = remotep.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
  784. const MulticastGroup mg(MAC(remotep.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
  785. unsigned int gatherLimit = remotep.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
  786. const Address remotePeerAddress(remotep.source());
  787. if (gatherLimit) {
  788. Buffer<ZT_PROTO_MAX_PACKET_LENGTH> routp;
  789. remotePeerAddress.appendTo(routp);
  790. routp.append((uint8_t)Packet::VERB_OK);
  791. routp.addSize(2); // space for length
  792. routp.append((uint8_t)Packet::VERB_MULTICAST_GATHER);
  793. routp.append(remotep.packetId());
  794. routp.append(nwid);
  795. mg.mac().appendTo(routp);
  796. routp.append((uint32_t)mg.adi());
  797. if (gatherLimit > ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5))
  798. gatherLimit = ((ZT_CLUSTER_MAX_MESSAGE_LENGTH - 80) / 5);
  799. if (RR->mc->gather(remotePeerAddress,nwid,mg,routp,gatherLimit)) {
  800. routp.setAt<uint16_t>(ZT_ADDRESS_LENGTH + 1,(uint16_t)(routp.size() - ZT_ADDRESS_LENGTH - 3));
  801. TRACE("responding to remote MULTICAST_GATHER from %s @ %u with %u bytes",remotePeerAddress.toString().c_str(),(unsigned int)fromMemberId,routp.size());
  802. Mutex::Lock _l2(_members[fromMemberId].lock);
  803. _send(fromMemberId,CLUSTER_MESSAGE_PROXY_SEND,routp.data(),routp.size());
  804. }
  805. }
  806. }
  807. } // namespace ZeroTier
  808. #endif // ZT_ENABLE_CLUSTER