Protocol.hpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2024-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_PROTOCOL_HPP
  14. #define ZT_PROTOCOL_HPP
  15. #include "Constants.hpp"
  16. #include "AES.hpp"
  17. #include "Salsa20.hpp"
  18. #include "Poly1305.hpp"
  19. #include "LZ4.hpp"
  20. #include "Buf.hpp"
  21. #include "Address.hpp"
  22. #include "Identity.hpp"
  23. #include "SymmetricKey.hpp"
  24. /*
  25. * Packet format:
  26. * <[8] 64-bit packet ID / crypto IV>
  27. * <[5] destination ZT address>
  28. * <[5] source ZT address>
  29. * <[1] outer visible flags, cipher, and hop count (bits: FFCCHHH)>
  30. * <[8] 64-bit MAC (or trusted path ID in trusted path mode)>
  31. * [... -- begin encryption envelope -- ...]
  32. * <[1] inner envelope flags (MS 3 bits) and verb (LS 5 bits)>
  33. * [... verb-specific payload ...]
  34. *
  35. * Packets smaller than 28 bytes are invalid and silently discarded.
  36. *
  37. * The hop count field is masked during message authentication computation
  38. * and is thus the only field that is mutable in transit. It's incremented
  39. * when roots or other nodes forward packets and exists to prevent infinite
  40. * forwarding loops and to detect direct paths.
  41. *
  42. * HELLO is normally sent in the clear with the POLY1305_NONE cipher suite
  43. * and with Poly1305 computed on plain text (Salsa20/12 is still used to
  44. * generate a one time use Poly1305 key). As of protocol version 11 HELLO
  45. * also includes a terminating HMAC (last 48 bytes) that significantly
  46. * hardens HELLO authentication beyond what a 64-bit MAC can guarantee.
  47. *
  48. * Fragmented packets begin with a packet header whose fragment bit (bit
  49. * 0x40 in the flags field) is set. This constitutes fragment zero. The
  50. * total number of expected fragments is contained in each subsequent
  51. * fragment packet. Unfragmented packets must not have the fragment bit
  52. * set or the receiver will expect at least one additional fragment.
  53. *
  54. * --
  55. *
  56. * Packet fragment format (fragments beyond 0):
  57. * <[8] packet ID of packet to which this fragment belongs>
  58. * <[5] destination ZT address>
  59. * <[1] 0xff here signals that this is a fragment>
  60. * <[1] total fragments (most significant 4 bits), fragment no (LS 4 bits)>
  61. * <[1] ZT hop count (least significant 3 bits; others are reserved)>
  62. * <[...] fragment data>
  63. *
  64. * The protocol supports a maximum of 16 fragments including fragment 0
  65. * which contains the full packet header (with fragment bit set). Fragments
  66. * thus always carry fragment numbers between 1 and 15. All fragments
  67. * belonging to the same packet must carry the same total fragment count in
  68. * the most significant 4 bits of the fragment numbering field.
  69. *
  70. * All fragments have the same packet ID and destination. The packet ID
  71. * doubles as the grouping identifier for fragment reassembly.
  72. *
  73. * Fragments do not carry their own packet MAC. The entire packet is
  74. * authenticated once it is assembled by the receiver. Incomplete packets
  75. * are discarded after a receiver configured period of time.
  76. */
  77. /*
  78. * Protocol versions
  79. *
  80. * 1 - 0.2.0 ... 0.2.5
  81. * 2 - 0.3.0 ... 0.4.5
  82. * + Added signature and originating peer to multicast frame
  83. * + Double size of multicast frame bloom filter
  84. * 3 - 0.5.0 ... 0.6.0
  85. * + Yet another multicast redesign
  86. * + New crypto completely changes key agreement cipher
  87. * 4 - 0.6.0 ... 1.0.6
  88. * + BREAKING CHANGE: New identity format based on hashcash design
  89. * 5 - 1.1.0 ... 1.1.5
  90. * + Supports echo
  91. * + Supports in-band world (root server definition) updates
  92. * + Clustering! (Though this will work with protocol v4 clients.)
  93. * + Otherwise backward compatible with protocol v4
  94. * 6 - 1.1.5 ... 1.1.10
  95. * + Network configuration format revisions including binary values
  96. * 7 - 1.1.10 ... 1.1.17
  97. * + Introduce trusted paths for local SDN use
  98. * 8 - 1.1.17 ... 1.2.0
  99. * + Multipart network configurations for large network configs
  100. * + Tags and Capabilities
  101. * + inline push of CertificateOfMembership deprecated
  102. * 9 - 1.2.0 ... 1.2.14
  103. * 10 - 1.4.0 ... 1.4.6
  104. * + Contained early pre-alpha versions of multipath, which are deprecated
  105. * 11 - 2.0.0 ... CURRENT
  106. * + New more WAN-efficient P2P-assisted multicast algorithm
  107. * + HELLO and OK(HELLO) include an extra HMAC to harden authentication
  108. * + HELLO and OK(HELLO) carry meta-data in a dictionary that's encrypted
  109. * + Forward secrecy, key lifetime management
  110. * + Old planet/moon stuff is DEAD! Independent roots are easier.
  111. * + AES encryption with the SIV construction AES-GMAC-SIV
  112. * + New combined Curve25519/NIST P-384 identity type (type 1)
  113. * + Short probe packets to reduce probe bandwidth
  114. * + More aggressive NAT traversal techniques for IPv4 symmetric NATs
  115. */
  116. #define ZT_PROTO_VERSION 11
  117. /**
  118. * Minimum supported protocol version
  119. */
  120. #define ZT_PROTO_VERSION_MIN 9
  121. /**
  122. * Maximum allowed packet size (can technically be increased up to 16384)
  123. */
  124. #define ZT_PROTO_MAX_PACKET_LENGTH (ZT_MAX_PACKET_FRAGMENTS * ZT_MIN_UDP_MTU)
  125. /**
  126. * Minimum viable packet length (outer header + verb)
  127. */
  128. #define ZT_PROTO_MIN_PACKET_LENGTH 28
  129. /**
  130. * Index at which the encrypted section of a packet begins
  131. */
  132. #define ZT_PROTO_PACKET_ENCRYPTED_SECTION_START 27
  133. /**
  134. * Index at which packet payload begins (after verb)
  135. */
  136. #define ZT_PROTO_PACKET_PAYLOAD_START 28
  137. /**
  138. * Maximum hop count allowed by packet structure (3 bits, 0-7)
  139. *
  140. * This is a protocol constant. It's the maximum allowed by the length
  141. * of the hop counter -- three bits. A lower limit is specified as
  142. * the actual maximum hop count.
  143. */
  144. #define ZT_PROTO_MAX_HOPS 7
  145. /**
  146. * NONE/Poly1305 (used for HELLO for backward compatibility)
  147. */
  148. #define ZT_PROTO_CIPHER_SUITE__POLY1305_NONE 0
  149. /**
  150. * Salsa2012/Poly1305 (legacy)
  151. */
  152. #define ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012 1
  153. /**
  154. * Deprecated, not currently used.
  155. */
  156. #define ZT_PROTO_CIPHER_SUITE__NONE 2
  157. /**
  158. * AES-GMAC-SIV
  159. */
  160. #define ZT_PROTO_CIPHER_SUITE__AES_GMAC_SIV 3
  161. /**
  162. * Minimum viable length for a fragment
  163. */
  164. #define ZT_PROTO_MIN_FRAGMENT_LENGTH 16
  165. /**
  166. * Magic number indicating a fragment if present at index 13
  167. */
  168. #define ZT_PROTO_PACKET_FRAGMENT_INDICATOR 0xff
  169. /**
  170. * Length of a probe packet
  171. */
  172. #define ZT_PROTO_PROBE_LENGTH 4
  173. /**
  174. * Index at which packet fragment payload starts
  175. */
  176. #define ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT ZT_PROTO_MIN_FRAGMENT_LENGTH
  177. /**
  178. * Outer flag indicating that a packet is fragmented and this is just the head.
  179. */
  180. #define ZT_PROTO_FLAG_FRAGMENTED 0x40U
  181. /**
  182. * Mask for obtaining hops from the combined flags, cipher, and hops field
  183. */
  184. #define ZT_PROTO_FLAG_FIELD_HOPS_MASK 0x07U
  185. /**
  186. * Verb flag indicating payload is compressed with LZ4
  187. */
  188. #define ZT_PROTO_VERB_FLAG_COMPRESSED 0x80U
  189. /**
  190. * Mask to extract just the verb from the verb / verb flags field
  191. */
  192. #define ZT_PROTO_VERB_MASK 0x1fU
  193. /**
  194. * AES-GMAC-SIV first of two keys
  195. */
  196. #define ZT_KBKDF_LABEL_AES_GMAC_SIV_K0 '0'
  197. /**
  198. * AES-GMAC-SIV second of two keys
  199. */
  200. #define ZT_KBKDF_LABEL_AES_GMAC_SIV_K1 '1'
  201. /**
  202. * Key used to encrypt dictionary in HELLO with AES-CTR.
  203. */
  204. #define ZT_KBKDF_LABEL_HELLO_DICTIONARY_ENCRYPT 'H'
  205. /**
  206. * Key used for extra HMAC-SHA384 authentication on some packets.
  207. */
  208. #define ZT_KBKDF_LABEL_PACKET_HMAC 'M'
  209. #define ZT_PROTO_PACKET_FRAGMENT_INDICATOR_INDEX 13
  210. #define ZT_PROTO_PACKET_FRAGMENT_COUNTS 14
  211. #define ZT_PROTO_PACKET_ID_INDEX 0
  212. #define ZT_PROTO_PACKET_DESTINATION_INDEX 8
  213. #define ZT_PROTO_PACKET_SOURCE_INDEX 13
  214. #define ZT_PROTO_PACKET_FLAGS_INDEX 18
  215. #define ZT_PROTO_PACKET_MAC_INDEX 19
  216. #define ZT_PROTO_PACKET_VERB_INDEX 27
  217. #define ZT_PROTO_HELLO_NODE_META_INSTANCE_ID "i"
  218. #define ZT_PROTO_HELLO_NODE_META_LOCATOR "l"
  219. #define ZT_PROTO_HELLO_NODE_META_SOFTWARE_VENDOR "s"
  220. #define ZT_PROTO_HELLO_NODE_META_COMPLIANCE "c"
  221. #define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_PUBLIC "e"
  222. #define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_ACK "E"
  223. static_assert(ZT_PROTO_MAX_PACKET_LENGTH < ZT_BUF_MEM_SIZE,"maximum packet length won't fit in Buf");
  224. static_assert(ZT_PROTO_PACKET_ENCRYPTED_SECTION_START == (ZT_PROTO_MIN_PACKET_LENGTH-1),"encrypted packet section must start right before protocol verb at one less than minimum packet size");
  225. namespace ZeroTier {
  226. namespace Protocol {
  227. /**
  228. * Packet verb (message type)
  229. */
  230. enum Verb
  231. {
  232. /**
  233. * No operation
  234. *
  235. * This packet does nothing, but it is sometimes sent as a probe to
  236. * trigger a HELLO exchange as the code will attempt HELLO when it
  237. * receives a packet from an unidentified source.
  238. */
  239. VERB_NOP = 0x00,
  240. /**
  241. * Announcement of a node's existence and vitals:
  242. * <[1] protocol version>
  243. * <[1] software major version (optional, 0 if unspecified)>
  244. * <[1] software minor version (optional, 0 if unspecified)>
  245. * <[2] software revision (optional, 0 if unspecified)>
  246. * <[8] timestamp>
  247. * <[...] binary serialized full sender identity>
  248. * <[...] physical destination of packet>
  249. * <[12] 96-bit CTR IV>
  250. * <[6] reserved bytes, currently used for legacy compatibility>
  251. * [... start of encrypted section ...]
  252. * <[2] 16-bit length of encrypted dictionary>
  253. * <[...] encrypted dictionary>
  254. * [... end of encrypted section ...]
  255. * <[48] HMAC-SHA384 of packet>
  256. *
  257. * HELLO is sent to initiate a new pairing between two nodes and
  258. * periodically to refresh information.
  259. *
  260. * HELLO is the only packet ever sent without whole payload encryption,
  261. * though an inner encrypted envelope exists to obscure all fields that
  262. * do not need to be sent in the clear. There is nothing in this
  263. * encrypted section that would be catastrophic if it leaked, but it's
  264. * good to proactively limit exposed information.
  265. *
  266. * Inner encryption is AES-CTR with a key derived using KBKDF and a
  267. * label indicating this specific usage. A 96-bit CTR IV precedes this
  268. * encrypted section.
  269. *
  270. * Authentication and encryption in HELLO and OK(HELLO) are always done
  271. * with the long-lived identity key, not ephemeral shared keys. This
  272. * is so ephemeral key negotiation can always occur on the first try
  273. * even if things get out of sync e.g. by one side restarting. Nothing
  274. * in HELLO is likely to be dangerous if decrypted later.
  275. *
  276. * HELLO and OK(HELLO) include an extra HMAC at the end of the packet.
  277. * This authenticates them to a level of certainty beyond that afforded
  278. * by regular AEAD. HMAC is computed over the whole packet prior to
  279. * packet MAC and with the 3-bit hop count field masked as it is
  280. * with regular packet AEAD, and it is then included in the regular
  281. * packet MAC.
  282. *
  283. * LEGACY: for legacy reasons the MAC field of HELLO is a poly1305
  284. * MAC initialized in the same manner as 1.x. Since HMAC provides
  285. * additional full 384-bit strength authentication this should not be
  286. * a problem for FIPS.
  287. *
  288. * Several legacy fields are present as well for the benefit of 1.x nodes.
  289. * These will go away and become simple reserved space once 1.x is no longer
  290. * supported. Some are self-explanatory. The "encrypted zero" is rather
  291. * strange. It's a 16-bit zero value encrypted using Salsa20/12 and the
  292. * long-lived identity key shared by the two peers. It tells 1.x that an
  293. * old encrypted field is no longer there and that it should stop parsing
  294. * the packet at that point.
  295. *
  296. * 1.x does not understand the dictionary and HMAC fields, but it will
  297. * ignore them due to the "encrypted zero" field indicating that the
  298. * packet contains no more information.
  299. *
  300. * Dictionary fields (defines start with ZT_PROTO_HELLO_NODE_META_):
  301. *
  302. * INSTANCE_ID - a 64-bit unique value generated on each node start
  303. * PREFERRED_CIPHER_MODE - preferred symmetric encryption mode
  304. * LOCATOR - signed record enumerating this node's trusted contact points
  305. * EPHEMERAL_PUBLIC - Ephemeral public key(s)
  306. *
  307. * OK will contain EPHEMERAL_PUBLIC (of the sender) and:
  308. *
  309. * EPHEMERAL_ACK - SHA384 of EPHEMERAL_PUBLIC received
  310. *
  311. * The following optional fields may also be present:
  312. *
  313. * HOSTNAME - arbitrary short host name for this node
  314. * CONTACT - arbitrary short contact information string for this node
  315. * SOFTWARE_VENDOR - short name or description of vendor, such as a URL
  316. * COMPLIANCE - bit mask containing bits for e.g. a FIPS-compliant node
  317. *
  318. * The timestamp field in OK is echoed but the others represent the sender
  319. * of the OK and are not echoes from HELLO. The dictionary in OK typically
  320. * only contains the EPHEMERAL fields, allowing the receiver of the OK to
  321. * confirm that both sides know the correct keys and thus begin using the
  322. * ephemeral shared secret to send packets.
  323. *
  324. * OK is sent encrypted with the usual AEAD, but still includes a full HMAC
  325. * as well (inside the cryptographic envelope).
  326. *
  327. * OK payload:
  328. * <[8] timestamp echoed from original HELLO>
  329. * <[1] protocol version of responding node>
  330. * <[1] software major version (optional)>
  331. * <[1] software minor version (optional)>
  332. * <[2] software revision (optional)>
  333. * <[...] physical destination address of packet>
  334. * <[2] 16-bit reserved field (zero for legacy compatibility)>
  335. * <[2] 16-bit length of dictionary>
  336. * <[...] dictionary>
  337. * <[48] HMAC-SHA384 of plaintext packet>
  338. */
  339. VERB_HELLO = 0x01,
  340. /**
  341. * Error response:
  342. * <[1] in-re verb>
  343. * <[8] in-re packet ID>
  344. * <[1] error code>
  345. * <[...] error-dependent payload, may be empty>
  346. *
  347. * An ERROR that does not pertain to a specific packet will have its verb
  348. * set to VERB_NOP and its packet ID set to zero.
  349. */
  350. VERB_ERROR = 0x02,
  351. /**
  352. * Success response:
  353. * <[1] in-re verb>
  354. * <[8] in-re packet ID>
  355. * <[...] response-specific payload>
  356. */
  357. VERB_OK = 0x03,
  358. /**
  359. * Query an identity by address:
  360. * <[5] address to look up>
  361. * [<[...] additional addresses to look up>
  362. *
  363. * OK response payload:
  364. * <[...] identity>
  365. * <[...] locator>
  366. * [... additional identity/locator pairs]
  367. *
  368. * If the address is not found, no response is generated. The semantics
  369. * of WHOIS is similar to ARP and NDP in that persistent retrying can
  370. * be performed.
  371. *
  372. * It is possible for an identity but a null/empty locator to be returned
  373. * if no locator is known for a node. Older versions may omit the locator.
  374. */
  375. VERB_WHOIS = 0x04,
  376. /**
  377. * Relay-mediated NAT traversal or firewall punching initiation:
  378. * <[1] flags>
  379. * <[5] ZeroTier address of other peer>
  380. * <[2] 16-bit number of endpoints where peer might be reached>
  381. * [<[...] endpoints to attempt>]
  382. *
  383. * Legacy packet format for pre-2.x peers:
  384. * <[1] flags (unused, currently 0)>
  385. * <[5] ZeroTier address of other peer>
  386. * <[2] 16-bit protocol address port>
  387. * <[1] protocol address length / type>
  388. * <[...] protocol address (network byte order)>
  389. *
  390. * When a root or other peer is relaying messages, it can periodically send
  391. * RENDEZVOUS to assist peers in establishing direct communication.
  392. *
  393. * Peers also directly exchange information via HELLO, so this serves as
  394. * a second way for peers to learn about their possible locations.
  395. *
  396. * It also serves another function: temporal coordination of NAT traversal
  397. * attempts. Some NATs traverse better if both sides first send "firewall
  398. * opener" packets and then send real packets and if this exchange is
  399. * coordinated in time so that the packets effectively pass each other in
  400. * flight.
  401. *
  402. * No OK or ERROR is generated.
  403. */
  404. VERB_RENDEZVOUS = 0x05,
  405. /**
  406. * ZT-to-ZT unicast ethernet frame (shortened EXT_FRAME):
  407. * <[8] 64-bit network ID>
  408. * <[2] 16-bit ethertype>
  409. * <[...] ethernet payload>
  410. *
  411. * MAC addresses are derived from the packet's source and destination
  412. * ZeroTier addresses. This is a shortened EXT_FRAME that elides full
  413. * Ethernet framing and other optional flags and features when they
  414. * are not necessary.
  415. *
  416. * ERROR may be generated if a membership certificate is needed for a
  417. * closed network. Payload will be network ID.
  418. */
  419. VERB_FRAME = 0x06,
  420. /**
  421. * Full Ethernet frame with MAC addressing and optional fields:
  422. * <[8] 64-bit network ID>
  423. * <[1] flags>
  424. * <[6] destination MAC or all zero for destination node>
  425. * <[6] source MAC or all zero for node of origin>
  426. * <[2] 16-bit ethertype>
  427. * <[...] ethernet payload>
  428. *
  429. * Flags:
  430. * 0x01 - Certificate of network membership attached (DEPRECATED)
  431. * 0x02 - Most significant bit of subtype (see below)
  432. * 0x04 - Middle bit of subtype (see below)
  433. * 0x08 - Least significant bit of subtype (see below)
  434. * 0x10 - ACK requested in the form of OK(EXT_FRAME)
  435. *
  436. * Subtypes (0..7):
  437. * 0x0 - Normal frame (bridging can be determined by checking MAC)
  438. * 0x1 - TEEd outbound frame
  439. * 0x2 - REDIRECTed outbound frame
  440. * 0x3 - WATCHed outbound frame (TEE with ACK, ACK bit also set)
  441. * 0x4 - TEEd inbound frame
  442. * 0x5 - REDIRECTed inbound frame
  443. * 0x6 - WATCHed inbound frame
  444. * 0x7 - (reserved for future use)
  445. *
  446. * An extended frame carries full MAC addressing, making it a
  447. * superset of VERB_FRAME. If 0x20 is set then p2p or hub and
  448. * spoke multicast propagation is requested.
  449. *
  450. * OK payload (if ACK flag is set):
  451. * <[8] 64-bit network ID>
  452. * <[1] flags>
  453. * <[6] destination MAC or all zero for destination node>
  454. * <[6] source MAC or all zero for node of origin>
  455. * <[2] 16-bit ethertype>
  456. */
  457. VERB_EXT_FRAME = 0x07,
  458. /**
  459. * ECHO request (a.k.a. ping):
  460. * <[...] arbitrary payload>
  461. *
  462. * This generates OK with a copy of the transmitted payload. No ERROR
  463. * is generated. Response to ECHO requests is optional and ECHO may be
  464. * ignored if a node detects a possible flood.
  465. */
  466. VERB_ECHO = 0x08,
  467. /**
  468. * Announce interest in multicast group(s):
  469. * <[8] 64-bit network ID>
  470. * <[6] multicast Ethernet address>
  471. * <[4] multicast additional distinguishing information (ADI)>
  472. * [... additional tuples of network/address/adi ...]
  473. *
  474. * LIKEs may be sent to any peer, though a good implementation should
  475. * restrict them to peers on the same network they're for and to network
  476. * controllers and root servers. In the current network, root servers
  477. * will provide the service of final multicast cache.
  478. */
  479. VERB_MULTICAST_LIKE = 0x09,
  480. /**
  481. * Network credentials push:
  482. * [<[...] one or more certificates of membership>]
  483. * <[1] 0x00, null byte marking end of COM array>
  484. * <[2] 16-bit number of capabilities>
  485. * <[...] one or more serialized Capability>
  486. * <[2] 16-bit number of tags>
  487. * <[...] one or more serialized Tags>
  488. * <[2] 16-bit number of revocations>
  489. * <[...] one or more serialized Revocations>
  490. * <[2] 16-bit number of certificates of ownership>
  491. * <[...] one or more serialized CertificateOfOwnership>
  492. *
  493. * This can be sent by anyone at any time to push network credentials.
  494. * These will of course only be accepted if they are properly signed.
  495. * Credentials can be for any number of networks.
  496. *
  497. * The use of a zero byte to terminate the COM section is for legacy
  498. * backward compatibility. Newer fields are prefixed with a length.
  499. *
  500. * OK/ERROR are not generated.
  501. */
  502. VERB_NETWORK_CREDENTIALS = 0x0a,
  503. /**
  504. * Network configuration request:
  505. * <[8] 64-bit network ID>
  506. * <[2] 16-bit length of request meta-data dictionary>
  507. * <[...] string-serialized request meta-data>
  508. * <[8] 64-bit revision of netconf we currently have>
  509. * <[8] 64-bit timestamp of netconf we currently have>
  510. *
  511. * This message requests network configuration from a node capable of
  512. * providing it. Responses can be sent as OK(NETWORK_CONFIG_REQUEST)
  513. * or NETWORK_CONFIG messages. NETWORK_CONFIG can also be sent by
  514. * network controllers or other nodes unsolicited.
  515. *
  516. * OK response payload:
  517. * (same as VERB_NETWORK_CONFIG payload)
  518. *
  519. * ERROR response payload:
  520. * <[8] 64-bit network ID>
  521. */
  522. VERB_NETWORK_CONFIG_REQUEST = 0x0b,
  523. /**
  524. * Network configuration data push:
  525. * <[8] 64-bit network ID>
  526. * <[2] 16-bit length of network configuration dictionary chunk>
  527. * <[...] network configuration dictionary (may be incomplete)>
  528. * <[1] 8-bit flags>
  529. * <[8] 64-bit config update ID (should never be 0)>
  530. * <[4] 32-bit total length of assembled dictionary>
  531. * <[4] 32-bit index of chunk>
  532. * [ ... end signed portion ... ]
  533. * <[1] 8-bit reserved field (legacy)>
  534. * <[2] 16-bit length of chunk signature>
  535. * <[...] chunk signature>
  536. *
  537. * Network configurations can come from network controllers or theoretically
  538. * any other node, but each chunk must be signed by the network controller
  539. * that generated it originally. The config update ID is arbitrary and is merely
  540. * used by the receiver to group chunks. Chunk indexes must be sequential and
  541. * the total delivered chunks must yield a total network config equal to the
  542. * specified total length.
  543. *
  544. * Flags:
  545. * 0x01 - Use fast propagation -- rumor mill flood this chunk to other members
  546. *
  547. * An OK should be sent if the config is successfully received and
  548. * accepted.
  549. *
  550. * OK payload:
  551. * <[8] 64-bit network ID>
  552. * <[8] 64-bit config update ID>
  553. */
  554. VERB_NETWORK_CONFIG = 0x0c,
  555. /**
  556. * Request endpoints for multicast distribution:
  557. * <[8] 64-bit network ID>
  558. * <[1] flags>
  559. * <[6] MAC address of multicast group being queried>
  560. * <[4] 32-bit ADI for multicast group being queried>
  561. * <[4] 32-bit requested max number of multicast peers>
  562. *
  563. * This message asks a peer for additional known endpoints that have
  564. * LIKEd a given multicast group. It's sent when the sender wishes
  565. * to send multicast but does not have the desired number of recipient
  566. * peers.
  567. *
  568. * OK response payload: (multiple OKs can be generated)
  569. * <[8] 64-bit network ID>
  570. * <[6] MAC address of multicast group being queried>
  571. * <[4] 32-bit ADI for multicast group being queried>
  572. * <[4] 32-bit total number of known members in this multicast group>
  573. * <[2] 16-bit number of members enumerated in this packet>
  574. * <[...] series of 5-byte ZeroTier addresses of enumerated members>
  575. *
  576. * ERROR is not generated; queries that return no response are dropped.
  577. */
  578. VERB_MULTICAST_GATHER = 0x0d,
  579. // Deprecated multicast frame message type.
  580. VERB_MULTICAST_FRAME_deprecated = 0x0e,
  581. /**
  582. * Push of potential endpoints for direct communication:
  583. * <[2] 16-bit number of endpoints>
  584. * <[...] endpoints>
  585. *
  586. * If the target node is pre-2.0 path records of the following format
  587. * are sent instead of post-2.x endpoints:
  588. * <[1] 8-bit path flags (zero)>
  589. * <[2] length of extended path characteristics (0)>
  590. * [<[...] extended path characteristics>]
  591. * <[1] address type>
  592. * <[1] address length in bytes>
  593. * <[...] address>
  594. *
  595. * Recipients will add these endpoints to a queue of possible endpoints
  596. * to try for a given peer.
  597. *
  598. * OK and ERROR are not generated.
  599. */
  600. VERB_PUSH_DIRECT_PATHS = 0x10,
  601. /**
  602. * A message with arbitrary user-definable content:
  603. * <[8] 64-bit arbitrary message type ID>
  604. * [<[...] message payload>]
  605. *
  606. * This can be used to send arbitrary messages over VL1. It generates no
  607. * OK or ERROR and has no special semantics outside of whatever the user
  608. * (via the ZeroTier core API) chooses to give it.
  609. *
  610. * Message type IDs less than or equal to 65535 are reserved for use by
  611. * ZeroTier, Inc. itself. We recommend making up random ones for your own
  612. * implementations.
  613. */
  614. VERB_USER_MESSAGE = 0x14,
  615. VERB_MULTICAST = 0x16,
  616. /**
  617. * Encapsulate a full ZeroTier packet in another:
  618. * <[...] raw encapsulated packet>
  619. *
  620. * Encapsulation exists to enable secure relaying as opposed to the usual
  621. * "dumb" relaying. The latter is faster but secure relaying has roles
  622. * where endpoint privacy is desired.
  623. *
  624. * Packet hop count is incremented as normal.
  625. */
  626. VERB_ENCAP = 0x17
  627. // protocol max: 0x1f
  628. };
  629. #ifdef ZT_DEBUG_SPEW
  630. static ZT_INLINE const char *verbName(const Verb v) noexcept
  631. {
  632. switch(v) {
  633. case VERB_NOP: return "NOP";
  634. case VERB_HELLO: return "HELLO";
  635. case VERB_ERROR: return "ERROR";
  636. case VERB_OK: return "OK";
  637. case VERB_WHOIS: return "WHOIS";
  638. case VERB_RENDEZVOUS: return "RENDEZVOUS";
  639. case VERB_FRAME: return "FRAME";
  640. case VERB_EXT_FRAME: return "EXT_FRAME";
  641. case VERB_ECHO: return "ECHO";
  642. case VERB_MULTICAST_LIKE: return "MULTICAST_LIKE";
  643. case VERB_NETWORK_CREDENTIALS: return "NETWORK_CREDENTIALS";
  644. case VERB_NETWORK_CONFIG_REQUEST: return "NETWORK_CONFIG_REQUEST";
  645. case VERB_NETWORK_CONFIG: return "NETWORK_CONFIG";
  646. case VERB_MULTICAST_GATHER: return "MULTICAST_GATHER";
  647. case VERB_MULTICAST_FRAME_deprecated: return "MULTICAST_FRAME_deprecated";
  648. case VERB_PUSH_DIRECT_PATHS: return "PUSH_DIRECT_PATHS";
  649. case VERB_USER_MESSAGE: return "USER_MESSAGE";
  650. case VERB_MULTICAST: return "MULTICAST";
  651. case VERB_ENCAP: return "ENCAP";
  652. default: return "(unknown)";
  653. }
  654. }
  655. #endif
  656. /**
  657. * Error codes used in ERROR packets.
  658. */
  659. enum ErrorCode
  660. {
  661. /* Invalid request */
  662. ERROR_INVALID_REQUEST = 0x01,
  663. /* Bad/unsupported protocol version */
  664. ERROR_BAD_PROTOCOL_VERSION = 0x02,
  665. /* Unknown object queried */
  666. ERROR_OBJ_NOT_FOUND = 0x03,
  667. /* Verb or use case not supported/enabled by this node */
  668. ERROR_UNSUPPORTED_OPERATION = 0x05,
  669. /* Network access denied; updated credentials needed */
  670. ERROR_NEED_MEMBERSHIP_CERTIFICATE = 0x06,
  671. /* Tried to join network, but you're not a member */
  672. ERROR_NETWORK_ACCESS_DENIED_ = 0x07, /* extra _ at end to avoid Windows name conflict */
  673. /* Cannot deliver a forwarded ZeroTier packet (for any reason) */
  674. ERROR_CANNOT_DELIVER = 0x09
  675. };
  676. /**
  677. * EXT_FRAME subtypes, which are packed into three bits in the flags field.
  678. *
  679. * This allows the node to know whether this is a normal frame or one generated
  680. * by a special tee or redirect type flow rule.
  681. */
  682. enum ExtFrameSubtype
  683. {
  684. EXT_FRAME_SUBTYPE_NORMAL = 0x0,
  685. EXT_FRAME_SUBTYPE_TEE_OUTBOUND = 0x1,
  686. EXT_FRAME_SUBTYPE_REDIRECT_OUTBOUND = 0x2,
  687. EXT_FRAME_SUBTYPE_WATCH_OUTBOUND = 0x3,
  688. EXT_FRAME_SUBTYPE_TEE_INBOUND = 0x4,
  689. EXT_FRAME_SUBTYPE_REDIRECT_INBOUND = 0x5,
  690. EXT_FRAME_SUBTYPE_WATCH_INBOUND = 0x6
  691. };
  692. /**
  693. * EXT_FRAME flags
  694. */
  695. enum ExtFrameFlag
  696. {
  697. /**
  698. * A certifiate of membership was included (no longer used but still accepted)
  699. */
  700. EXT_FRAME_FLAG_COM_ATTACHED_deprecated = 0x01,
  701. // bits 0x02, 0x04, and 0x08 are occupied by the 3-bit ExtFrameSubtype value.
  702. /**
  703. * An OK(EXT_FRAME) acknowledgement was requested by the sender.
  704. */
  705. EXT_FRAME_FLAG_ACK_REQUESTED = 0x10
  706. };
  707. /**
  708. * NETWORK_CONFIG (or OK(NETWORK_CONFIG_REQUEST)) flags
  709. */
  710. enum NetworkConfigFlag
  711. {
  712. /**
  713. * Indicates that this network config chunk should be fast propagated via rumor mill flooding.
  714. */
  715. NETWORK_CONFIG_FLAG_FAST_PROPAGATE = 0x01
  716. };
  717. /**
  718. * Deterministically mangle a 256-bit crypto key based on packet characteristics
  719. *
  720. * This uses extra data from the packet to mangle the secret, yielding when
  721. * combined with Salsa20's conventional 64-bit nonce an effective nonce that's
  722. * more like 68 bits.
  723. *
  724. * @param in Input key (32 bytes)
  725. * @param out Output buffer (32 bytes)
  726. */
  727. static ZT_INLINE void salsa2012DeriveKey(const uint8_t *const in,uint8_t *const out,const Buf &packet,const unsigned int packetSize) noexcept
  728. {
  729. // IV and source/destination addresses. Using the addresses divides the
  730. // key space into two halves-- A->B and B->A (since order will change).
  731. #ifdef ZT_NO_UNALIGNED_ACCESS
  732. for(int i=0;i<18;++i)
  733. out[i] = in[i] ^ packet.unsafeData[i];
  734. #else
  735. *reinterpret_cast<uint64_t *>(out) = *reinterpret_cast<const uint64_t *>(in) ^ *reinterpret_cast<const uint64_t *>(packet.unsafeData);
  736. *reinterpret_cast<uint64_t *>(out + 8) = *reinterpret_cast<const uint64_t *>(in + 8) ^ *reinterpret_cast<const uint64_t *>(packet.unsafeData + 8);
  737. *reinterpret_cast<uint16_t *>(out + 16) = *reinterpret_cast<const uint16_t *>(in + 16) ^ *reinterpret_cast<const uint16_t *>(packet.unsafeData + 16);
  738. #endif
  739. // Flags, but with hop count masked off. Hop count is altered by forwarding
  740. // nodes and is the only field that is mutable by unauthenticated third parties.
  741. out[18] = in[18] ^ (packet.unsafeData[18] & 0xf8U);
  742. // Raw packet size in bytes -- thus each packet size defines a new key space.
  743. out[19] = in[19] ^ (uint8_t)packetSize;
  744. out[20] = in[20] ^ (uint8_t)(packetSize >> 8U); // little endian
  745. // Rest of raw key is used unchanged
  746. #ifdef ZT_NO_UNALIGNED_ACCESS
  747. for(int i=21;i<32;++i)
  748. out[i] = in[i];
  749. #else
  750. out[21] = in[21];
  751. out[22] = in[22];
  752. out[23] = in[23];
  753. *reinterpret_cast<uint64_t *>(out + 24) = *reinterpret_cast<const uint64_t *>(in + 24);
  754. #endif
  755. }
  756. /**
  757. * Fill out packet header fields (except for mac, which is filled out by armor())
  758. *
  759. * @param pkt Start of packet buffer
  760. * @param packetId Packet IV / cryptographic MAC
  761. * @param destination Destination ZT address
  762. * @param source Source (sending) ZT address
  763. * @param verb Protocol verb
  764. * @return Index of packet start
  765. */
  766. static ZT_INLINE int newPacket(uint8_t pkt[28],const uint64_t packetId,const Address destination,const Address source,const Verb verb) noexcept
  767. {
  768. Utils::storeMachineEndian< uint64_t >(pkt + ZT_PROTO_PACKET_ID_INDEX, packetId);
  769. destination.copyTo(pkt + ZT_PROTO_PACKET_DESTINATION_INDEX);
  770. source.copyTo(pkt + ZT_PROTO_PACKET_SOURCE_INDEX);
  771. pkt[ZT_PROTO_PACKET_FLAGS_INDEX] = 0;
  772. Utils::storeMachineEndian< uint64_t >(pkt + ZT_PROTO_PACKET_MAC_INDEX, 0);
  773. pkt[ZT_PROTO_PACKET_VERB_INDEX] = (uint8_t)verb;
  774. return ZT_PROTO_PACKET_VERB_INDEX + 1;
  775. }
  776. static ZT_INLINE int newPacket(Buf &pkt,const uint64_t packetId,const Address destination,const Address source,const Verb verb) noexcept { return newPacket(pkt.unsafeData,packetId,destination,source,verb); }
  777. /**
  778. * Encrypt and compute packet MAC
  779. *
  780. * @param pkt Packet data to encrypt (in place)
  781. * @param packetSize Packet size, must be at least ZT_PROTO_MIN_PACKET_LENGTH or crash will occur
  782. * @param key Key to use for encryption
  783. * @param cipherSuite Cipher suite to use for AEAD encryption or just MAC
  784. */
  785. static ZT_INLINE void armor(uint8_t *const pkt,const int packetSize,const SharedPtr<SymmetricKey> &key,const uint8_t cipherSuite) noexcept
  786. {
  787. #if 0
  788. Protocol::Header &ph = pkt.as<Protocol::Header>(); // NOLINT(hicpp-use-auto,modernize-use-auto)
  789. ph.flags = (ph.flags & 0xc7U) | ((cipherSuite << 3U) & 0x38U); // flags: FFCCCHHH where CCC is cipher
  790. switch(cipherSuite) {
  791. case ZT_PROTO_CIPHER_SUITE__POLY1305_NONE: {
  792. uint8_t perPacketKey[ZT_SYMMETRIC_KEY_SIZE];
  793. salsa2012DeriveKey(key,perPacketKey,pkt,packetSize);
  794. Salsa20 s20(perPacketKey,&ph.packetId);
  795. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  796. s20.crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  797. // only difference here is that we don't encrypt the payload
  798. uint64_t mac[2];
  799. poly1305(mac,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  800. ph.mac = mac[0];
  801. } break;
  802. case ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012: {
  803. uint8_t perPacketKey[ZT_SYMMETRIC_KEY_SIZE];
  804. salsa2012DeriveKey(key,perPacketKey,pkt,packetSize);
  805. Salsa20 s20(perPacketKey,&ph.packetId);
  806. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  807. s20.crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  808. const unsigned int encLen = packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
  809. s20.crypt12(pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,encLen);
  810. uint64_t mac[2];
  811. poly1305(mac,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,encLen,macKey);
  812. ph.mac = mac[0];
  813. } break;
  814. case ZT_PROTO_CIPHER_SUITE__AES_GMAC_SIV: {
  815. } break;
  816. }
  817. #endif
  818. }
  819. /**
  820. * Attempt to compress packet payload
  821. *
  822. * This attempts compression and swaps the pointer in 'pkt' for a buffer holding
  823. * compressed data on success. If compression did not shrink the packet, the original
  824. * packet size is returned and 'pkt' remains unchanged. If compression is successful
  825. * the compressed verb flag is also set.
  826. *
  827. * @param pkt Packet buffer value/result parameter: pointer may be swapped if compression is successful
  828. * @param packetSize Total size of packet in bytes (including headers)
  829. * @return New size of packet after compression or original size of compression wasn't helpful
  830. */
  831. static ZT_INLINE int compress(SharedPtr<Buf> &pkt,int packetSize) noexcept
  832. {
  833. // TODO
  834. return packetSize;
  835. }
  836. } // namespace Protocol
  837. } // namespace ZeroTier
  838. #endif