Topology.cpp 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2024-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #include "Topology.hpp"
  14. namespace ZeroTier {
  15. Topology::Topology(const RuntimeEnvironment *renv, void *tPtr) :
  16. RR(renv),
  17. m_numConfiguredPhysicalPaths(0)
  18. {
  19. uint64_t idtmp[2];
  20. idtmp[0] = 0;
  21. idtmp[1] = 0;
  22. Vector<uint8_t> data(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_ROOTS, idtmp));
  23. if (!data.empty()) {
  24. uint8_t *dptr = data.data();
  25. int drem = (int) data.size();
  26. while (drem > 0) {
  27. Identity id;
  28. int l = id.unmarshal(dptr, drem);
  29. if (l > 0) {
  30. m_roots.insert(id);
  31. dptr += l;
  32. drem -= l;
  33. ZT_SPEW("loaded root %s", id.address().toString().c_str());
  34. }
  35. }
  36. }
  37. for (Set<Identity>::const_iterator r(m_roots.begin());r != m_roots.end();++r) {
  38. SharedPtr<Peer> p;
  39. m_loadCached(tPtr, r->address(), p);
  40. if ((!p) || (p->identity() != *r)) {
  41. p.set(new Peer(RR));
  42. p->init(*r);
  43. }
  44. m_rootPeers.push_back(p);
  45. m_peers[p->address()] = p;
  46. }
  47. }
  48. SharedPtr<Peer> Topology::add(void *tPtr, const SharedPtr<Peer> &peer)
  49. {
  50. RWMutex::Lock _l(m_peers_l);
  51. SharedPtr<Peer> &hp = m_peers[peer->address()];
  52. if (hp)
  53. return hp;
  54. m_loadCached(tPtr, peer->address(), hp);
  55. if (hp)
  56. return hp;
  57. hp = peer;
  58. return peer;
  59. }
  60. void Topology::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork, const ZT_PhysicalPathConfiguration *pathConfig)
  61. {
  62. if (!pathNetwork) {
  63. m_numConfiguredPhysicalPaths = 0;
  64. } else {
  65. std::map<InetAddress, ZT_PhysicalPathConfiguration> cpaths;
  66. for (unsigned int i = 0, j = m_numConfiguredPhysicalPaths;i < j;++i)
  67. cpaths[m_physicalPathConfig[i].first] = m_physicalPathConfig[i].second;
  68. if (pathConfig) {
  69. ZT_PhysicalPathConfiguration pc(*pathConfig);
  70. if (pc.mtu <= 0)
  71. pc.mtu = ZT_DEFAULT_UDP_MTU;
  72. else if (pc.mtu < ZT_MIN_UDP_MTU)
  73. pc.mtu = ZT_MIN_UDP_MTU;
  74. else if (pc.mtu > ZT_MAX_UDP_MTU)
  75. pc.mtu = ZT_MAX_UDP_MTU;
  76. cpaths[*(reinterpret_cast<const InetAddress *>(pathNetwork))] = pc;
  77. } else {
  78. cpaths.erase(*(reinterpret_cast<const InetAddress *>(pathNetwork)));
  79. }
  80. unsigned int cnt = 0;
  81. for (std::map<InetAddress, ZT_PhysicalPathConfiguration>::const_iterator i(cpaths.begin());((i != cpaths.end()) && (cnt < ZT_MAX_CONFIGURABLE_PATHS));++i) {
  82. m_physicalPathConfig[cnt].first = i->first;
  83. m_physicalPathConfig[cnt].second = i->second;
  84. ++cnt;
  85. }
  86. m_numConfiguredPhysicalPaths = cnt;
  87. }
  88. }
  89. struct p_RootSortComparisonOperator
  90. {
  91. ZT_INLINE bool operator()(const SharedPtr<Peer> &a, const SharedPtr<Peer> &b) const noexcept
  92. {
  93. // Sort in inverse order of latency with lowest latency first (and -1 last).
  94. const int bb = b->latency();
  95. if (bb < 0)
  96. return true;
  97. return bb < a->latency();
  98. }
  99. };
  100. void Topology::addRoot(void *const tPtr, const Identity &id, const InetAddress &bootstrap)
  101. {
  102. if (id == RR->identity)
  103. return;
  104. RWMutex::Lock l1(m_peers_l);
  105. std::pair<Set<Identity>::iterator, bool> ir(m_roots.insert(id));
  106. if (ir.second) {
  107. SharedPtr<Peer> &p = m_peers[id.address()];
  108. if (!p) {
  109. p.set(new Peer(RR));
  110. p->init(id);
  111. if (bootstrap)
  112. p->setBootstrap(Endpoint(bootstrap));
  113. }
  114. m_rootPeers.push_back(p);
  115. std::sort(m_rootPeers.begin(), m_rootPeers.end(), p_RootSortComparisonOperator());
  116. m_writeRootList(tPtr);
  117. }
  118. }
  119. bool Topology::removeRoot(void *const tPtr, const Identity &id)
  120. {
  121. RWMutex::Lock l1(m_peers_l);
  122. Set<Identity>::iterator r(m_roots.find(id));
  123. if (r != m_roots.end()) {
  124. for (Vector<SharedPtr<Peer> >::iterator p(m_rootPeers.begin());p != m_rootPeers.end();++p) {
  125. if ((*p)->identity() == id) {
  126. m_rootPeers.erase(p);
  127. break;
  128. }
  129. }
  130. m_roots.erase(r);
  131. m_writeRootList(tPtr);
  132. return true;
  133. }
  134. return false;
  135. }
  136. void Topology::rankRoots()
  137. {
  138. RWMutex::Lock l1(m_peers_l);
  139. std::sort(m_rootPeers.begin(), m_rootPeers.end(), p_RootSortComparisonOperator());
  140. }
  141. void Topology::doPeriodicTasks(void *tPtr, const int64_t now)
  142. {
  143. // Delete peers that haven't said anything in ZT_PEER_ALIVE_TIMEOUT.
  144. {
  145. RWMutex::Lock l1(m_peers_l);
  146. for (Map<Address, SharedPtr<Peer> >::iterator i(m_peers.begin());i != m_peers.end();) {
  147. if (((now - i->second->lastReceive()) > ZT_PEER_ALIVE_TIMEOUT) && (m_roots.count(i->second->identity()) == 0)) {
  148. i->second->save(tPtr);
  149. m_peers.erase(i++);
  150. } else ++i;
  151. }
  152. }
  153. // Delete paths that are no longer held by anyone else ("weak reference" type behavior).
  154. {
  155. RWMutex::Lock l1(m_paths_l);
  156. for (Map<uint64_t, SharedPtr<Path> >::iterator i(m_paths.begin());i != m_paths.end();) {
  157. if (i->second.weakGC())
  158. m_paths.erase(i++);
  159. else ++i;
  160. }
  161. }
  162. }
  163. void Topology::saveAll(void *tPtr)
  164. {
  165. RWMutex::RLock l(m_peers_l);
  166. for (Map<Address, SharedPtr<Peer> >::iterator i(m_peers.begin());i != m_peers.end();++i)
  167. i->second->save(tPtr);
  168. }
  169. void Topology::m_loadCached(void *tPtr, const Address &zta, SharedPtr<Peer> &peer)
  170. {
  171. try {
  172. uint64_t id[2];
  173. id[0] = zta.toInt();
  174. id[1] = 0;
  175. Vector<uint8_t> data(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_PEER, id));
  176. if (data.size() > 8) {
  177. const uint8_t *d = data.data();
  178. int dl = (int) data.size();
  179. const int64_t ts = (int64_t) Utils::loadBigEndian<uint64_t>(d);
  180. Peer *const p = new Peer(RR);
  181. int n = p->unmarshal(d + 8, dl - 8);
  182. if (n < 0) {
  183. delete p;
  184. return;
  185. }
  186. if ((RR->node->now() - ts) < ZT_PEER_GLOBAL_TIMEOUT) {
  187. // TODO: handle many peers, same address (?)
  188. peer.set(p);
  189. return;
  190. }
  191. }
  192. } catch (...) {
  193. peer.zero();
  194. }
  195. }
  196. void Topology::m_writeRootList(void *tPtr)
  197. {
  198. // assumes m_peers_l is locked
  199. uint8_t *const roots = (uint8_t *) malloc(ZT_IDENTITY_MARSHAL_SIZE_MAX * m_roots.size());
  200. if (roots) { // sanity check
  201. int p = 0;
  202. for (Set<Identity>::const_iterator i(m_roots.begin());i != m_roots.end();++i) {
  203. const int pp = i->marshal(roots + p, false);
  204. if (pp > 0)
  205. p += pp;
  206. }
  207. uint64_t id[2];
  208. id[0] = 0;
  209. id[1] = 0;
  210. RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_ROOTS, id, roots, (unsigned int) p);
  211. free(roots);
  212. }
  213. }
  214. } // namespace ZeroTier