Switch.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "../version.h"
  33. #include "../include/ZeroTierOne.h"
  34. #include "Constants.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "Switch.hpp"
  37. #include "Node.hpp"
  38. #include "InetAddress.hpp"
  39. #include "Topology.hpp"
  40. #include "Peer.hpp"
  41. #include "CMWC4096.hpp"
  42. #include "AntiRecursion.hpp"
  43. #include "Packet.hpp"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. RR(renv),
  47. _lastBeacon(0)
  48. {
  49. }
  50. Switch::~Switch()
  51. {
  52. }
  53. void Switch::onRemotePacket(const InetAddress &fromAddr,const void *data,unsigned int len)
  54. {
  55. try {
  56. if (len == ZT_PROTO_BEACON_LENGTH) {
  57. _handleBeacon(fromAddr,Buffer<ZT_PROTO_BEACON_LENGTH>(data,len));
  58. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  59. if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  60. _handleRemotePacketFragment(fromAddr,data,len);
  61. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) {
  62. _handleRemotePacketHead(fromAddr,data,len);
  63. }
  64. }
  65. } catch (std::exception &ex) {
  66. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  67. } catch ( ... ) {
  68. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  69. }
  70. }
  71. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  72. {
  73. SharedPtr<NetworkConfig> nconf(network->config2());
  74. if (!nconf)
  75. return;
  76. // Sanity check -- bridge loop? OS problem?
  77. if (to == network->mac())
  78. return;
  79. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  80. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  81. * still happen because Windows likes to send broadcasts over interfaces that have little
  82. * to do with their intended target audience. :P */
  83. if (!RR->antiRec->checkEthernetFrame(data,len)) {
  84. TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len);
  85. return;
  86. }
  87. // Check to make sure this protocol is allowed on this network
  88. if (!nconf->permitsEtherType(etherType)) {
  89. TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  90. return;
  91. }
  92. // Check if this packet is from someone other than the tap -- i.e. bridged in
  93. bool fromBridged = false;
  94. if (from != network->mac()) {
  95. if (!network->permitsBridging(RR->identity.address())) {
  96. TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  97. return;
  98. }
  99. fromBridged = true;
  100. }
  101. if (to.isMulticast()) {
  102. // Destination is a multicast address (including broadcast)
  103. MulticastGroup mg(to,0);
  104. if (to.isBroadcast()) {
  105. if (
  106. (etherType == ZT_ETHERTYPE_ARP)&&
  107. (len >= 28)&&
  108. (
  109. (((const unsigned char *)data)[2] == 0x08)&&
  110. (((const unsigned char *)data)[3] == 0x00)&&
  111. (((const unsigned char *)data)[4] == 6)&&
  112. (((const unsigned char *)data)[5] == 4)&&
  113. (((const unsigned char *)data)[7] == 0x01)
  114. )
  115. ) {
  116. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  117. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  118. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  119. } else if (!nconf->enableBroadcast()) {
  120. // Don't transmit broadcasts if this network doesn't want them
  121. TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
  122. return;
  123. }
  124. }
  125. /* Learn multicast groups for bridged-in hosts.
  126. * Note that some OSes, most notably Linux, do this for you by learning
  127. * multicast addresses on bridge interfaces and subscribing each slave.
  128. * But in that case this does no harm, as the sets are just merged. */
  129. if (fromBridged)
  130. network->learnBridgedMulticastGroup(mg,RR->node->now());
  131. //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
  132. RR->mc->send(
  133. ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
  134. nconf->multicastLimit(),
  135. RR->node->now(),
  136. network->id(),
  137. nconf->activeBridges(),
  138. mg,
  139. (fromBridged) ? from : MAC(),
  140. etherType,
  141. data,
  142. len);
  143. return;
  144. }
  145. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  146. // Destination is another ZeroTier peer on the same network
  147. Address toZT(to.toAddress(network->id()));
  148. if (network->isAllowed(toZT)) {
  149. if (network->peerNeedsOurMembershipCertificate(toZT,RR->node->now())) {
  150. // TODO: once there are no more <1.0.0 nodes around, we can
  151. // bundle this with EXT_FRAME instead of sending two packets.
  152. Packet outp(toZT,RR->identity.address(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE);
  153. nconf->com().serialize(outp);
  154. send(outp,true,network->id());
  155. }
  156. if (fromBridged) {
  157. // EXT_FRAME is used for bridging or if we want to include a COM
  158. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  159. outp.append(network->id());
  160. outp.append((unsigned char)0);
  161. to.appendTo(outp);
  162. from.appendTo(outp);
  163. outp.append((uint16_t)etherType);
  164. outp.append(data,len);
  165. outp.compress();
  166. send(outp,true,network->id());
  167. } else {
  168. // FRAME is a shorter version that can be used when there's no bridging and no COM
  169. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  170. outp.append(network->id());
  171. outp.append((uint16_t)etherType);
  172. outp.append(data,len);
  173. outp.compress();
  174. send(outp,true,network->id());
  175. }
  176. //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged);
  177. } else {
  178. TRACE("%.16llx: UNICAST: %s -> %s etherType==%s dropped, destination not a member of private network",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  179. }
  180. return;
  181. }
  182. {
  183. // Destination is bridged behind a remote peer
  184. Address bridges[ZT_MAX_BRIDGE_SPAM];
  185. unsigned int numBridges = 0;
  186. bridges[0] = network->findBridgeTo(to);
  187. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) {
  188. // We have a known bridge route for this MAC.
  189. ++numBridges;
  190. } else if (!nconf->activeBridges().empty()) {
  191. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  192. * bridges. This is similar to what many switches do -- if they do not
  193. * know which port corresponds to a MAC, they send it to all ports. If
  194. * there aren't any active bridges, numBridges will stay 0 and packet
  195. * is dropped. */
  196. std::vector<Address>::const_iterator ab(nconf->activeBridges().begin());
  197. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  198. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  199. while (ab != nconf->activeBridges().end()) {
  200. if (network->isAllowed(*ab)) // config sanity check
  201. bridges[numBridges++] = *ab;
  202. ++ab;
  203. }
  204. } else {
  205. // Otherwise pick a random set of them
  206. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  207. if (ab == nconf->activeBridges().end())
  208. ab = nconf->activeBridges().begin();
  209. if (((unsigned long)RR->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
  210. if (network->isAllowed(*ab)) // config sanity check
  211. bridges[numBridges++] = *ab;
  212. ++ab;
  213. } else ++ab;
  214. }
  215. }
  216. }
  217. for(unsigned int b=0;b<numBridges;++b) {
  218. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  219. outp.append(network->id());
  220. outp.append((unsigned char)0);
  221. to.appendTo(outp);
  222. from.appendTo(outp);
  223. outp.append((uint16_t)etherType);
  224. outp.append(data,len);
  225. outp.compress();
  226. send(outp,true,network->id());
  227. }
  228. }
  229. }
  230. void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid)
  231. {
  232. if (packet.destination() == RR->identity.address()) {
  233. TRACE("BUG: caught attempt to send() to self, ignored");
  234. return;
  235. }
  236. if (!_trySend(packet,encrypt,nwid)) {
  237. Mutex::Lock _l(_txQueue_m);
  238. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(RR->node->now(),packet,encrypt,nwid)));
  239. }
  240. }
  241. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  242. {
  243. if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
  244. return false;
  245. SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
  246. if (!p1p)
  247. return false;
  248. SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
  249. if (!p2p)
  250. return false;
  251. const uint64_t now = RR->node->now();
  252. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  253. if (!(cg.first))
  254. return false;
  255. if (cg.first.ipScope() != cg.second.ipScope())
  256. return false;
  257. // Addresses are sorted in key for last unite attempt map for order
  258. // invariant lookup: (p1,p2) == (p2,p1)
  259. Array<Address,2> uniteKey;
  260. if (p1 >= p2) {
  261. uniteKey[0] = p2;
  262. uniteKey[1] = p1;
  263. } else {
  264. uniteKey[0] = p1;
  265. uniteKey[1] = p2;
  266. }
  267. {
  268. Mutex::Lock _l(_lastUniteAttempt_m);
  269. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  270. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  271. return false;
  272. else _lastUniteAttempt[uniteKey] = now;
  273. }
  274. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  275. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  276. * P2 in randomized order in terms of which gets sent first. This is done
  277. * since in a few cases NAT-t can be sensitive to slight timing differences
  278. * in terms of when the two peers initiate. Normally this is accounted for
  279. * by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
  280. * given that relay are hosted on cloud providers this can in some
  281. * cases have a few ms of latency between packet departures. By randomizing
  282. * the order we make each attempted NAT-t favor one or the other going
  283. * first, meaning if it doesn't succeed the first time it might the second
  284. * and so forth. */
  285. unsigned int alt = RR->prng->next32() & 1;
  286. unsigned int completed = alt + 2;
  287. while (alt != completed) {
  288. if ((alt & 1) == 0) {
  289. // Tell p1 where to find p2.
  290. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  291. outp.append((unsigned char)0);
  292. p2.appendTo(outp);
  293. outp.append((uint16_t)cg.first.port());
  294. if (cg.first.isV6()) {
  295. outp.append((unsigned char)16);
  296. outp.append(cg.first.rawIpData(),16);
  297. } else {
  298. outp.append((unsigned char)4);
  299. outp.append(cg.first.rawIpData(),4);
  300. }
  301. outp.armor(p1p->key(),true);
  302. p1p->send(RR,outp.data(),outp.size(),now);
  303. } else {
  304. // Tell p2 where to find p1.
  305. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  306. outp.append((unsigned char)0);
  307. p1.appendTo(outp);
  308. outp.append((uint16_t)cg.second.port());
  309. if (cg.second.isV6()) {
  310. outp.append((unsigned char)16);
  311. outp.append(cg.second.rawIpData(),16);
  312. } else {
  313. outp.append((unsigned char)4);
  314. outp.append(cg.second.rawIpData(),4);
  315. }
  316. outp.armor(p2p->key(),true);
  317. p2p->send(RR,outp.data(),outp.size(),now);
  318. }
  319. ++alt; // counts up and also flips LSB
  320. }
  321. return true;
  322. }
  323. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  324. {
  325. TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
  326. const uint64_t now = RR->node->now();
  327. // Attempt to contact directly
  328. peer->attemptToContactAt(RR,atAddr,now);
  329. // If we have not punched through after this timeout, open refreshing can of whupass
  330. {
  331. Mutex::Lock _l(_contactQueue_m);
  332. _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,atAddr));
  333. }
  334. }
  335. void Switch::requestWhois(const Address &addr)
  336. {
  337. bool inserted = false;
  338. {
  339. Mutex::Lock _l(_outstandingWhoisRequests_m);
  340. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  341. if ((inserted = entry.second))
  342. entry.first->second.lastSent = RR->node->now();
  343. entry.first->second.retries = 0; // reset retry count if entry already existed
  344. }
  345. if (inserted)
  346. _sendWhoisRequest(addr,(const Address *)0,0);
  347. }
  348. void Switch::cancelWhoisRequest(const Address &addr)
  349. {
  350. Mutex::Lock _l(_outstandingWhoisRequests_m);
  351. _outstandingWhoisRequests.erase(addr);
  352. }
  353. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  354. {
  355. { // cancel pending WHOIS since we now know this peer
  356. Mutex::Lock _l(_outstandingWhoisRequests_m);
  357. _outstandingWhoisRequests.erase(peer->address());
  358. }
  359. { // finish processing any packets waiting on peer's public key / identity
  360. Mutex::Lock _l(_rxQueue_m);
  361. for(std::list< SharedPtr<IncomingPacket> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  362. if ((*rxi)->tryDecode(RR))
  363. _rxQueue.erase(rxi++);
  364. else ++rxi;
  365. }
  366. }
  367. { // finish sending any packets waiting on peer's public key / identity
  368. Mutex::Lock _l(_txQueue_m);
  369. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  370. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  371. if (_trySend(txi->second.packet,txi->second.encrypt,txi->second.nwid))
  372. _txQueue.erase(txi++);
  373. else ++txi;
  374. }
  375. }
  376. }
  377. unsigned long Switch::doTimerTasks(uint64_t now)
  378. {
  379. unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
  380. { // Aggressive NAT traversal time!
  381. Mutex::Lock _l(_contactQueue_m);
  382. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  383. if (now >= qi->fireAtTime) {
  384. if (qi->peer->hasActiveDirectPath(now)) {
  385. // We've successfully NAT-t'd, so cancel attempt
  386. _contactQueue.erase(qi++);
  387. continue;
  388. } else {
  389. // Nope, nothing yet. Time to kill some kittens.
  390. if (qi->strategyIteration == 0) {
  391. // First strategy: send packet directly (we already tried this but try again)
  392. qi->peer->attemptToContactAt(RR,qi->inaddr,now);
  393. } else if (qi->strategyIteration <= 9) {
  394. // Strategies 1-9: try escalating ports
  395. InetAddress tmpaddr(qi->inaddr);
  396. int p = (int)qi->inaddr.port() + qi->strategyIteration;
  397. if (p < 0xffff) {
  398. tmpaddr.setPort((unsigned int)p);
  399. qi->peer->attemptToContactAt(RR,tmpaddr,now);
  400. } else qi->strategyIteration = 9;
  401. } else if (qi->strategyIteration <= 18) {
  402. // Strategies 10-18: try ports below
  403. InetAddress tmpaddr(qi->inaddr);
  404. int p = (int)qi->inaddr.port() - (qi->strategyIteration - 9);
  405. if (p >= 1024) {
  406. tmpaddr.setPort((unsigned int)p);
  407. qi->peer->attemptToContactAt(RR,tmpaddr,now);
  408. } else qi->strategyIteration = 18;
  409. } else {
  410. // All strategies tried, expire entry
  411. _contactQueue.erase(qi++);
  412. continue;
  413. }
  414. ++qi->strategyIteration;
  415. qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
  416. nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
  417. }
  418. } else {
  419. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  420. }
  421. ++qi; // if qi was erased, loop will have continued before here
  422. }
  423. }
  424. { // Retry outstanding WHOIS requests
  425. Mutex::Lock _l(_outstandingWhoisRequests_m);
  426. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  427. unsigned long since = (unsigned long)(now - i->second.lastSent);
  428. if (since >= ZT_WHOIS_RETRY_DELAY) {
  429. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  430. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  431. _outstandingWhoisRequests.erase(i++);
  432. continue;
  433. } else {
  434. i->second.lastSent = now;
  435. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  436. ++i->second.retries;
  437. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  438. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  439. }
  440. } else {
  441. nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  442. }
  443. ++i;
  444. }
  445. }
  446. { // Time out TX queue packets that never got WHOIS lookups or other info.
  447. Mutex::Lock _l(_txQueue_m);
  448. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  449. if (_trySend(i->second.packet,i->second.encrypt,i->second.nwid))
  450. _txQueue.erase(i++);
  451. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  452. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  453. _txQueue.erase(i++);
  454. } else ++i;
  455. }
  456. }
  457. { // Time out RX queue packets that never got WHOIS lookups or other info.
  458. Mutex::Lock _l(_rxQueue_m);
  459. for(std::list< SharedPtr<IncomingPacket> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  460. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  461. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  462. _rxQueue.erase(i++);
  463. } else ++i;
  464. }
  465. }
  466. { // Time out packets that didn't get all their fragments.
  467. Mutex::Lock _l(_defragQueue_m);
  468. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  469. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  470. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  471. _defragQueue.erase(i++);
  472. } else ++i;
  473. }
  474. }
  475. return nextDelay;
  476. }
  477. const char *Switch::etherTypeName(const unsigned int etherType)
  478. throw()
  479. {
  480. switch(etherType) {
  481. case ZT_ETHERTYPE_IPV4: return "IPV4";
  482. case ZT_ETHERTYPE_ARP: return "ARP";
  483. case ZT_ETHERTYPE_RARP: return "RARP";
  484. case ZT_ETHERTYPE_ATALK: return "ATALK";
  485. case ZT_ETHERTYPE_AARP: return "AARP";
  486. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  487. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  488. case ZT_ETHERTYPE_IPV6: return "IPV6";
  489. }
  490. return "UNKNOWN";
  491. }
  492. void Switch::_handleRemotePacketFragment(const InetAddress &fromAddr,const void *data,unsigned int len)
  493. {
  494. Packet::Fragment fragment(data,len);
  495. Address destination(fragment.destination());
  496. if (destination != RR->identity.address()) {
  497. // Fragment is not for us, so try to relay it
  498. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  499. fragment.incrementHops();
  500. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  501. // It wouldn't hurt anything, just redundant and unnecessary.
  502. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  503. if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
  504. // Don't know peer or no direct path -- so relay via root server
  505. relayTo = RR->topology->getBestRoot();
  506. if (relayTo)
  507. relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
  508. }
  509. } else {
  510. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  511. }
  512. } else {
  513. // Fragment looks like ours
  514. uint64_t pid = fragment.packetId();
  515. unsigned int fno = fragment.fragmentNumber();
  516. unsigned int tf = fragment.totalFragments();
  517. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  518. // Fragment appears basically sane. Its fragment number must be
  519. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  520. // Total fragments must be more than 1, otherwise why are we
  521. // seeing a Packet::Fragment?
  522. Mutex::Lock _l(_defragQueue_m);
  523. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  524. if (dqe == _defragQueue.end()) {
  525. // We received a Packet::Fragment without its head, so queue it and wait
  526. DefragQueueEntry &dq = _defragQueue[pid];
  527. dq.creationTime = RR->node->now();
  528. dq.frags[fno - 1] = fragment;
  529. dq.totalFragments = tf; // total fragment count is known
  530. dq.haveFragments = 1 << fno; // we have only this fragment
  531. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  532. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  533. // We have other fragments and maybe the head, so add this one and check
  534. dqe->second.frags[fno - 1] = fragment;
  535. dqe->second.totalFragments = tf;
  536. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  537. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  538. // We have all fragments -- assemble and process full Packet
  539. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  540. SharedPtr<IncomingPacket> packet(dqe->second.frag0);
  541. for(unsigned int f=1;f<tf;++f)
  542. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  543. _defragQueue.erase(dqe);
  544. if (!packet->tryDecode(RR)) {
  545. Mutex::Lock _l(_rxQueue_m);
  546. _rxQueue.push_back(packet);
  547. }
  548. }
  549. } // else this is a duplicate fragment, ignore
  550. }
  551. }
  552. }
  553. void Switch::_handleRemotePacketHead(const InetAddress &fromAddr,const void *data,unsigned int len)
  554. {
  555. SharedPtr<IncomingPacket> packet(new IncomingPacket(data,len,fromAddr,RR->node->now()));
  556. Address source(packet->source());
  557. Address destination(packet->destination());
  558. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  559. if (destination != RR->identity.address()) {
  560. // Packet is not for us, so try to relay it
  561. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  562. packet->incrementHops();
  563. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  564. if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
  565. unite(source,destination,false);
  566. } else {
  567. // Don't know peer or no direct path -- so relay via root server
  568. relayTo = RR->topology->getBestRoot(&source,1,true);
  569. if (relayTo)
  570. relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
  571. }
  572. } else {
  573. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  574. }
  575. } else if (packet->fragmented()) {
  576. // Packet is the head of a fragmented packet series
  577. uint64_t pid = packet->packetId();
  578. Mutex::Lock _l(_defragQueue_m);
  579. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  580. if (dqe == _defragQueue.end()) {
  581. // If we have no other fragments yet, create an entry and save the head
  582. DefragQueueEntry &dq = _defragQueue[pid];
  583. dq.creationTime = RR->node->now();
  584. dq.frag0 = packet;
  585. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  586. dq.haveFragments = 1; // head is first bit (left to right)
  587. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  588. } else if (!(dqe->second.haveFragments & 1)) {
  589. // If we have other fragments but no head, see if we are complete with the head
  590. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  591. // We have all fragments -- assemble and process full Packet
  592. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  593. // packet already contains head, so append fragments
  594. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  595. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  596. _defragQueue.erase(dqe);
  597. if (!packet->tryDecode(RR)) {
  598. Mutex::Lock _l(_rxQueue_m);
  599. _rxQueue.push_back(packet);
  600. }
  601. } else {
  602. // Still waiting on more fragments, so queue the head
  603. dqe->second.frag0 = packet;
  604. }
  605. } // else this is a duplicate head, ignore
  606. } else {
  607. // Packet is unfragmented, so just process it
  608. if (!packet->tryDecode(RR)) {
  609. Mutex::Lock _l(_rxQueue_m);
  610. _rxQueue.push_back(packet);
  611. }
  612. }
  613. }
  614. void Switch::_handleBeacon(const InetAddress &fromAddr,const Buffer<ZT_PROTO_BEACON_LENGTH> &data)
  615. {
  616. Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  617. if (beaconAddr == RR->identity.address())
  618. return;
  619. SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
  620. if (peer) {
  621. const uint64_t now = RR->node->now();
  622. if ((now - _lastBeacon) >= ZT_MIN_BEACON_RESPONSE_INTERVAL) {
  623. _lastBeacon = now;
  624. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  625. outp.armor(peer->key(),false);
  626. RR->node->putPacket(fromAddr,outp.data(),outp.size());
  627. }
  628. }
  629. }
  630. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  631. {
  632. SharedPtr<Peer> root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  633. if (root) {
  634. Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS);
  635. addr.appendTo(outp);
  636. outp.armor(root->key(),true);
  637. if (root->send(RR,outp.data(),outp.size(),RR->node->now()))
  638. return root->address();
  639. }
  640. return Address();
  641. }
  642. bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
  643. {
  644. SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
  645. if (peer) {
  646. const uint64_t now = RR->node->now();
  647. Path *viaPath = peer->getBestPath(now);
  648. if (!viaPath) {
  649. SharedPtr<Peer> relay;
  650. if (nwid) {
  651. SharedPtr<Network> network(RR->node->network(nwid));
  652. if (network) {
  653. SharedPtr<NetworkConfig> nconf(network->config2());
  654. if (nconf) {
  655. unsigned int latency = ~((unsigned int)0);
  656. for(std::vector< std::pair<Address,InetAddress> >::const_iterator r(nconf->relays().begin());r!=nconf->relays().end();++r) {
  657. if (r->first != peer->address()) {
  658. SharedPtr<Peer> rp(RR->topology->getPeer(r->first));
  659. if ((rp)&&(rp->hasActiveDirectPath(now))&&(rp->latency() <= latency))
  660. rp.swap(relay);
  661. }
  662. }
  663. }
  664. }
  665. }
  666. if (!relay)
  667. relay = RR->topology->getBestRoot();
  668. if (!(relay)||(!(viaPath = relay->getBestPath(now))))
  669. return false;
  670. }
  671. Packet tmp(packet);
  672. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  673. tmp.setFragmented(chunkSize < tmp.size());
  674. tmp.armor(peer->key(),encrypt);
  675. if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
  676. if (chunkSize < tmp.size()) {
  677. // Too big for one bite, fragment the rest
  678. unsigned int fragStart = chunkSize;
  679. unsigned int remaining = tmp.size() - chunkSize;
  680. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  681. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  682. ++fragsRemaining;
  683. unsigned int totalFragments = fragsRemaining + 1;
  684. for(unsigned int fno=1;fno<totalFragments;++fno) {
  685. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  686. Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
  687. viaPath->send(RR,frag.data(),frag.size(),now);
  688. fragStart += chunkSize;
  689. remaining -= chunkSize;
  690. }
  691. }
  692. return true;
  693. }
  694. } else {
  695. requestWhois(packet.destination());
  696. }
  697. return false;
  698. }
  699. } // namespace ZeroTier