123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- /*
- * ZeroTier One - Global Peer to Peer Ethernet
- * Copyright (C) 2012-2013 ZeroTier Networks LLC
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- * --
- *
- * ZeroTier may be used and distributed under the terms of the GPLv3, which
- * are available at: http://www.gnu.org/licenses/gpl-3.0.html
- *
- * If you would like to embed ZeroTier into a commercial application or
- * redistribute it in a modified binary form, please contact ZeroTier Networks
- * LLC. Start here: http://www.zerotier.com/
- */
- #include <iostream>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdint.h>
- #include <openssl/sha.h>
- #include "Identity.hpp"
- #include "Salsa20.hpp"
- #include "HMAC.hpp"
- #include "Utils.hpp"
- namespace ZeroTier {
- void Identity::generate()
- {
- delete [] _keyPair;
- // Generate key pair and derive address
- do {
- _keyPair = new EllipticCurveKeyPair();
- _keyPair->generate();
- _address = deriveAddress(_keyPair->pub().data(),_keyPair->pub().size());
- } while (_address.isReserved());
- _publicKey = _keyPair->pub();
- // Sign address, key type, and public key with private key (with a zero
- // byte between each field). Including this extra data means simply editing
- // the address of an identity will be detected as its signature will be
- // invalid. Of course, deep verification of address/key relationship is
- // required to cover the more elaborate address claim jump attempt case.
- unsigned char atmp[ZT_ADDRESS_LENGTH];
- _address.copyTo(atmp);
- SHA256_CTX sha;
- unsigned char dig[32];
- unsigned char idtype = IDENTITY_TYPE_NIST_P_521,zero = 0;
- SHA256_Init(&sha);
- SHA256_Update(&sha,atmp,ZT_ADDRESS_LENGTH);
- SHA256_Update(&sha,&zero,1);
- SHA256_Update(&sha,&idtype,1);
- SHA256_Update(&sha,&zero,1);
- SHA256_Update(&sha,_publicKey.data(),_publicKey.size());
- SHA256_Update(&sha,&zero,1);
- SHA256_Final(dig,&sha);
- _signature = _keyPair->sign(dig);
- }
- bool Identity::locallyValidate(bool doAddressDerivationCheck) const
- {
- unsigned char atmp[ZT_ADDRESS_LENGTH];
- _address.copyTo(atmp);
- SHA256_CTX sha;
- unsigned char dig[32];
- unsigned char idtype = IDENTITY_TYPE_NIST_P_521,zero = 0;
- SHA256_Init(&sha);
- SHA256_Update(&sha,atmp,ZT_ADDRESS_LENGTH);
- SHA256_Update(&sha,&zero,1);
- SHA256_Update(&sha,&idtype,1);
- SHA256_Update(&sha,&zero,1);
- SHA256_Update(&sha,_publicKey.data(),_publicKey.size());
- SHA256_Update(&sha,&zero,1);
- SHA256_Final(dig,&sha);
- return ((EllipticCurveKeyPair::verify(dig,_publicKey,_signature.data(),_signature.length()))&&((!doAddressDerivationCheck)||(deriveAddress(_publicKey.data(),_publicKey.size()) == _address)));
- }
- std::string Identity::toString(bool includePrivate) const
- {
- std::string r;
- r.append(_address.toString());
- r.append(":1:"); // 1 == IDENTITY_TYPE_NIST_P_521
- r.append(Utils::base64Encode(_publicKey.data(),_publicKey.size()));
- r.push_back(':');
- r.append(Utils::base64Encode(_signature.data(),_signature.length()));
- if ((includePrivate)&&(_keyPair)) {
- r.push_back(':');
- r.append(Utils::base64Encode(_keyPair->priv().data(),_keyPair->priv().size()));
- }
- return r;
- }
- bool Identity::fromString(const char *str)
- {
- delete _keyPair;
- _keyPair = (EllipticCurveKeyPair *)0;
- std::vector<std::string> fields(Utils::split(Utils::trim(std::string(str)).c_str(),":","",""));
- if (fields.size() < 4)
- return false;
- if (fields[1] != "1")
- return false; // version mismatch
- std::string b(Utils::unhex(fields[0]));
- if (b.length() != ZT_ADDRESS_LENGTH)
- return false;
- _address = b.data();
- b = Utils::base64Decode(fields[2]);
- if ((!b.length())||(b.length() > ZT_EC_MAX_BYTES))
- return false;
- _publicKey.set(b.data(),b.length());
- _signature = Utils::base64Decode(fields[3]);
- if (!_signature.length())
- return false;
- if (fields.size() >= 5) {
- b = Utils::base64Decode(fields[4]);
- if ((!b.length())||(b.length() > ZT_EC_MAX_BYTES))
- return false;
- _keyPair = new EllipticCurveKeyPair(_publicKey,EllipticCurveKey(b.data(),b.length()));
- }
- return true;
- }
- // These are core protocol parameters and can't be changed without a new
- // identity type.
- #define ZT_IDENTITY_DERIVEADDRESS_ROUNDS 4
- #define ZT_IDENTITY_DERIVEADDRESS_MEMORY 33554432
- Address Identity::deriveAddress(const void *keyBytes,unsigned int keyLen)
- {
- unsigned char dig[32];
- Salsa20 s20a,s20b;
- SHA256_CTX sha;
- /*
- * Sequential memory-hard algorithm wedding address to public key
- *
- * Conventional hashcash with long computations and quick verifications
- * unfortunately cannot be used here. If that were used, it would be
- * equivalently costly to simply increment/vary the public key and find
- * a collision as it would be to find the address. We need something
- * that creates a costly 1:~1 mapping from key to address, hence this odd
- * algorithm.
- *
- * This is designed not to be parallelizable and to be resistant to
- * implementation on things like GPUs with tiny-memory nodes and poor
- * branching capability. Toward that end it throws branching and a large
- * memory buffer into the mix. It can only be efficiently computed by a
- * single core with at least ~32MB RAM.
- *
- * Search for "sequential memory hard algorithm" for academic references
- * to similar concepts.
- *
- * Right now this takes ~1700ms on a 2.4ghz Intel Core i5. If this could
- * be reduced to 1ms per derivation, it would take about 34 years to search
- * the entire 40-bit address space for an average of ~17 years to generate
- * a key colliding with a known existing address.
- */
- // Initial starting digest
- SHA256_Init(&sha);
- SHA256_Update(&sha,(const unsigned char *)keyBytes,keyLen); // key
- SHA256_Final(dig,&sha);
- s20a.init(dig,256,"ZeroTier");
- unsigned char *ram = new unsigned char[ZT_IDENTITY_DERIVEADDRESS_MEMORY];
- // Encrypt and digest a large memory buffer for several rounds
- for(unsigned long i=0;i<ZT_IDENTITY_DERIVEADDRESS_MEMORY;++i)
- ram[i] = (unsigned char)(i & 0xff) ^ dig[i & 31];
- for(unsigned long r=0;r<ZT_IDENTITY_DERIVEADDRESS_ROUNDS;++r) {
- SHA256_Init(&sha);
- SHA256_Update(&sha,(const unsigned char *)keyBytes,keyLen);
- SHA256_Update(&sha,dig,32);
- for(unsigned long i=0;i<ZT_IDENTITY_DERIVEADDRESS_MEMORY;++i) {
- if (ram[i] == 17) // Forces a branch to be required
- ram[i] ^= dig[i & 31];
- }
- s20b.init(dig,256,"ZeroTier");
- s20a.encrypt(ram,ram,ZT_IDENTITY_DERIVEADDRESS_MEMORY);
- s20b.encrypt(ram,ram,ZT_IDENTITY_DERIVEADDRESS_MEMORY);
- SHA256_Update(&sha,ram,ZT_IDENTITY_DERIVEADDRESS_MEMORY);
- SHA256_Final(dig,&sha);
- }
- // Final digest, executed for twice our number of rounds
- SHA256_Init(&sha);
- for(unsigned long r=0;r<(ZT_IDENTITY_DERIVEADDRESS_ROUNDS * 2);++r) {
- SHA256_Update(&sha,(const unsigned char *)keyBytes,keyLen);
- SHA256_Update(&sha,ram,ZT_IDENTITY_DERIVEADDRESS_ROUNDS);
- SHA256_Update(&sha,dig,32);
- SHA256_Update(&sha,(const unsigned char *)keyBytes,keyLen);
- }
- SHA256_Final(dig,&sha);
- delete [] ram;
- return Address(dig); // first 5 bytes of dig[]
- }
- std::string Identity::encrypt(const Identity &to,const void *data,unsigned int len) const
- {
- unsigned char key[64];
- unsigned char mac[32];
- unsigned char iv[8];
- if (!agree(to,key,sizeof(key)))
- return std::string();
- Utils::getSecureRandom(iv,8);
- for(int i=0;i<8;++i)
- key[i + 32] ^= iv[i]; // perturb HMAC key with IV so IV is effectively included in HMAC
- Salsa20 s20(key,256,iv);
- std::string compressed;
- compressed.reserve(len);
- Utils::compress((const char *)data,(const char *)data + len,Utils::StringAppendOutput(compressed));
- if (!compressed.length())
- return std::string();
- char *encrypted = new char[compressed.length() + 16];
- try {
- s20.encrypt(compressed.data(),encrypted + 16,(unsigned int)compressed.length());
- HMAC::sha256(key + 32,32,encrypted + 16,(unsigned int)compressed.length(),mac);
- for(int i=0;i<8;++i)
- encrypted[i] = iv[i];
- for(int i=0;i<8;++i)
- encrypted[i + 8] = mac[i];
- std::string s(encrypted,compressed.length() + 16);
- delete [] encrypted;
- return s;
- } catch ( ... ) {
- delete [] encrypted;
- return std::string();
- }
- }
- std::string Identity::decrypt(const Identity &from,const void *cdata,unsigned int len) const
- {
- unsigned char key[64];
- unsigned char mac[32];
- if (len < 16)
- return std::string();
- if (!agree(from,key,sizeof(key)))
- return std::string();
- for(int i=0;i<8;++i)
- key[i + 32] ^= ((const unsigned char *)cdata)[i]; // apply IV to HMAC key
- HMAC::sha256(key + 32,32,((const char *)cdata) + 16,(unsigned int)(len - 16),mac);
- for(int i=0;i<8;++i) {
- if (((const unsigned char *)cdata)[i + 8] != mac[i])
- return std::string();
- }
- char *decbuf = new char[len - 16];
- try {
- Salsa20 s20(key,256,cdata); // first 8 bytes are IV
- len -= 16;
- s20.decrypt((const char *)cdata + 16,decbuf,len);
- std::string decompressed;
- if (Utils::decompress((const char *)decbuf,(const char *)decbuf + len,Utils::StringAppendOutput(decompressed))) {
- delete [] decbuf;
- return decompressed;
- } else {
- delete [] decbuf;
- return std::string();
- }
- } catch ( ... ) {
- delete [] decbuf;
- return std::string();
- }
- }
- } // namespace ZeroTier
|