Switch.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "../version.h"
  33. #include "../include/ZeroTierOne.h"
  34. #include "Constants.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "Switch.hpp"
  37. #include "Node.hpp"
  38. #include "InetAddress.hpp"
  39. #include "Topology.hpp"
  40. #include "Peer.hpp"
  41. #include "CMWC4096.hpp"
  42. #include "AntiRecursion.hpp"
  43. #include "Packet.hpp"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. RR(renv),
  47. _lastBeacon(0)
  48. {
  49. }
  50. Switch::~Switch()
  51. {
  52. }
  53. void Switch::onRemotePacket(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
  54. {
  55. try {
  56. if (len == ZT_PROTO_BEACON_LENGTH) {
  57. _handleBeacon(fromAddr,linkDesperation,Buffer<ZT_PROTO_BEACON_LENGTH>(data,len));
  58. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  59. if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  60. _handleRemotePacketFragment(fromAddr,linkDesperation,data,len);
  61. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) {
  62. _handleRemotePacketHead(fromAddr,linkDesperation,data,len);
  63. }
  64. }
  65. } catch (std::exception &ex) {
  66. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  67. } catch ( ... ) {
  68. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  69. }
  70. }
  71. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  72. {
  73. SharedPtr<NetworkConfig> nconf(network->config2());
  74. if (!nconf)
  75. return;
  76. // Sanity check -- bridge loop? OS problem?
  77. if (to == network->mac())
  78. return;
  79. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  80. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  81. * still happen because Windows likes to send broadcasts over interfaces that have little
  82. * to do with their intended target audience. :P */
  83. if (!RR->antiRec->checkEthernetFrame(data,len)) {
  84. TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len);
  85. return;
  86. }
  87. // Check to make sure this protocol is allowed on this network
  88. if (!nconf->permitsEtherType(etherType)) {
  89. TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  90. return;
  91. }
  92. // Check if this packet is from someone other than the tap -- i.e. bridged in
  93. bool fromBridged = false;
  94. if (from != network->mac()) {
  95. if (!network->permitsBridging(RR->identity.address())) {
  96. TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  97. return;
  98. }
  99. fromBridged = true;
  100. }
  101. if (to.isMulticast()) {
  102. // Destination is a multicast address (including broadcast)
  103. const uint64_t now = RR->node->now();
  104. MulticastGroup mg(to,0);
  105. if (to.isBroadcast()) {
  106. if (
  107. (etherType == ZT_ETHERTYPE_ARP)&&
  108. (len >= 28)&&
  109. (
  110. (((const unsigned char *)data)[2] == 0x08)&&
  111. (((const unsigned char *)data)[3] == 0x00)&&
  112. (((const unsigned char *)data)[4] == 6)&&
  113. (((const unsigned char *)data)[5] == 4)&&
  114. (((const unsigned char *)data)[7] == 0x01)
  115. )
  116. ) {
  117. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  118. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  119. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  120. } else if (!nconf->enableBroadcast()) {
  121. // Don't transmit broadcasts if this network doesn't want them
  122. TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
  123. return;
  124. }
  125. }
  126. /* Learn multicast groups for bridged-in hosts.
  127. * Note that some OSes, most notably Linux, do this for you by learning
  128. * multicast addresses on bridge interfaces and subscribing each slave.
  129. * But in that case this does no harm, as the sets are just merged. */
  130. if (fromBridged)
  131. network->learnBridgedMulticastGroup(mg,now);
  132. // Check multicast/broadcast bandwidth quotas and reject if quota exceeded
  133. if (!network->updateAndCheckMulticastBalance(mg,len)) {
  134. TRACE("%.16llx: didn't multicast %u bytes, quota exceeded for multicast group %s",network->id(),len,mg.toString().c_str());
  135. return;
  136. }
  137. //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
  138. RR->mc->send(
  139. ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
  140. nconf->multicastLimit(),
  141. now,
  142. network->id(),
  143. nconf->activeBridges(),
  144. mg,
  145. (fromBridged) ? from : MAC(),
  146. etherType,
  147. data,
  148. len);
  149. return;
  150. }
  151. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  152. // Destination is another ZeroTier peer on the same network
  153. Address toZT(to.toAddress(network->id()));
  154. if (network->isAllowed(toZT)) {
  155. if (network->peerNeedsOurMembershipCertificate(toZT,RR->node->now())) {
  156. // TODO: once there are no more <1.0.0 nodes around, we can
  157. // bundle this with EXT_FRAME instead of sending two packets.
  158. Packet outp(toZT,RR->identity.address(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE);
  159. nconf->com().serialize(outp);
  160. send(outp,true);
  161. }
  162. if (fromBridged) {
  163. // EXT_FRAME is used for bridging or if we want to include a COM
  164. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  165. outp.append(network->id());
  166. outp.append((unsigned char)0);
  167. to.appendTo(outp);
  168. from.appendTo(outp);
  169. outp.append((uint16_t)etherType);
  170. outp.append(data,len);
  171. outp.compress();
  172. send(outp,true);
  173. } else {
  174. // FRAME is a shorter version that can be used when there's no bridging and no COM
  175. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  176. outp.append(network->id());
  177. outp.append((uint16_t)etherType);
  178. outp.append(data,len);
  179. outp.compress();
  180. send(outp,true);
  181. }
  182. //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged);
  183. } else {
  184. TRACE("%.16llx: UNICAST: %s -> %s etherType==%s dropped, destination not a member of private network",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  185. }
  186. return;
  187. }
  188. {
  189. // Destination is bridged behind a remote peer
  190. Address bridges[ZT_MAX_BRIDGE_SPAM];
  191. unsigned int numBridges = 0;
  192. bridges[0] = network->findBridgeTo(to);
  193. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) {
  194. // We have a known bridge route for this MAC.
  195. ++numBridges;
  196. } else if (!nconf->activeBridges().empty()) {
  197. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  198. * bridges. This is similar to what many switches do -- if they do not
  199. * know which port corresponds to a MAC, they send it to all ports. If
  200. * there aren't any active bridges, numBridges will stay 0 and packet
  201. * is dropped. */
  202. std::vector<Address>::const_iterator ab(nconf->activeBridges().begin());
  203. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  204. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  205. while (ab != nconf->activeBridges().end()) {
  206. if (network->isAllowed(*ab)) // config sanity check
  207. bridges[numBridges++] = *ab;
  208. ++ab;
  209. }
  210. } else {
  211. // Otherwise pick a random set of them
  212. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  213. if (ab == nconf->activeBridges().end())
  214. ab = nconf->activeBridges().begin();
  215. if (((unsigned long)RR->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
  216. if (network->isAllowed(*ab)) // config sanity check
  217. bridges[numBridges++] = *ab;
  218. ++ab;
  219. } else ++ab;
  220. }
  221. }
  222. }
  223. for(unsigned int b=0;b<numBridges;++b) {
  224. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  225. outp.append(network->id());
  226. outp.append((unsigned char)0);
  227. to.appendTo(outp);
  228. from.appendTo(outp);
  229. outp.append((uint16_t)etherType);
  230. outp.append(data,len);
  231. outp.compress();
  232. send(outp,true);
  233. }
  234. }
  235. }
  236. void Switch::send(const Packet &packet,bool encrypt)
  237. {
  238. if (packet.destination() == RR->identity.address()) {
  239. TRACE("BUG: caught attempt to send() to self, ignored");
  240. return;
  241. }
  242. if (!_trySend(packet,encrypt)) {
  243. Mutex::Lock _l(_txQueue_m);
  244. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(RR->node->now(),packet,encrypt)));
  245. }
  246. }
  247. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  248. {
  249. if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
  250. return false;
  251. SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
  252. if (!p1p)
  253. return false;
  254. SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
  255. if (!p2p)
  256. return false;
  257. const uint64_t now = RR->node->now();
  258. // Right now we only unite desperation == 0 links, which will be direct
  259. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now,0));
  260. if (!(cg.first))
  261. return false;
  262. if (cg.first.ipScope() != cg.second.ipScope())
  263. return false;
  264. // Addresses are sorted in key for last unite attempt map for order
  265. // invariant lookup: (p1,p2) == (p2,p1)
  266. Array<Address,2> uniteKey;
  267. if (p1 >= p2) {
  268. uniteKey[0] = p2;
  269. uniteKey[1] = p1;
  270. } else {
  271. uniteKey[0] = p1;
  272. uniteKey[1] = p2;
  273. }
  274. {
  275. Mutex::Lock _l(_lastUniteAttempt_m);
  276. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  277. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  278. return false;
  279. else _lastUniteAttempt[uniteKey] = now;
  280. }
  281. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  282. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  283. * P2 in randomized order in terms of which gets sent first. This is done
  284. * since in a few cases NAT-t can be sensitive to slight timing differences
  285. * in terms of when the two peers initiate. Normally this is accounted for
  286. * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
  287. * given that supernodes are hosted on cloud providers this can in some
  288. * cases have a few ms of latency between packet departures. By randomizing
  289. * the order we make each attempted NAT-t favor one or the other going
  290. * first, meaning if it doesn't succeed the first time it might the second
  291. * and so forth. */
  292. unsigned int alt = RR->prng->next32() & 1;
  293. unsigned int completed = alt + 2;
  294. while (alt != completed) {
  295. if ((alt & 1) == 0) {
  296. // Tell p1 where to find p2.
  297. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  298. outp.append((unsigned char)0);
  299. p2.appendTo(outp);
  300. outp.append((uint16_t)cg.first.port());
  301. if (cg.first.isV6()) {
  302. outp.append((unsigned char)16);
  303. outp.append(cg.first.rawIpData(),16);
  304. } else {
  305. outp.append((unsigned char)4);
  306. outp.append(cg.first.rawIpData(),4);
  307. }
  308. outp.armor(p1p->key(),true);
  309. p1p->send(RR,outp.data(),outp.size(),now);
  310. } else {
  311. // Tell p2 where to find p1.
  312. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  313. outp.append((unsigned char)0);
  314. p1.appendTo(outp);
  315. outp.append((uint16_t)cg.second.port());
  316. if (cg.second.isV6()) {
  317. outp.append((unsigned char)16);
  318. outp.append(cg.second.rawIpData(),16);
  319. } else {
  320. outp.append((unsigned char)4);
  321. outp.append(cg.second.rawIpData(),4);
  322. }
  323. outp.armor(p2p->key(),true);
  324. p2p->send(RR,outp.data(),outp.size(),now);
  325. }
  326. ++alt; // counts up and also flips LSB
  327. }
  328. return true;
  329. }
  330. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr,unsigned int maxDesperation)
  331. {
  332. TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
  333. const uint64_t now = RR->node->now();
  334. // Attempt to contact at zero desperation first
  335. peer->attemptToContactAt(RR,atAddr,0,now);
  336. // If we have not punched through after this timeout, open refreshing can of whupass
  337. {
  338. Mutex::Lock _l(_contactQueue_m);
  339. _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,atAddr,maxDesperation));
  340. }
  341. }
  342. void Switch::requestWhois(const Address &addr)
  343. {
  344. bool inserted = false;
  345. {
  346. Mutex::Lock _l(_outstandingWhoisRequests_m);
  347. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  348. if ((inserted = entry.second))
  349. entry.first->second.lastSent = RR->node->now();
  350. entry.first->second.retries = 0; // reset retry count if entry already existed
  351. }
  352. if (inserted)
  353. _sendWhoisRequest(addr,(const Address *)0,0);
  354. }
  355. void Switch::cancelWhoisRequest(const Address &addr)
  356. {
  357. Mutex::Lock _l(_outstandingWhoisRequests_m);
  358. _outstandingWhoisRequests.erase(addr);
  359. }
  360. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  361. {
  362. { // cancel pending WHOIS since we now know this peer
  363. Mutex::Lock _l(_outstandingWhoisRequests_m);
  364. _outstandingWhoisRequests.erase(peer->address());
  365. }
  366. { // finish processing any packets waiting on peer's public key / identity
  367. Mutex::Lock _l(_rxQueue_m);
  368. for(std::list< SharedPtr<IncomingPacket> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  369. if ((*rxi)->tryDecode(RR))
  370. _rxQueue.erase(rxi++);
  371. else ++rxi;
  372. }
  373. }
  374. { // finish sending any packets waiting on peer's public key / identity
  375. Mutex::Lock _l(_txQueue_m);
  376. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  377. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  378. if (_trySend(txi->second.packet,txi->second.encrypt))
  379. _txQueue.erase(txi++);
  380. else ++txi;
  381. }
  382. }
  383. }
  384. unsigned long Switch::doTimerTasks(uint64_t now)
  385. {
  386. unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
  387. { // Aggressive NAT traversal time!
  388. Mutex::Lock _l(_contactQueue_m);
  389. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  390. if (now >= qi->fireAtTime) {
  391. if (qi->peer->hasActiveDirectPath(now)) {
  392. // We've successfully NAT-t'd, so cancel attempt
  393. _contactQueue.erase(qi++);
  394. continue;
  395. } else {
  396. // Nope, nothing yet. Time to kill some kittens.
  397. switch(qi->strategyIteration++) {
  398. case 0: {
  399. // First strategy: rifle method: direct packet to known port
  400. qi->peer->attemptToContactAt(RR,qi->inaddr,qi->currentDesperation,now);
  401. } break;
  402. case 1: {
  403. // Second strategy: shotgun method up: try a few ports above
  404. InetAddress tmpaddr(qi->inaddr);
  405. int p = (int)qi->inaddr.port();
  406. for(int i=0;i<9;++i) {
  407. if (++p > 0xffff) break;
  408. tmpaddr.setPort((unsigned int)p);
  409. qi->peer->attemptToContactAt(RR,tmpaddr,qi->currentDesperation,now);
  410. }
  411. } break;
  412. case 2: {
  413. // Third strategy: shotgun method down: try a few ports below
  414. InetAddress tmpaddr(qi->inaddr);
  415. int p = (int)qi->inaddr.port();
  416. for(int i=0;i<3;++i) {
  417. if (--p < 1024) break;
  418. tmpaddr.setPort((unsigned int)p);
  419. qi->peer->attemptToContactAt(RR,tmpaddr,qi->currentDesperation,now);
  420. }
  421. // Escalate link desperation after all strategies attempted
  422. ++qi->currentDesperation;
  423. if (qi->currentDesperation > qi->maxDesperation) {
  424. // We've tried all strategies at all levels of desperation, give up.
  425. _contactQueue.erase(qi++);
  426. continue;
  427. } else {
  428. // Otherwise restart at new link desperation level (e.g. try a tougher transport)
  429. qi->strategyIteration = 0;
  430. }
  431. } break;
  432. }
  433. qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
  434. nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
  435. }
  436. } else {
  437. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  438. }
  439. ++qi; // if qi was erased, loop will have continued before here
  440. }
  441. }
  442. { // Retry outstanding WHOIS requests
  443. Mutex::Lock _l(_outstandingWhoisRequests_m);
  444. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  445. unsigned long since = (unsigned long)(now - i->second.lastSent);
  446. if (since >= ZT_WHOIS_RETRY_DELAY) {
  447. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  448. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  449. _outstandingWhoisRequests.erase(i++);
  450. continue;
  451. } else {
  452. i->second.lastSent = now;
  453. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  454. ++i->second.retries;
  455. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  456. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  457. }
  458. } else {
  459. nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  460. }
  461. ++i;
  462. }
  463. }
  464. { // Time out TX queue packets that never got WHOIS lookups or other info.
  465. Mutex::Lock _l(_txQueue_m);
  466. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  467. if (_trySend(i->second.packet,i->second.encrypt))
  468. _txQueue.erase(i++);
  469. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  470. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  471. _txQueue.erase(i++);
  472. } else ++i;
  473. }
  474. }
  475. { // Time out RX queue packets that never got WHOIS lookups or other info.
  476. Mutex::Lock _l(_rxQueue_m);
  477. for(std::list< SharedPtr<IncomingPacket> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  478. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  479. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  480. _rxQueue.erase(i++);
  481. } else ++i;
  482. }
  483. }
  484. { // Time out packets that didn't get all their fragments.
  485. Mutex::Lock _l(_defragQueue_m);
  486. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  487. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  488. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  489. _defragQueue.erase(i++);
  490. } else ++i;
  491. }
  492. }
  493. return nextDelay;
  494. }
  495. const char *Switch::etherTypeName(const unsigned int etherType)
  496. throw()
  497. {
  498. switch(etherType) {
  499. case ZT_ETHERTYPE_IPV4: return "IPV4";
  500. case ZT_ETHERTYPE_ARP: return "ARP";
  501. case ZT_ETHERTYPE_RARP: return "RARP";
  502. case ZT_ETHERTYPE_ATALK: return "ATALK";
  503. case ZT_ETHERTYPE_AARP: return "AARP";
  504. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  505. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  506. case ZT_ETHERTYPE_IPV6: return "IPV6";
  507. }
  508. return "UNKNOWN";
  509. }
  510. void Switch::_handleRemotePacketFragment(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
  511. {
  512. Packet::Fragment fragment(data,len);
  513. Address destination(fragment.destination());
  514. if (destination != RR->identity.address()) {
  515. // Fragment is not for us, so try to relay it
  516. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  517. fragment.incrementHops();
  518. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  519. // It wouldn't hurt anything, just redundant and unnecessary.
  520. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  521. if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
  522. // Don't know peer or no direct path -- so relay via supernode
  523. relayTo = RR->topology->getBestSupernode();
  524. if (relayTo)
  525. relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
  526. }
  527. } else {
  528. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  529. }
  530. } else {
  531. // Fragment looks like ours
  532. uint64_t pid = fragment.packetId();
  533. unsigned int fno = fragment.fragmentNumber();
  534. unsigned int tf = fragment.totalFragments();
  535. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  536. // Fragment appears basically sane. Its fragment number must be
  537. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  538. // Total fragments must be more than 1, otherwise why are we
  539. // seeing a Packet::Fragment?
  540. Mutex::Lock _l(_defragQueue_m);
  541. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  542. if (dqe == _defragQueue.end()) {
  543. // We received a Packet::Fragment without its head, so queue it and wait
  544. DefragQueueEntry &dq = _defragQueue[pid];
  545. dq.creationTime = RR->node->now();
  546. dq.frags[fno - 1] = fragment;
  547. dq.totalFragments = tf; // total fragment count is known
  548. dq.haveFragments = 1 << fno; // we have only this fragment
  549. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  550. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  551. // We have other fragments and maybe the head, so add this one and check
  552. dqe->second.frags[fno - 1] = fragment;
  553. dqe->second.totalFragments = tf;
  554. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  555. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  556. // We have all fragments -- assemble and process full Packet
  557. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  558. SharedPtr<IncomingPacket> packet(dqe->second.frag0);
  559. for(unsigned int f=1;f<tf;++f)
  560. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  561. _defragQueue.erase(dqe);
  562. if (!packet->tryDecode(RR)) {
  563. Mutex::Lock _l(_rxQueue_m);
  564. _rxQueue.push_back(packet);
  565. }
  566. }
  567. } // else this is a duplicate fragment, ignore
  568. }
  569. }
  570. }
  571. void Switch::_handleRemotePacketHead(const InetAddress &fromAddr,int linkDesperation,const void *data,unsigned int len)
  572. {
  573. SharedPtr<IncomingPacket> packet(new IncomingPacket(data,len,fromAddr,linkDesperation,RR->node->now()));
  574. Address source(packet->source());
  575. Address destination(packet->destination());
  576. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  577. if (destination != RR->identity.address()) {
  578. // Packet is not for us, so try to relay it
  579. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  580. packet->incrementHops();
  581. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  582. if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
  583. unite(source,destination,false);
  584. } else {
  585. // Don't know peer or no direct path -- so relay via supernode
  586. relayTo = RR->topology->getBestSupernode(&source,1,true);
  587. if (relayTo)
  588. relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
  589. }
  590. } else {
  591. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  592. }
  593. } else if (packet->fragmented()) {
  594. // Packet is the head of a fragmented packet series
  595. uint64_t pid = packet->packetId();
  596. Mutex::Lock _l(_defragQueue_m);
  597. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  598. if (dqe == _defragQueue.end()) {
  599. // If we have no other fragments yet, create an entry and save the head
  600. DefragQueueEntry &dq = _defragQueue[pid];
  601. dq.creationTime = RR->node->now();
  602. dq.frag0 = packet;
  603. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  604. dq.haveFragments = 1; // head is first bit (left to right)
  605. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  606. } else if (!(dqe->second.haveFragments & 1)) {
  607. // If we have other fragments but no head, see if we are complete with the head
  608. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  609. // We have all fragments -- assemble and process full Packet
  610. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  611. // packet already contains head, so append fragments
  612. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  613. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  614. _defragQueue.erase(dqe);
  615. if (!packet->tryDecode(RR)) {
  616. Mutex::Lock _l(_rxQueue_m);
  617. _rxQueue.push_back(packet);
  618. }
  619. } else {
  620. // Still waiting on more fragments, so queue the head
  621. dqe->second.frag0 = packet;
  622. }
  623. } // else this is a duplicate head, ignore
  624. } else {
  625. // Packet is unfragmented, so just process it
  626. if (!packet->tryDecode(RR)) {
  627. Mutex::Lock _l(_rxQueue_m);
  628. _rxQueue.push_back(packet);
  629. }
  630. }
  631. }
  632. void Switch::_handleBeacon(const InetAddress &fromAddr,int linkDesperation,const Buffer<ZT_PROTO_BEACON_LENGTH> &data)
  633. {
  634. Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  635. if (beaconAddr == RR->identity.address())
  636. return;
  637. SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
  638. if (peer) {
  639. const uint64_t now = RR->node->now();
  640. if ((now - _lastBeacon) >= ZT_MIN_BEACON_RESPONSE_INTERVAL) {
  641. _lastBeacon = now;
  642. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  643. outp.armor(peer->key(),false);
  644. RR->node->putPacket(fromAddr,outp.data(),outp.size(),linkDesperation);
  645. }
  646. }
  647. }
  648. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  649. {
  650. SharedPtr<Peer> supernode(RR->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  651. if (supernode) {
  652. Packet outp(supernode->address(),RR->identity.address(),Packet::VERB_WHOIS);
  653. addr.appendTo(outp);
  654. outp.armor(supernode->key(),true);
  655. if (supernode->send(RR,outp.data(),outp.size(),RR->node->now()))
  656. return supernode->address();
  657. }
  658. return Address();
  659. }
  660. bool Switch::_trySend(const Packet &packet,bool encrypt)
  661. {
  662. SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
  663. if (peer) {
  664. const uint64_t now = RR->node->now();
  665. Path *viaPath = peer->getBestPath(now);
  666. if (!viaPath) {
  667. SharedPtr<Peer> sn(RR->topology->getBestSupernode());
  668. if (!(sn)||(!(viaPath = sn->getBestPath(now))))
  669. return false;
  670. }
  671. Packet tmp(packet);
  672. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  673. tmp.setFragmented(chunkSize < tmp.size());
  674. tmp.armor(peer->key(),encrypt);
  675. if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
  676. if (chunkSize < tmp.size()) {
  677. // Too big for one bite, fragment the rest
  678. unsigned int fragStart = chunkSize;
  679. unsigned int remaining = tmp.size() - chunkSize;
  680. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  681. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  682. ++fragsRemaining;
  683. unsigned int totalFragments = fragsRemaining + 1;
  684. for(unsigned int fno=1;fno<totalFragments;++fno) {
  685. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  686. Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
  687. viaPath->send(RR,frag.data(),frag.size(),now);
  688. fragStart += chunkSize;
  689. remaining -= chunkSize;
  690. }
  691. }
  692. return true;
  693. }
  694. } else {
  695. requestWhois(packet.destination());
  696. }
  697. return false;
  698. }
  699. } // namespace ZeroTier