Switch.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "../version.h"
  33. #include "../include/ZeroTierOne.h"
  34. #include "Constants.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "Switch.hpp"
  37. #include "Node.hpp"
  38. #include "InetAddress.hpp"
  39. #include "Topology.hpp"
  40. #include "Peer.hpp"
  41. #include "CMWC4096.hpp"
  42. #include "AntiRecursion.hpp"
  43. #include "Packet.hpp"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. RR(renv),
  47. _lastBeacon(0)
  48. {
  49. }
  50. Switch::~Switch()
  51. {
  52. }
  53. void Switch::onRemotePacket(const InetAddress &fromAddr,const void *data,unsigned int len)
  54. {
  55. try {
  56. if (len == ZT_PROTO_BEACON_LENGTH) {
  57. _handleBeacon(fromAddr,Buffer<ZT_PROTO_BEACON_LENGTH>(data,len));
  58. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  59. if (((const unsigned char *)data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  60. _handleRemotePacketFragment(fromAddr,data,len);
  61. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) {
  62. _handleRemotePacketHead(fromAddr,data,len);
  63. }
  64. }
  65. } catch (std::exception &ex) {
  66. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  67. } catch ( ... ) {
  68. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  69. }
  70. }
  71. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  72. {
  73. SharedPtr<NetworkConfig> nconf(network->config2());
  74. if (!nconf)
  75. return;
  76. // Sanity check -- bridge loop? OS problem?
  77. if (to == network->mac())
  78. return;
  79. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  80. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  81. * still happen because Windows likes to send broadcasts over interfaces that have little
  82. * to do with their intended target audience. :P */
  83. if (!RR->antiRec->checkEthernetFrame(data,len)) {
  84. TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),len);
  85. return;
  86. }
  87. // Check to make sure this protocol is allowed on this network
  88. if (!nconf->permitsEtherType(etherType)) {
  89. TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  90. return;
  91. }
  92. // Check if this packet is from someone other than the tap -- i.e. bridged in
  93. bool fromBridged = false;
  94. if (from != network->mac()) {
  95. if (!network->permitsBridging(RR->identity.address())) {
  96. TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  97. return;
  98. }
  99. fromBridged = true;
  100. }
  101. if (to.isMulticast()) {
  102. // Destination is a multicast address (including broadcast)
  103. MulticastGroup mg(to,0);
  104. if (to.isBroadcast()) {
  105. if (
  106. (etherType == ZT_ETHERTYPE_ARP)&&
  107. (len >= 28)&&
  108. (
  109. (((const unsigned char *)data)[2] == 0x08)&&
  110. (((const unsigned char *)data)[3] == 0x00)&&
  111. (((const unsigned char *)data)[4] == 6)&&
  112. (((const unsigned char *)data)[5] == 4)&&
  113. (((const unsigned char *)data)[7] == 0x01)
  114. )
  115. ) {
  116. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  117. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  118. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  119. } else if (!nconf->enableBroadcast()) {
  120. // Don't transmit broadcasts if this network doesn't want them
  121. TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
  122. return;
  123. }
  124. }
  125. /* Learn multicast groups for bridged-in hosts.
  126. * Note that some OSes, most notably Linux, do this for you by learning
  127. * multicast addresses on bridge interfaces and subscribing each slave.
  128. * But in that case this does no harm, as the sets are just merged. */
  129. if (fromBridged)
  130. network->learnBridgedMulticastGroup(mg,RR->node->now());
  131. // Check multicast/broadcast bandwidth quotas and reject if quota exceeded
  132. if (!network->updateAndCheckMulticastBalance(mg,len)) {
  133. TRACE("%.16llx: didn't multicast %u bytes, quota exceeded for multicast group %s",network->id(),len,mg.toString().c_str());
  134. return;
  135. }
  136. //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len);
  137. RR->mc->send(
  138. ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
  139. nconf->multicastLimit(),
  140. RR->node->now(),
  141. network->id(),
  142. nconf->activeBridges(),
  143. mg,
  144. (fromBridged) ? from : MAC(),
  145. etherType,
  146. data,
  147. len);
  148. return;
  149. }
  150. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  151. // Destination is another ZeroTier peer on the same network
  152. Address toZT(to.toAddress(network->id()));
  153. if (network->isAllowed(toZT)) {
  154. if (network->peerNeedsOurMembershipCertificate(toZT,RR->node->now())) {
  155. // TODO: once there are no more <1.0.0 nodes around, we can
  156. // bundle this with EXT_FRAME instead of sending two packets.
  157. Packet outp(toZT,RR->identity.address(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE);
  158. nconf->com().serialize(outp);
  159. send(outp,true,network->id());
  160. }
  161. if (fromBridged) {
  162. // EXT_FRAME is used for bridging or if we want to include a COM
  163. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  164. outp.append(network->id());
  165. outp.append((unsigned char)0);
  166. to.appendTo(outp);
  167. from.appendTo(outp);
  168. outp.append((uint16_t)etherType);
  169. outp.append(data,len);
  170. outp.compress();
  171. send(outp,true,network->id());
  172. } else {
  173. // FRAME is a shorter version that can be used when there's no bridging and no COM
  174. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  175. outp.append(network->id());
  176. outp.append((uint16_t)etherType);
  177. outp.append(data,len);
  178. outp.compress();
  179. send(outp,true,network->id());
  180. }
  181. //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged);
  182. } else {
  183. TRACE("%.16llx: UNICAST: %s -> %s etherType==%s dropped, destination not a member of private network",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  184. }
  185. return;
  186. }
  187. {
  188. // Destination is bridged behind a remote peer
  189. Address bridges[ZT_MAX_BRIDGE_SPAM];
  190. unsigned int numBridges = 0;
  191. bridges[0] = network->findBridgeTo(to);
  192. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) {
  193. // We have a known bridge route for this MAC.
  194. ++numBridges;
  195. } else if (!nconf->activeBridges().empty()) {
  196. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  197. * bridges. This is similar to what many switches do -- if they do not
  198. * know which port corresponds to a MAC, they send it to all ports. If
  199. * there aren't any active bridges, numBridges will stay 0 and packet
  200. * is dropped. */
  201. std::vector<Address>::const_iterator ab(nconf->activeBridges().begin());
  202. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  203. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  204. while (ab != nconf->activeBridges().end()) {
  205. if (network->isAllowed(*ab)) // config sanity check
  206. bridges[numBridges++] = *ab;
  207. ++ab;
  208. }
  209. } else {
  210. // Otherwise pick a random set of them
  211. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  212. if (ab == nconf->activeBridges().end())
  213. ab = nconf->activeBridges().begin();
  214. if (((unsigned long)RR->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
  215. if (network->isAllowed(*ab)) // config sanity check
  216. bridges[numBridges++] = *ab;
  217. ++ab;
  218. } else ++ab;
  219. }
  220. }
  221. }
  222. for(unsigned int b=0;b<numBridges;++b) {
  223. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  224. outp.append(network->id());
  225. outp.append((unsigned char)0);
  226. to.appendTo(outp);
  227. from.appendTo(outp);
  228. outp.append((uint16_t)etherType);
  229. outp.append(data,len);
  230. outp.compress();
  231. send(outp,true,network->id());
  232. }
  233. }
  234. }
  235. void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid)
  236. {
  237. if (packet.destination() == RR->identity.address()) {
  238. TRACE("BUG: caught attempt to send() to self, ignored");
  239. return;
  240. }
  241. if (!_trySend(packet,encrypt,nwid)) {
  242. Mutex::Lock _l(_txQueue_m);
  243. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(RR->node->now(),packet,encrypt,nwid)));
  244. }
  245. }
  246. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  247. {
  248. if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
  249. return false;
  250. SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
  251. if (!p1p)
  252. return false;
  253. SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
  254. if (!p2p)
  255. return false;
  256. const uint64_t now = RR->node->now();
  257. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  258. if (!(cg.first))
  259. return false;
  260. if (cg.first.ipScope() != cg.second.ipScope())
  261. return false;
  262. // Addresses are sorted in key for last unite attempt map for order
  263. // invariant lookup: (p1,p2) == (p2,p1)
  264. Array<Address,2> uniteKey;
  265. if (p1 >= p2) {
  266. uniteKey[0] = p2;
  267. uniteKey[1] = p1;
  268. } else {
  269. uniteKey[0] = p1;
  270. uniteKey[1] = p2;
  271. }
  272. {
  273. Mutex::Lock _l(_lastUniteAttempt_m);
  274. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  275. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  276. return false;
  277. else _lastUniteAttempt[uniteKey] = now;
  278. }
  279. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  280. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  281. * P2 in randomized order in terms of which gets sent first. This is done
  282. * since in a few cases NAT-t can be sensitive to slight timing differences
  283. * in terms of when the two peers initiate. Normally this is accounted for
  284. * by the nearly-simultaneous RENDEZVOUS kickoff from the rootserver, but
  285. * given that rootservers are hosted on cloud providers this can in some
  286. * cases have a few ms of latency between packet departures. By randomizing
  287. * the order we make each attempted NAT-t favor one or the other going
  288. * first, meaning if it doesn't succeed the first time it might the second
  289. * and so forth. */
  290. unsigned int alt = RR->prng->next32() & 1;
  291. unsigned int completed = alt + 2;
  292. while (alt != completed) {
  293. if ((alt & 1) == 0) {
  294. // Tell p1 where to find p2.
  295. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  296. outp.append((unsigned char)0);
  297. p2.appendTo(outp);
  298. outp.append((uint16_t)cg.first.port());
  299. if (cg.first.isV6()) {
  300. outp.append((unsigned char)16);
  301. outp.append(cg.first.rawIpData(),16);
  302. } else {
  303. outp.append((unsigned char)4);
  304. outp.append(cg.first.rawIpData(),4);
  305. }
  306. outp.armor(p1p->key(),true);
  307. p1p->send(RR,outp.data(),outp.size(),now);
  308. } else {
  309. // Tell p2 where to find p1.
  310. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  311. outp.append((unsigned char)0);
  312. p1.appendTo(outp);
  313. outp.append((uint16_t)cg.second.port());
  314. if (cg.second.isV6()) {
  315. outp.append((unsigned char)16);
  316. outp.append(cg.second.rawIpData(),16);
  317. } else {
  318. outp.append((unsigned char)4);
  319. outp.append(cg.second.rawIpData(),4);
  320. }
  321. outp.armor(p2p->key(),true);
  322. p2p->send(RR,outp.data(),outp.size(),now);
  323. }
  324. ++alt; // counts up and also flips LSB
  325. }
  326. return true;
  327. }
  328. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  329. {
  330. TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
  331. const uint64_t now = RR->node->now();
  332. // Attempt to contact directly
  333. peer->attemptToContactAt(RR,atAddr,now);
  334. // If we have not punched through after this timeout, open refreshing can of whupass
  335. {
  336. Mutex::Lock _l(_contactQueue_m);
  337. _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,atAddr));
  338. }
  339. }
  340. void Switch::requestWhois(const Address &addr)
  341. {
  342. bool inserted = false;
  343. {
  344. Mutex::Lock _l(_outstandingWhoisRequests_m);
  345. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  346. if ((inserted = entry.second))
  347. entry.first->second.lastSent = RR->node->now();
  348. entry.first->second.retries = 0; // reset retry count if entry already existed
  349. }
  350. if (inserted)
  351. _sendWhoisRequest(addr,(const Address *)0,0);
  352. }
  353. void Switch::cancelWhoisRequest(const Address &addr)
  354. {
  355. Mutex::Lock _l(_outstandingWhoisRequests_m);
  356. _outstandingWhoisRequests.erase(addr);
  357. }
  358. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  359. {
  360. { // cancel pending WHOIS since we now know this peer
  361. Mutex::Lock _l(_outstandingWhoisRequests_m);
  362. _outstandingWhoisRequests.erase(peer->address());
  363. }
  364. { // finish processing any packets waiting on peer's public key / identity
  365. Mutex::Lock _l(_rxQueue_m);
  366. for(std::list< SharedPtr<IncomingPacket> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  367. if ((*rxi)->tryDecode(RR))
  368. _rxQueue.erase(rxi++);
  369. else ++rxi;
  370. }
  371. }
  372. { // finish sending any packets waiting on peer's public key / identity
  373. Mutex::Lock _l(_txQueue_m);
  374. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  375. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  376. if (_trySend(txi->second.packet,txi->second.encrypt,txi->second.nwid))
  377. _txQueue.erase(txi++);
  378. else ++txi;
  379. }
  380. }
  381. }
  382. unsigned long Switch::doTimerTasks(uint64_t now)
  383. {
  384. unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
  385. { // Aggressive NAT traversal time!
  386. Mutex::Lock _l(_contactQueue_m);
  387. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  388. if (now >= qi->fireAtTime) {
  389. if (qi->peer->hasActiveDirectPath(now)) {
  390. // We've successfully NAT-t'd, so cancel attempt
  391. _contactQueue.erase(qi++);
  392. continue;
  393. } else {
  394. // Nope, nothing yet. Time to kill some kittens.
  395. if (qi->strategyIteration == 0) {
  396. // First strategy: send packet directly (we already tried this but try again)
  397. qi->peer->attemptToContactAt(RR,qi->inaddr,now);
  398. } else if (qi->strategyIteration <= 9) {
  399. // Strategies 1-9: try escalating ports
  400. InetAddress tmpaddr(qi->inaddr);
  401. int p = (int)qi->inaddr.port() + qi->strategyIteration;
  402. if (p < 0xffff) {
  403. tmpaddr.setPort((unsigned int)p);
  404. qi->peer->attemptToContactAt(RR,tmpaddr,now);
  405. } else qi->strategyIteration = 9;
  406. } else if (qi->strategyIteration <= 18) {
  407. // Strategies 10-18: try ports below
  408. InetAddress tmpaddr(qi->inaddr);
  409. int p = (int)qi->inaddr.port() - (qi->strategyIteration - 9);
  410. if (p >= 1024) {
  411. tmpaddr.setPort((unsigned int)p);
  412. qi->peer->attemptToContactAt(RR,tmpaddr,now);
  413. } else qi->strategyIteration = 18;
  414. } else {
  415. // All strategies tried, expire entry
  416. _contactQueue.erase(qi++);
  417. continue;
  418. }
  419. ++qi->strategyIteration;
  420. qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
  421. nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
  422. }
  423. } else {
  424. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  425. }
  426. ++qi; // if qi was erased, loop will have continued before here
  427. }
  428. }
  429. { // Retry outstanding WHOIS requests
  430. Mutex::Lock _l(_outstandingWhoisRequests_m);
  431. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  432. unsigned long since = (unsigned long)(now - i->second.lastSent);
  433. if (since >= ZT_WHOIS_RETRY_DELAY) {
  434. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  435. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  436. _outstandingWhoisRequests.erase(i++);
  437. continue;
  438. } else {
  439. i->second.lastSent = now;
  440. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  441. ++i->second.retries;
  442. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  443. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  444. }
  445. } else {
  446. nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  447. }
  448. ++i;
  449. }
  450. }
  451. { // Time out TX queue packets that never got WHOIS lookups or other info.
  452. Mutex::Lock _l(_txQueue_m);
  453. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  454. if (_trySend(i->second.packet,i->second.encrypt,i->second.nwid))
  455. _txQueue.erase(i++);
  456. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  457. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  458. _txQueue.erase(i++);
  459. } else ++i;
  460. }
  461. }
  462. { // Time out RX queue packets that never got WHOIS lookups or other info.
  463. Mutex::Lock _l(_rxQueue_m);
  464. for(std::list< SharedPtr<IncomingPacket> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  465. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  466. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  467. _rxQueue.erase(i++);
  468. } else ++i;
  469. }
  470. }
  471. { // Time out packets that didn't get all their fragments.
  472. Mutex::Lock _l(_defragQueue_m);
  473. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  474. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  475. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  476. _defragQueue.erase(i++);
  477. } else ++i;
  478. }
  479. }
  480. return nextDelay;
  481. }
  482. const char *Switch::etherTypeName(const unsigned int etherType)
  483. throw()
  484. {
  485. switch(etherType) {
  486. case ZT_ETHERTYPE_IPV4: return "IPV4";
  487. case ZT_ETHERTYPE_ARP: return "ARP";
  488. case ZT_ETHERTYPE_RARP: return "RARP";
  489. case ZT_ETHERTYPE_ATALK: return "ATALK";
  490. case ZT_ETHERTYPE_AARP: return "AARP";
  491. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  492. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  493. case ZT_ETHERTYPE_IPV6: return "IPV6";
  494. }
  495. return "UNKNOWN";
  496. }
  497. void Switch::_handleRemotePacketFragment(const InetAddress &fromAddr,const void *data,unsigned int len)
  498. {
  499. Packet::Fragment fragment(data,len);
  500. Address destination(fragment.destination());
  501. if (destination != RR->identity.address()) {
  502. // Fragment is not for us, so try to relay it
  503. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  504. fragment.incrementHops();
  505. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  506. // It wouldn't hurt anything, just redundant and unnecessary.
  507. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  508. if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
  509. // Don't know peer or no direct path -- so relay via rootserver
  510. relayTo = RR->topology->getBestRootserver();
  511. if (relayTo)
  512. relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
  513. }
  514. } else {
  515. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  516. }
  517. } else {
  518. // Fragment looks like ours
  519. uint64_t pid = fragment.packetId();
  520. unsigned int fno = fragment.fragmentNumber();
  521. unsigned int tf = fragment.totalFragments();
  522. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  523. // Fragment appears basically sane. Its fragment number must be
  524. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  525. // Total fragments must be more than 1, otherwise why are we
  526. // seeing a Packet::Fragment?
  527. Mutex::Lock _l(_defragQueue_m);
  528. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  529. if (dqe == _defragQueue.end()) {
  530. // We received a Packet::Fragment without its head, so queue it and wait
  531. DefragQueueEntry &dq = _defragQueue[pid];
  532. dq.creationTime = RR->node->now();
  533. dq.frags[fno - 1] = fragment;
  534. dq.totalFragments = tf; // total fragment count is known
  535. dq.haveFragments = 1 << fno; // we have only this fragment
  536. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  537. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  538. // We have other fragments and maybe the head, so add this one and check
  539. dqe->second.frags[fno - 1] = fragment;
  540. dqe->second.totalFragments = tf;
  541. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  542. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  543. // We have all fragments -- assemble and process full Packet
  544. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  545. SharedPtr<IncomingPacket> packet(dqe->second.frag0);
  546. for(unsigned int f=1;f<tf;++f)
  547. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  548. _defragQueue.erase(dqe);
  549. if (!packet->tryDecode(RR)) {
  550. Mutex::Lock _l(_rxQueue_m);
  551. _rxQueue.push_back(packet);
  552. }
  553. }
  554. } // else this is a duplicate fragment, ignore
  555. }
  556. }
  557. }
  558. void Switch::_handleRemotePacketHead(const InetAddress &fromAddr,const void *data,unsigned int len)
  559. {
  560. SharedPtr<IncomingPacket> packet(new IncomingPacket(data,len,fromAddr,RR->node->now()));
  561. Address source(packet->source());
  562. Address destination(packet->destination());
  563. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  564. if (destination != RR->identity.address()) {
  565. // Packet is not for us, so try to relay it
  566. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  567. packet->incrementHops();
  568. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  569. if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
  570. unite(source,destination,false);
  571. } else {
  572. // Don't know peer or no direct path -- so relay via rootserver
  573. relayTo = RR->topology->getBestRootserver(&source,1,true);
  574. if (relayTo)
  575. relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
  576. }
  577. } else {
  578. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  579. }
  580. } else if (packet->fragmented()) {
  581. // Packet is the head of a fragmented packet series
  582. uint64_t pid = packet->packetId();
  583. Mutex::Lock _l(_defragQueue_m);
  584. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  585. if (dqe == _defragQueue.end()) {
  586. // If we have no other fragments yet, create an entry and save the head
  587. DefragQueueEntry &dq = _defragQueue[pid];
  588. dq.creationTime = RR->node->now();
  589. dq.frag0 = packet;
  590. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  591. dq.haveFragments = 1; // head is first bit (left to right)
  592. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  593. } else if (!(dqe->second.haveFragments & 1)) {
  594. // If we have other fragments but no head, see if we are complete with the head
  595. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  596. // We have all fragments -- assemble and process full Packet
  597. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  598. // packet already contains head, so append fragments
  599. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  600. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  601. _defragQueue.erase(dqe);
  602. if (!packet->tryDecode(RR)) {
  603. Mutex::Lock _l(_rxQueue_m);
  604. _rxQueue.push_back(packet);
  605. }
  606. } else {
  607. // Still waiting on more fragments, so queue the head
  608. dqe->second.frag0 = packet;
  609. }
  610. } // else this is a duplicate head, ignore
  611. } else {
  612. // Packet is unfragmented, so just process it
  613. if (!packet->tryDecode(RR)) {
  614. Mutex::Lock _l(_rxQueue_m);
  615. _rxQueue.push_back(packet);
  616. }
  617. }
  618. }
  619. void Switch::_handleBeacon(const InetAddress &fromAddr,const Buffer<ZT_PROTO_BEACON_LENGTH> &data)
  620. {
  621. Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  622. if (beaconAddr == RR->identity.address())
  623. return;
  624. SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
  625. if (peer) {
  626. const uint64_t now = RR->node->now();
  627. if ((now - _lastBeacon) >= ZT_MIN_BEACON_RESPONSE_INTERVAL) {
  628. _lastBeacon = now;
  629. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  630. outp.armor(peer->key(),false);
  631. RR->node->putPacket(fromAddr,outp.data(),outp.size());
  632. }
  633. }
  634. }
  635. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  636. {
  637. SharedPtr<Peer> rootserver(RR->topology->getBestRootserver(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  638. if (rootserver) {
  639. Packet outp(rootserver->address(),RR->identity.address(),Packet::VERB_WHOIS);
  640. addr.appendTo(outp);
  641. outp.armor(rootserver->key(),true);
  642. if (rootserver->send(RR,outp.data(),outp.size(),RR->node->now()))
  643. return rootserver->address();
  644. }
  645. return Address();
  646. }
  647. bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
  648. {
  649. SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
  650. if (peer) {
  651. const uint64_t now = RR->node->now();
  652. Path *viaPath = peer->getBestPath(now);
  653. if (!viaPath) {
  654. SharedPtr<Peer> relay;
  655. if (nwid) {
  656. SharedPtr<Network> network(RR->node->network(nwid));
  657. if (network) {
  658. SharedPtr<NetworkConfig> nconf(network->config2());
  659. if (nconf) {
  660. unsigned int latency = ~((unsigned int)0);
  661. for(std::vector< std::pair<Address,InetAddress> >::const_iterator r(nconf->relays().begin());r!=nconf->relays().end();++r) {
  662. if (r->first != peer->address()) {
  663. SharedPtr<Peer> rp(RR->topology->getPeer(r->first));
  664. if ((rp)&&(rp->hasActiveDirectPath(now))&&(rp->latency() <= latency))
  665. rp.swap(relay);
  666. }
  667. }
  668. }
  669. }
  670. }
  671. if (!relay)
  672. relay = RR->topology->getBestRootserver();
  673. if (!(relay)||(!(viaPath = relay->getBestPath(now))))
  674. return false;
  675. }
  676. Packet tmp(packet);
  677. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  678. tmp.setFragmented(chunkSize < tmp.size());
  679. tmp.armor(peer->key(),encrypt);
  680. if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
  681. if (chunkSize < tmp.size()) {
  682. // Too big for one bite, fragment the rest
  683. unsigned int fragStart = chunkSize;
  684. unsigned int remaining = tmp.size() - chunkSize;
  685. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  686. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  687. ++fragsRemaining;
  688. unsigned int totalFragments = fragsRemaining + 1;
  689. for(unsigned int fno=1;fno<totalFragments;++fno) {
  690. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  691. Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
  692. viaPath->send(RR,frag.data(),frag.size(),now);
  693. fragStart += chunkSize;
  694. remaining -= chunkSize;
  695. }
  696. }
  697. return true;
  698. }
  699. } else {
  700. requestWhois(packet.destination());
  701. }
  702. return false;
  703. }
  704. } // namespace ZeroTier