Switch.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2012-2013 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "Switch.hpp"
  33. #include "Node.hpp"
  34. #include "EthernetTap.hpp"
  35. #include "InetAddress.hpp"
  36. #include "Topology.hpp"
  37. #include "RuntimeEnvironment.hpp"
  38. #include "Defaults.hpp"
  39. #include "Peer.hpp"
  40. #include "NodeConfig.hpp"
  41. #include "Demarc.hpp"
  42. #include "Filter.hpp"
  43. #include "../version.h"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. _r(renv)
  47. {
  48. }
  49. Switch::~Switch()
  50. {
  51. }
  52. void Switch::onRemotePacket(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  53. {
  54. try {
  55. if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  56. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  57. _handleRemotePacketFragment(localPort,fromAddr,data);
  58. else if (data.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  59. _handleRemotePacketHead(localPort,fromAddr,data);
  60. }
  61. } catch (std::exception &ex) {
  62. TRACE("dropped packet from %s: %s",fromAddr.toString().c_str(),ex.what());
  63. } catch ( ... ) {
  64. TRACE("dropped packet from %s: unknown exception",fromAddr.toString().c_str());
  65. }
  66. }
  67. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  68. {
  69. if (from != network->tap().mac()) {
  70. LOG("ignored tap: %s -> %s %s (bridging is not (yet?) supported)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
  71. return;
  72. }
  73. if (to == network->tap().mac()) {
  74. LOG("%s: weird: ethernet frame received from self, ignoring (bridge loop?)",network->tap().deviceName().c_str());
  75. return;
  76. }
  77. if ((etherType != ZT_ETHERTYPE_ARP)&&(etherType != ZT_ETHERTYPE_IPV4)&&(etherType != ZT_ETHERTYPE_IPV6)) {
  78. LOG("ignored tap: %s -> %s %s (not a supported etherType)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
  79. return;
  80. }
  81. if (to.isMulticast()) {
  82. MulticastGroup mg(to,0);
  83. if (to.isBroadcast()) {
  84. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  85. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
  86. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  87. }
  88. Multicaster::MulticastBloomFilter bloom;
  89. SharedPtr<Peer> propPeers[ZT_MULTICAST_PROPAGATION_BREADTH];
  90. unsigned int np = _r->multicaster->pickNextPropagationPeers(
  91. *(_r->topology),
  92. network->id(),
  93. mg,
  94. _r->identity.address(),
  95. Address(),
  96. bloom,
  97. ZT_MULTICAST_PROPAGATION_BREADTH,
  98. propPeers,
  99. Utils::now());
  100. if (!np)
  101. return;
  102. std::string signature(Multicaster::signMulticastPacket(_r->identity,network->id(),from,mg,etherType,data.data(),data.size()));
  103. if (!signature.length()) {
  104. TRACE("failure signing multicast message!");
  105. return;
  106. }
  107. Packet outpTmpl(propPeers[0]->address(),_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
  108. outpTmpl.append((uint8_t)0);
  109. outpTmpl.append((uint64_t)network->id());
  110. outpTmpl.append(_r->identity.address().data(),ZT_ADDRESS_LENGTH);
  111. outpTmpl.append(from.data,6);
  112. outpTmpl.append(mg.mac().data,6);
  113. outpTmpl.append((uint32_t)mg.adi());
  114. outpTmpl.append(bloom.data(),ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE_BYTES);
  115. outpTmpl.append((uint8_t)0); // 0 hops
  116. outpTmpl.append((uint16_t)etherType);
  117. outpTmpl.append((uint16_t)data.size());
  118. outpTmpl.append((uint16_t)signature.length());
  119. outpTmpl.append(data.data(),data.size());
  120. outpTmpl.append(signature.data(),signature.length());
  121. outpTmpl.compress();
  122. send(outpTmpl,true);
  123. for(unsigned int i=1;i<np;++i) {
  124. outpTmpl.newInitializationVector();
  125. outpTmpl.setDestination(propPeers[i]->address());
  126. send(outpTmpl,true);
  127. }
  128. } else if (to.isZeroTier()) {
  129. // Simple unicast frame from us to another node
  130. Address toZT(to);
  131. if (network->isAllowed(toZT)) {
  132. Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
  133. outp.append(network->id());
  134. outp.append((uint16_t)etherType);
  135. outp.append(data);
  136. outp.compress();
  137. send(outp,true);
  138. } else {
  139. TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType),network->id());
  140. }
  141. } else {
  142. TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
  143. }
  144. }
  145. void Switch::send(const Packet &packet,bool encrypt)
  146. {
  147. //TRACE("%.16llx %s -> %s (size: %u) (enc: %s)",packet.packetId(),Packet::verbString(packet.verb()),packet.destination().toString().c_str(),packet.size(),(encrypt ? "yes" : "no"));
  148. if (!_trySend(packet,encrypt)) {
  149. Mutex::Lock _l(_txQueue_m);
  150. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
  151. }
  152. }
  153. void Switch::sendHELLO(const Address &dest)
  154. {
  155. Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
  156. outp.append((unsigned char)ZT_PROTO_VERSION);
  157. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  158. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  159. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  160. outp.append(Utils::now());
  161. _r->identity.serialize(outp,false);
  162. send(outp,false);
  163. }
  164. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,Demarc::Port localPort,const InetAddress &addr)
  165. {
  166. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  167. outp.append((unsigned char)ZT_PROTO_VERSION);
  168. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  169. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  170. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  171. outp.append(Utils::now());
  172. _r->identity.serialize(outp,false);
  173. outp.hmacSet(dest->macKey());
  174. return _r->demarc->send(localPort,addr,outp.data(),outp.size(),-1);
  175. }
  176. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  177. {
  178. SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
  179. if (!p1p)
  180. return false;
  181. SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
  182. if (!p2p)
  183. return false;
  184. uint64_t now = Utils::now();
  185. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  186. if (!(cg.first))
  187. return false;
  188. // Addresses are sorted in key for last unite attempt map for order
  189. // invariant lookup: (p1,p2) == (p2,p1)
  190. Array<Address,2> uniteKey;
  191. if (p1 >= p2) {
  192. uniteKey[0] = p2;
  193. uniteKey[1] = p1;
  194. } else {
  195. uniteKey[0] = p1;
  196. uniteKey[1] = p2;
  197. }
  198. {
  199. Mutex::Lock _l(_lastUniteAttempt_m);
  200. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  201. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  202. return false;
  203. else _lastUniteAttempt[uniteKey] = now;
  204. }
  205. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  206. { // tell p1 where to find p2
  207. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  208. outp.append(p2.data(),ZT_ADDRESS_LENGTH);
  209. outp.append((uint16_t)cg.first.port());
  210. if (cg.first.isV6()) {
  211. outp.append((unsigned char)16);
  212. outp.append(cg.first.rawIpData(),16);
  213. } else {
  214. outp.append((unsigned char)4);
  215. outp.append(cg.first.rawIpData(),4);
  216. }
  217. outp.encrypt(p1p->cryptKey());
  218. outp.hmacSet(p1p->macKey());
  219. p1p->send(_r,outp.data(),outp.size(),false,Packet::VERB_RENDEZVOUS,now);
  220. }
  221. { // tell p2 where to find p1
  222. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  223. outp.append(p1.data(),ZT_ADDRESS_LENGTH);
  224. outp.append((uint16_t)cg.second.port());
  225. if (cg.second.isV6()) {
  226. outp.append((unsigned char)16);
  227. outp.append(cg.second.rawIpData(),16);
  228. } else {
  229. outp.append((unsigned char)4);
  230. outp.append(cg.second.rawIpData(),4);
  231. }
  232. outp.encrypt(p2p->cryptKey());
  233. outp.hmacSet(p2p->macKey());
  234. p2p->send(_r,outp.data(),outp.size(),false,Packet::VERB_RENDEZVOUS,now);
  235. }
  236. return true;
  237. }
  238. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  239. {
  240. Demarc::Port fromPort = _r->demarc->pick(atAddr);
  241. _r->demarc->send(fromPort,atAddr,"\0",1,ZT_FIREWALL_OPENER_HOPS);
  242. Mutex::Lock _l(_contactQueue_m);
  243. _contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,fromPort,atAddr));
  244. // TODO: there needs to be a mechanism to interrupt Node's waiting to
  245. // make sure the fire happens at the right time, but it's not critical.
  246. }
  247. unsigned long Switch::doTimerTasks()
  248. {
  249. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  250. uint64_t now = Utils::now();
  251. {
  252. Mutex::Lock _l(_contactQueue_m);
  253. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  254. if (now >= qi->fireAtTime) {
  255. TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str());
  256. sendHELLO(qi->peer,qi->localPort,qi->inaddr);
  257. _contactQueue.erase(qi++);
  258. } else {
  259. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  260. ++qi;
  261. }
  262. }
  263. }
  264. {
  265. Mutex::Lock _l(_outstandingWhoisRequests_m);
  266. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  267. unsigned long since = (unsigned long)(now - i->second.lastSent);
  268. if (since >= ZT_WHOIS_RETRY_DELAY) {
  269. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  270. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  271. _outstandingWhoisRequests.erase(i++);
  272. continue;
  273. } else {
  274. i->second.lastSent = now;
  275. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  276. ++i->second.retries;
  277. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  278. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  279. }
  280. } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  281. ++i;
  282. }
  283. }
  284. {
  285. Mutex::Lock _l(_txQueue_m);
  286. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  287. if (_trySend(i->second.packet,i->second.encrypt))
  288. _txQueue.erase(i++);
  289. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  290. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  291. _txQueue.erase(i++);
  292. } else ++i;
  293. }
  294. }
  295. {
  296. Mutex::Lock _l(_rxQueue_m);
  297. for(std::list< SharedPtr<PacketDecoder> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  298. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  299. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  300. _rxQueue.erase(i++);
  301. } else ++i;
  302. }
  303. }
  304. {
  305. Mutex::Lock _l(_defragQueue_m);
  306. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  307. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  308. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  309. _defragQueue.erase(i++);
  310. } else ++i;
  311. }
  312. }
  313. return std::max(nextDelay,(unsigned long)10); // minimum delay
  314. }
  315. void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
  316. {
  317. std::vector< SharedPtr<Peer> > directPeers;
  318. _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers));
  319. #ifdef ZT_TRACE
  320. unsigned int totalMulticastGroups = 0;
  321. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
  322. totalMulticastGroups += (unsigned int)i->second.size();
  323. TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
  324. #endif
  325. for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
  326. Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  327. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
  328. if ((nwmgs->first->open())||(_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isMember((*p)->address()))) {
  329. for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
  330. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  331. send(outp,true);
  332. outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  333. }
  334. outp.append((uint64_t)nwmgs->first->id());
  335. outp.append(mg->mac().data,6);
  336. outp.append((uint32_t)mg->adi());
  337. }
  338. }
  339. }
  340. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  341. send(outp,true);
  342. }
  343. }
  344. void Switch::requestWhois(const Address &addr)
  345. {
  346. TRACE("requesting WHOIS for %s",addr.toString().c_str());
  347. {
  348. Mutex::Lock _l(_outstandingWhoisRequests_m);
  349. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  350. entry.first->second.lastSent = Utils::now();
  351. entry.first->second.retries = 0; // reset retry count if entry already existed
  352. }
  353. _sendWhoisRequest(addr,(const Address *)0,0);
  354. }
  355. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  356. {
  357. {
  358. Mutex::Lock _l(_outstandingWhoisRequests_m);
  359. _outstandingWhoisRequests.erase(peer->address());
  360. }
  361. {
  362. Mutex::Lock _l(_rxQueue_m);
  363. for(std::list< SharedPtr<PacketDecoder> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  364. if ((*rxi)->tryDecode(_r))
  365. _rxQueue.erase(rxi++);
  366. else ++rxi;
  367. }
  368. }
  369. {
  370. Mutex::Lock _l(_txQueue_m);
  371. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  372. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  373. if (_trySend(txi->second.packet,txi->second.encrypt))
  374. _txQueue.erase(txi++);
  375. else ++txi;
  376. }
  377. }
  378. }
  379. void Switch::_handleRemotePacketFragment(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  380. {
  381. Packet::Fragment fragment(data);
  382. Address destination(fragment.destination());
  383. if (destination != _r->identity.address()) {
  384. // Fragment is not for us, so try to relay it
  385. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  386. fragment.incrementHops();
  387. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  388. if ((!relayTo)||(!relayTo->send(_r,fragment.data(),fragment.size(),true,Packet::VERB_NOP,Utils::now()))) {
  389. relayTo = _r->topology->getBestSupernode();
  390. if (relayTo)
  391. relayTo->send(_r,fragment.data(),fragment.size(),true,Packet::VERB_NOP,Utils::now());
  392. }
  393. } else {
  394. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  395. }
  396. } else {
  397. // Fragment looks like ours
  398. uint64_t pid = fragment.packetId();
  399. unsigned int fno = fragment.fragmentNumber();
  400. unsigned int tf = fragment.totalFragments();
  401. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  402. // Fragment appears basically sane. Its fragment number must be
  403. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  404. // Total fragments must be more than 1, otherwise why are we
  405. // seeing a Packet::Fragment?
  406. Mutex::Lock _l(_defragQueue_m);
  407. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  408. if (dqe == _defragQueue.end()) {
  409. // We received a Packet::Fragment without its head, so queue it and wait
  410. DefragQueueEntry &dq = _defragQueue[pid];
  411. dq.creationTime = Utils::now();
  412. dq.frags[fno - 1] = fragment;
  413. dq.totalFragments = tf; // total fragment count is known
  414. dq.haveFragments = 1 << fno; // we have only this fragment
  415. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  416. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  417. // We have other fragments and maybe the head, so add this one and check
  418. dqe->second.frags[fno - 1] = fragment;
  419. dqe->second.totalFragments = tf;
  420. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  421. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  422. // We have all fragments -- assemble and process full Packet
  423. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  424. SharedPtr<PacketDecoder> packet(dqe->second.frag0);
  425. for(unsigned int f=1;f<tf;++f)
  426. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  427. _defragQueue.erase(dqe);
  428. if (!packet->tryDecode(_r)) {
  429. Mutex::Lock _l(_rxQueue_m);
  430. _rxQueue.push_back(packet);
  431. }
  432. }
  433. } // else this is a duplicate fragment, ignore
  434. }
  435. }
  436. }
  437. void Switch::_handleRemotePacketHead(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  438. {
  439. SharedPtr<PacketDecoder> packet(new PacketDecoder(data,localPort,fromAddr));
  440. Address destination(packet->destination());
  441. if (destination != _r->identity.address()) {
  442. // Packet is not for us, so try to relay it
  443. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  444. packet->incrementHops();
  445. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  446. if ((relayTo)&&(relayTo->send(_r,packet->data(),packet->size(),true,Packet::VERB_NOP,Utils::now()))) {
  447. unite(packet->source(),destination,false); // periodically try to get them to talk directly
  448. } else {
  449. relayTo = _r->topology->getBestSupernode();
  450. if (relayTo)
  451. relayTo->send(_r,packet->data(),packet->size(),true,Packet::VERB_NOP,Utils::now());
  452. }
  453. } else {
  454. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  455. }
  456. } else if (packet->fragmented()) {
  457. // Packet is the head of a fragmented packet series
  458. uint64_t pid = packet->packetId();
  459. Mutex::Lock _l(_defragQueue_m);
  460. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  461. if (dqe == _defragQueue.end()) {
  462. // If we have no other fragments yet, create an entry and save the head
  463. DefragQueueEntry &dq = _defragQueue[pid];
  464. dq.creationTime = Utils::now();
  465. dq.frag0 = packet;
  466. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  467. dq.haveFragments = 1; // head is first bit (left to right)
  468. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  469. } else if (!(dqe->second.haveFragments & 1)) {
  470. // If we have other fragments but no head, see if we are complete with the head
  471. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  472. // We have all fragments -- assemble and process full Packet
  473. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  474. // packet already contains head, so append fragments
  475. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  476. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  477. _defragQueue.erase(dqe);
  478. if (!packet->tryDecode(_r)) {
  479. Mutex::Lock _l(_rxQueue_m);
  480. _rxQueue.push_back(packet);
  481. }
  482. } else {
  483. // Still waiting on more fragments, so queue the head
  484. dqe->second.frag0 = packet;
  485. }
  486. } // else this is a duplicate head, ignore
  487. } else {
  488. // Packet is unfragmented, so just process it
  489. if (!packet->tryDecode(_r)) {
  490. Mutex::Lock _l(_rxQueue_m);
  491. _rxQueue.push_back(packet);
  492. }
  493. }
  494. }
  495. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  496. {
  497. SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted));
  498. if (supernode) {
  499. Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
  500. outp.append(addr.data(),ZT_ADDRESS_LENGTH);
  501. outp.encrypt(supernode->cryptKey());
  502. outp.hmacSet(supernode->macKey());
  503. supernode->send(_r,outp.data(),outp.size(),false,Packet::VERB_WHOIS,Utils::now());
  504. return supernode->address();
  505. }
  506. return Address();
  507. }
  508. bool Switch::_trySend(const Packet &packet,bool encrypt)
  509. {
  510. SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
  511. if (peer) {
  512. uint64_t now = Utils::now();
  513. bool isRelay;
  514. SharedPtr<Peer> via;
  515. if ((_r->topology->isSupernode(peer->address()))||(peer->hasActiveDirectPath(now))) {
  516. isRelay = false;
  517. via = peer;
  518. } else {
  519. isRelay = true;
  520. via = _r->topology->getBestSupernode();
  521. if (!via)
  522. return false;
  523. }
  524. Packet tmp(packet);
  525. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  526. tmp.setFragmented(chunkSize < tmp.size());
  527. if (encrypt)
  528. tmp.encrypt(peer->cryptKey());
  529. tmp.hmacSet(peer->macKey());
  530. Packet::Verb verb = packet.verb();
  531. if (via->send(_r,tmp.data(),chunkSize,isRelay,verb,now)) {
  532. if (chunkSize < tmp.size()) {
  533. // Too big for one bite, fragment the rest
  534. unsigned int fragStart = chunkSize;
  535. unsigned int remaining = tmp.size() - chunkSize;
  536. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  537. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  538. ++fragsRemaining;
  539. unsigned int totalFragments = fragsRemaining + 1;
  540. for(unsigned int f=0;f<fragsRemaining;++f) {
  541. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  542. Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
  543. if (!via->send(_r,frag.data(),frag.size(),isRelay,verb,now)) {
  544. TRACE("WARNING: packet send to %s failed on later fragment #%u (check IP layer buffer sizes?)",via->address().toString().c_str(),f + 1);
  545. return false;
  546. }
  547. fragStart += chunkSize;
  548. remaining -= chunkSize;
  549. }
  550. }
  551. return true;
  552. }
  553. return false;
  554. }
  555. requestWhois(packet.destination());
  556. return false;
  557. }
  558. } // namespace ZeroTier