Switch.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2015 ZeroTier, Inc.
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "../version.h"
  33. #include "../include/ZeroTierOne.h"
  34. #include "Constants.hpp"
  35. #include "RuntimeEnvironment.hpp"
  36. #include "Switch.hpp"
  37. #include "Node.hpp"
  38. #include "InetAddress.hpp"
  39. #include "Topology.hpp"
  40. #include "Peer.hpp"
  41. #include "CMWC4096.hpp"
  42. #include "AntiRecursion.hpp"
  43. #include "Packet.hpp"
  44. namespace ZeroTier {
  45. Switch::Switch(const RuntimeEnvironment *renv) :
  46. RR(renv),
  47. _lastBeacon(0)
  48. {
  49. }
  50. Switch::~Switch()
  51. {
  52. }
  53. void Switch::onRemotePacket(const InetAddress &fromAddr,int linkDesperation,const Buffer<4096> &data)
  54. {
  55. try {
  56. if (data.size() == ZT_PROTO_BEACON_LENGTH) {
  57. _handleBeacon(fromAddr,linkDesperation,data);
  58. } else if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  59. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  60. _handleRemotePacketFragment(fromAddr,linkDesperation,data);
  61. } else if (data.size() >= ZT_PROTO_MIN_PACKET_LENGTH) {
  62. _handleRemotePacketHead(fromAddr,linkDesperation,data);
  63. }
  64. }
  65. } catch (std::exception &ex) {
  66. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  67. } catch ( ... ) {
  68. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  69. }
  70. }
  71. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  72. {
  73. SharedPtr<NetworkConfig> nconf(network->config2());
  74. if (!nconf)
  75. return;
  76. // Sanity check -- bridge loop? OS problem?
  77. if (to == network->mac())
  78. return;
  79. /* Check anti-recursion module to ensure that this is not ZeroTier talking over its own links.
  80. * Note: even when we introduce a more purposeful binding of the main UDP port, this can
  81. * still happen because Windows likes to send broadcasts over interfaces that have little
  82. * to do with their intended target audience. :P */
  83. if (!RR->antiRec->checkEthernetFrame(data.data(),data.size())) {
  84. TRACE("%.16llx: rejected recursively addressed ZeroTier packet by tail match (type %s, length: %u)",network->id(),etherTypeName(etherType),data.size());
  85. return;
  86. }
  87. // Check to make sure this protocol is allowed on this network
  88. if (!nconf->permitsEtherType(etherType)) {
  89. TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  90. return;
  91. }
  92. // Check if this packet is from someone other than the tap -- i.e. bridged in
  93. bool fromBridged = false;
  94. if (from != network->mac()) {
  95. if (!network->permitsBridging(RR->identity.address())) {
  96. LOG("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  97. return;
  98. }
  99. fromBridged = true;
  100. }
  101. if (to.isMulticast()) {
  102. // Destination is a multicast address (including broadcast)
  103. uint64_t now = Utils::now();
  104. MulticastGroup mg(to,0);
  105. if (to.isBroadcast()) {
  106. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() >= 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01)) {
  107. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  108. // Also: enableBroadcast() does not apply to ARP since it's required for IPv4
  109. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  110. } else if (!nconf->enableBroadcast()) {
  111. // Don't transmit broadcasts if this network doesn't want them
  112. TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
  113. return;
  114. }
  115. }
  116. /* Learn multicast groups for bridged-in hosts.
  117. * Note that some OSes, most notably Linux, do this for you by learning
  118. * multicast addresses on bridge interfaces and subscribing each slave.
  119. * But in that case this does no harm, as the sets are just merged. */
  120. if (fromBridged)
  121. network->learnBridgedMulticastGroup(mg,now);
  122. // Check multicast/broadcast bandwidth quotas and reject if quota exceeded
  123. if (!network->updateAndCheckMulticastBalance(mg,data.size())) {
  124. TRACE("%.16llx: didn't multicast %d bytes, quota exceeded for multicast group %s",network->id(),(int)data.size(),mg.toString().c_str());
  125. return;
  126. }
  127. TRACE("%.16llx: MULTICAST %s -> %s %s %d",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),(int)data.size());
  128. RR->mc->send(
  129. ((!nconf->isPublic())&&(nconf->com())) ? &(nconf->com()) : (const CertificateOfMembership *)0,
  130. nconf->multicastLimit(),
  131. now,
  132. network->id(),
  133. nconf->activeBridges(),
  134. mg,
  135. (fromBridged) ? from : MAC(),
  136. etherType,
  137. data.data(),
  138. data.size());
  139. return;
  140. }
  141. if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  142. // Destination is another ZeroTier peer
  143. Address toZT(to.toAddress(network->id()));
  144. if (network->isAllowed(toZT)) {
  145. if (network->peerNeedsOurMembershipCertificate(toZT,Utils::now())) {
  146. // TODO: once there are no more <1.0.0 nodes around, we can
  147. // bundle this with EXT_FRAME instead of sending two packets.
  148. Packet outp(toZT,RR->identity.address(),Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE);
  149. nconf->com().serialize(outp);
  150. send(outp,true);
  151. }
  152. if (fromBridged) {
  153. // EXT_FRAME is used for bridging or if we want to include a COM
  154. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  155. outp.append(network->id());
  156. outp.append((unsigned char)0);
  157. to.appendTo(outp);
  158. from.appendTo(outp);
  159. outp.append((uint16_t)etherType);
  160. outp.append(data);
  161. outp.compress();
  162. send(outp,true);
  163. } else {
  164. // FRAME is a shorter version that can be used when there's no bridging and no COM
  165. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  166. outp.append(network->id());
  167. outp.append((uint16_t)etherType);
  168. outp.append(data);
  169. outp.compress();
  170. send(outp,true);
  171. }
  172. } else {
  173. TRACE("%.16llx: UNICAST: %s -> %s %s dropped, destination not a member of private network",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  174. }
  175. return;
  176. }
  177. {
  178. // Destination is bridged behind a remote peer
  179. Address bridges[ZT_MAX_BRIDGE_SPAM];
  180. unsigned int numBridges = 0;
  181. bridges[0] = network->findBridgeTo(to);
  182. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->isAllowed(bridges[0]))&&(network->permitsBridging(bridges[0]))) {
  183. // We have a known bridge route for this MAC.
  184. ++numBridges;
  185. } else if (!nconf->activeBridges().empty()) {
  186. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  187. * bridges. This is similar to what many switches do -- if they do not
  188. * know which port corresponds to a MAC, they send it to all ports. If
  189. * there aren't any active bridges, numBridges will stay 0 and packet
  190. * is dropped. */
  191. std::vector<Address>::const_iterator ab(nconf->activeBridges().begin());
  192. if (nconf->activeBridges().size() <= ZT_MAX_BRIDGE_SPAM) {
  193. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  194. while (ab != nconf->activeBridges().end()) {
  195. if (network->isAllowed(*ab)) // config sanity check
  196. bridges[numBridges++] = *ab;
  197. ++ab;
  198. }
  199. } else {
  200. // Otherwise pick a random set of them
  201. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  202. if (ab == nconf->activeBridges().end())
  203. ab = nconf->activeBridges().begin();
  204. if (((unsigned long)RR->prng->next32() % (unsigned long)nconf->activeBridges().size()) == 0) {
  205. if (network->isAllowed(*ab)) // config sanity check
  206. bridges[numBridges++] = *ab;
  207. ++ab;
  208. } else ++ab;
  209. }
  210. }
  211. }
  212. for(unsigned int b=0;b<numBridges;++b) {
  213. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  214. outp.append(network->id());
  215. outp.append((unsigned char)0);
  216. to.appendTo(outp);
  217. from.appendTo(outp);
  218. outp.append((uint16_t)etherType);
  219. outp.append(data);
  220. outp.compress();
  221. send(outp,true);
  222. }
  223. }
  224. }
  225. void Switch::send(const Packet &packet,bool encrypt)
  226. {
  227. if (packet.destination() == RR->identity.address()) {
  228. TRACE("BUG: caught attempt to send() to self, ignored");
  229. return;
  230. }
  231. if (!_trySend(packet,encrypt)) {
  232. Mutex::Lock _l(_txQueue_m);
  233. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
  234. }
  235. }
  236. #if 0
  237. void Switch::sendHELLO(const Address &dest)
  238. {
  239. Packet outp(dest,RR->identity.address(),Packet::VERB_HELLO);
  240. outp.append((unsigned char)ZT_PROTO_VERSION);
  241. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  242. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  243. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  244. outp.append(Utils::now());
  245. RR->identity.serialize(outp,false);
  246. send(outp,false);
  247. }
  248. #endif
  249. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  250. {
  251. if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
  252. return false;
  253. SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
  254. if (!p1p)
  255. return false;
  256. SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
  257. if (!p2p)
  258. return false;
  259. uint64_t now = Utils::now();
  260. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  261. if (!(cg.first))
  262. return false;
  263. // Addresses are sorted in key for last unite attempt map for order
  264. // invariant lookup: (p1,p2) == (p2,p1)
  265. Array<Address,2> uniteKey;
  266. if (p1 >= p2) {
  267. uniteKey[0] = p2;
  268. uniteKey[1] = p1;
  269. } else {
  270. uniteKey[0] = p1;
  271. uniteKey[1] = p2;
  272. }
  273. {
  274. Mutex::Lock _l(_lastUniteAttempt_m);
  275. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  276. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  277. return false;
  278. else _lastUniteAttempt[uniteKey] = now;
  279. }
  280. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  281. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  282. * P2 in randomized order in terms of which gets sent first. This is done
  283. * since in a few cases NAT-t can be sensitive to slight timing differences
  284. * in terms of when the two peers initiate. Normally this is accounted for
  285. * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
  286. * given that supernodes are hosted on cloud providers this can in some
  287. * cases have a few ms of latency between packet departures. By randomizing
  288. * the order we make each attempted NAT-t favor one or the other going
  289. * first, meaning if it doesn't succeed the first time it might the second
  290. * and so forth. */
  291. unsigned int alt = RR->prng->next32() & 1;
  292. unsigned int completed = alt + 2;
  293. while (alt != completed) {
  294. if ((alt & 1) == 0) {
  295. // Tell p1 where to find p2.
  296. Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  297. outp.append((unsigned char)0);
  298. p2.appendTo(outp);
  299. outp.append((uint16_t)cg.first.port());
  300. if (cg.first.isV6()) {
  301. outp.append((unsigned char)16);
  302. outp.append(cg.first.rawIpData(),16);
  303. } else {
  304. outp.append((unsigned char)4);
  305. outp.append(cg.first.rawIpData(),4);
  306. }
  307. outp.armor(p1p->key(),true);
  308. p1p->send(RR,outp.data(),outp.size(),now);
  309. } else {
  310. // Tell p2 where to find p1.
  311. Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
  312. outp.append((unsigned char)0);
  313. p1.appendTo(outp);
  314. outp.append((uint16_t)cg.second.port());
  315. if (cg.second.isV6()) {
  316. outp.append((unsigned char)16);
  317. outp.append(cg.second.rawIpData(),16);
  318. } else {
  319. outp.append((unsigned char)4);
  320. outp.append(cg.second.rawIpData(),4);
  321. }
  322. outp.armor(p2p->key(),true);
  323. p2p->send(RR,outp.data(),outp.size(),now);
  324. }
  325. ++alt; // counts up and also flips LSB
  326. }
  327. return true;
  328. }
  329. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr,unsigned int maxDesperation)
  330. {
  331. TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str());
  332. uint64_t now = RR->node->now();
  333. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  334. outp.armor(peer->key(),false);
  335. /* Note that we don't log this as a "sent" packet or send it via the peer's
  336. * normal send() path. That's because this is a trial packet to an
  337. * unconfirmed address.
  338. *
  339. * First attempt is always at desperation zero. Then we escalate to max
  340. * before escalating through other NAT-t strategies. */
  341. RR->node->putPacket(atAddr,outp.data(),outp.size(),0);
  342. // If we have not punched through after this timeout, open refreshing can of whupass
  343. {
  344. Mutex::Lock _l(_contactQueue_m);
  345. _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,atAddr,maxDesperation));
  346. }
  347. }
  348. void Switch::requestWhois(const Address &addr)
  349. {
  350. bool inserted = false;
  351. {
  352. Mutex::Lock _l(_outstandingWhoisRequests_m);
  353. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  354. if ((inserted = entry.second))
  355. entry.first->second.lastSent = Utils::now();
  356. entry.first->second.retries = 0; // reset retry count if entry already existed
  357. }
  358. if (inserted)
  359. _sendWhoisRequest(addr,(const Address *)0,0);
  360. }
  361. void Switch::cancelWhoisRequest(const Address &addr)
  362. {
  363. Mutex::Lock _l(_outstandingWhoisRequests_m);
  364. _outstandingWhoisRequests.erase(addr);
  365. }
  366. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  367. {
  368. { // cancel pending WHOIS since we now know this peer
  369. Mutex::Lock _l(_outstandingWhoisRequests_m);
  370. _outstandingWhoisRequests.erase(peer->address());
  371. }
  372. { // finish processing any packets waiting on peer's public key / identity
  373. Mutex::Lock _l(_rxQueue_m);
  374. for(std::list< SharedPtr<IncomingPacket> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  375. if ((*rxi)->tryDecode(RR))
  376. _rxQueue.erase(rxi++);
  377. else ++rxi;
  378. }
  379. }
  380. { // finish sending any packets waiting on peer's public key / identity
  381. Mutex::Lock _l(_txQueue_m);
  382. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  383. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  384. if (_trySend(txi->second.packet,txi->second.encrypt))
  385. _txQueue.erase(txi++);
  386. else ++txi;
  387. }
  388. }
  389. }
  390. unsigned long Switch::doTimerTasks()
  391. {
  392. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  393. const uint64_t now = RR->node->now();
  394. { // Aggressive NAT traversal time!
  395. Mutex::Lock _l(_contactQueue_m);
  396. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  397. if (now >= qi->fireAtTime) {
  398. if (qi->peer->hasActiveDirectPath(now)) {
  399. // We've successfully NAT-t'd, so cancel attempt
  400. _contactQueue.erase(qi++);
  401. continue;
  402. } else {
  403. // Nope, nothing yet. Time to kill some kittens.
  404. Packet outp(qi->peer->address(),RR->identity.address(),Packet::VERB_NOP);
  405. outp.armor(qi->peer->key(),false);
  406. switch(qi->strategyIteration) {
  407. case 0:
  408. // First strategy: rifle method: direct packet to known port
  409. ++qi->strategyIteration;
  410. RR->node->putPacket(qi->inaddr,outp.data(),outp.size(),qi->currentDesperation);
  411. break;
  412. case 1: {
  413. // Second strategy: shotgun method up: try a few ports above
  414. ++qi->strategyIteration;
  415. int p = (int)qi->inaddr.port();
  416. for(int i=0;i<6;++i) {
  417. if (++p > 0xffff)
  418. break;
  419. InetAddress tmpaddr(qi->inaddr);
  420. tmpaddr.setPort((unsigned int)p);
  421. RR->node->putPacket(tmpaddr,outp.data(),outp.size(),qi->currentDesperation);
  422. }
  423. } break;
  424. case 2: {
  425. // Third strategy: shotgun method down: try a few ports below
  426. ++qi->strategyIteration;
  427. int p = (int)qi->inaddr.port();
  428. for(int i=0;i<3;++i) {
  429. if (--p < 1024)
  430. break;
  431. InetAddress tmpaddr(qi->inaddr);
  432. tmpaddr.setPort((unsigned int)p);
  433. RR->node->putPacket(tmpaddr,outp.data(),outp.size(),qi->currentDesperation);
  434. }
  435. } break;
  436. case 3:
  437. // Fourth strategy: sawed-off shotgun: try random non-privileged ports
  438. for(int i=0;i<16;++i) {
  439. InetAddress tmpaddr(qi->inaddr);
  440. tmpaddr.setPort((unsigned int)(1024 + (RR->prng->next32() % (65536 - 1024))));
  441. RR->node->putPacket(tmpaddr,outp.data(),outp.size(),qi->currentDesperation);
  442. }
  443. // Escalate link desperation after all strategies attempted
  444. ++qi->currentDesperation;
  445. if (qi->currentDesperation > qi->maxDesperation) {
  446. // We've tried all strategies at all levels of desperation, give up.
  447. _contactQueue.erase(qi++);
  448. continue;
  449. } else {
  450. // Otherwise restart at new link desperation level (e.g. try a tougher transport)
  451. qi->strategyIteration = 0;
  452. }
  453. break;
  454. }
  455. qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY;
  456. nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY);
  457. }
  458. } else {
  459. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  460. }
  461. ++qi; // if qi was erased, loop will have continued before here
  462. }
  463. }
  464. { // Retry outstanding WHOIS requests
  465. Mutex::Lock _l(_outstandingWhoisRequests_m);
  466. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  467. unsigned long since = (unsigned long)(now - i->second.lastSent);
  468. if (since >= ZT_WHOIS_RETRY_DELAY) {
  469. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  470. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  471. _outstandingWhoisRequests.erase(i++);
  472. continue;
  473. } else {
  474. i->second.lastSent = now;
  475. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  476. ++i->second.retries;
  477. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  478. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  479. }
  480. } else {
  481. nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  482. }
  483. ++i;
  484. }
  485. }
  486. { // Time out TX queue packets that never got WHOIS lookups or other info.
  487. Mutex::Lock _l(_txQueue_m);
  488. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  489. if (_trySend(i->second.packet,i->second.encrypt))
  490. _txQueue.erase(i++);
  491. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  492. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  493. _txQueue.erase(i++);
  494. } else ++i;
  495. }
  496. }
  497. { // Time out RX queue packets that never got WHOIS lookups or other info.
  498. Mutex::Lock _l(_rxQueue_m);
  499. for(std::list< SharedPtr<IncomingPacket> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  500. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  501. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  502. _rxQueue.erase(i++);
  503. } else ++i;
  504. }
  505. }
  506. { // Time out packets that didn't get all their fragments.
  507. Mutex::Lock _l(_defragQueue_m);
  508. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  509. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  510. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  511. _defragQueue.erase(i++);
  512. } else ++i;
  513. }
  514. }
  515. return std::max(nextDelay,(unsigned long)10); // minimum delay
  516. }
  517. const char *Switch::etherTypeName(const unsigned int etherType)
  518. throw()
  519. {
  520. switch(etherType) {
  521. case ZT_ETHERTYPE_IPV4: return "IPV4";
  522. case ZT_ETHERTYPE_ARP: return "ARP";
  523. case ZT_ETHERTYPE_RARP: return "RARP";
  524. case ZT_ETHERTYPE_ATALK: return "ATALK";
  525. case ZT_ETHERTYPE_AARP: return "AARP";
  526. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  527. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  528. case ZT_ETHERTYPE_IPV6: return "IPV6";
  529. }
  530. return "UNKNOWN";
  531. }
  532. void Switch::_handleRemotePacketFragment(const InetAddress &fromAddr,int linkDesperation,const Buffer<4096> &data)
  533. {
  534. Packet::Fragment fragment(data);
  535. Address destination(fragment.destination());
  536. if (destination != RR->identity.address()) {
  537. // Fragment is not for us, so try to relay it
  538. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  539. fragment.incrementHops();
  540. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  541. // It wouldn't hurt anything, just redundant and unnecessary.
  542. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  543. if ((!relayTo)||(!relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now()))) {
  544. // Don't know peer or no direct path -- so relay via supernode
  545. relayTo = RR->topology->getBestSupernode();
  546. if (relayTo)
  547. relayTo->send(RR,fragment.data(),fragment.size(),RR->node->now());
  548. }
  549. } else {
  550. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  551. }
  552. } else {
  553. // Fragment looks like ours
  554. uint64_t pid = fragment.packetId();
  555. unsigned int fno = fragment.fragmentNumber();
  556. unsigned int tf = fragment.totalFragments();
  557. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  558. // Fragment appears basically sane. Its fragment number must be
  559. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  560. // Total fragments must be more than 1, otherwise why are we
  561. // seeing a Packet::Fragment?
  562. Mutex::Lock _l(_defragQueue_m);
  563. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  564. if (dqe == _defragQueue.end()) {
  565. // We received a Packet::Fragment without its head, so queue it and wait
  566. DefragQueueEntry &dq = _defragQueue[pid];
  567. dq.creationTime = Utils::now();
  568. dq.frags[fno - 1] = fragment;
  569. dq.totalFragments = tf; // total fragment count is known
  570. dq.haveFragments = 1 << fno; // we have only this fragment
  571. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  572. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  573. // We have other fragments and maybe the head, so add this one and check
  574. dqe->second.frags[fno - 1] = fragment;
  575. dqe->second.totalFragments = tf;
  576. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  577. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  578. // We have all fragments -- assemble and process full Packet
  579. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  580. SharedPtr<IncomingPacket> packet(dqe->second.frag0);
  581. for(unsigned int f=1;f<tf;++f)
  582. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  583. _defragQueue.erase(dqe);
  584. if (!packet->tryDecode(RR)) {
  585. Mutex::Lock _l(_rxQueue_m);
  586. _rxQueue.push_back(packet);
  587. }
  588. }
  589. } // else this is a duplicate fragment, ignore
  590. }
  591. }
  592. }
  593. void Switch::_handleRemotePacketHead(const InetAddress &fromAddr,int linkDesperation,const Buffer<4096> &data)
  594. {
  595. SharedPtr<IncomingPacket> packet(new IncomingPacket(data,fromAddr,linkDesperation));
  596. Address source(packet->source());
  597. Address destination(packet->destination());
  598. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  599. if (destination != RR->identity.address()) {
  600. // Packet is not for us, so try to relay it
  601. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  602. packet->incrementHops();
  603. SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
  604. if ((relayTo)&&((relayTo->send(RR,packet->data(),packet->size(),RR->node->now())))) {
  605. unite(source,destination,false);
  606. } else {
  607. // Don't know peer or no direct path -- so relay via supernode
  608. relayTo = RR->topology->getBestSupernode(&source,1,true);
  609. if (relayTo)
  610. relayTo->send(RR,packet->data(),packet->size(),RR->node->now());
  611. }
  612. } else {
  613. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  614. }
  615. } else if (packet->fragmented()) {
  616. // Packet is the head of a fragmented packet series
  617. uint64_t pid = packet->packetId();
  618. Mutex::Lock _l(_defragQueue_m);
  619. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  620. if (dqe == _defragQueue.end()) {
  621. // If we have no other fragments yet, create an entry and save the head
  622. DefragQueueEntry &dq = _defragQueue[pid];
  623. dq.creationTime = Utils::now();
  624. dq.frag0 = packet;
  625. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  626. dq.haveFragments = 1; // head is first bit (left to right)
  627. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  628. } else if (!(dqe->second.haveFragments & 1)) {
  629. // If we have other fragments but no head, see if we are complete with the head
  630. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  631. // We have all fragments -- assemble and process full Packet
  632. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  633. // packet already contains head, so append fragments
  634. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  635. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  636. _defragQueue.erase(dqe);
  637. if (!packet->tryDecode(RR)) {
  638. Mutex::Lock _l(_rxQueue_m);
  639. _rxQueue.push_back(packet);
  640. }
  641. } else {
  642. // Still waiting on more fragments, so queue the head
  643. dqe->second.frag0 = packet;
  644. }
  645. } // else this is a duplicate head, ignore
  646. } else {
  647. // Packet is unfragmented, so just process it
  648. if (!packet->tryDecode(RR)) {
  649. Mutex::Lock _l(_rxQueue_m);
  650. _rxQueue.push_back(packet);
  651. }
  652. }
  653. }
  654. void Switch::_handleBeacon(const InetAddress &fromAddr,int linkDesperation,const Buffer<4096> &data)
  655. {
  656. Address beaconAddr(data.field(ZT_PROTO_BEACON_IDX_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
  657. if (beaconAddr == RR->identity.address())
  658. return;
  659. SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
  660. if (peer) {
  661. const uint64_t now = RR->node->now();
  662. if ((now - _lastBeacon) >= ZT_MIN_BEACON_RESPONSE_INTERVAL) {
  663. _lastBeacon = now;
  664. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  665. outp.armor(peer->key(),false);
  666. RR->node->putPacket(fromAddr,outp.data(),outp.size(),linkDesperation);
  667. }
  668. }
  669. }
  670. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  671. {
  672. SharedPtr<Peer> supernode(RR->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  673. if (supernode) {
  674. Packet outp(supernode->address(),RR->identity.address(),Packet::VERB_WHOIS);
  675. addr.appendTo(outp);
  676. outp.armor(supernode->key(),true);
  677. if (supernode->send(RR,outp.data(),outp.size(),RR->node->now()))
  678. return supernode->address();
  679. }
  680. return Address();
  681. }
  682. bool Switch::_trySend(const Packet &packet,bool encrypt)
  683. {
  684. SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination()));
  685. if (peer) {
  686. const uint64_t now = RR->node->now();
  687. Path *viaPath = peer->getBestPath(now);
  688. if (!viaPath) {
  689. SharedPtr<Peer> sn(RR->topology->getBestSupernode());
  690. if (!(sn)||(!(viaPath = sn->getBestPath(now))))
  691. return false;
  692. }
  693. Packet tmp(packet);
  694. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  695. tmp.setFragmented(chunkSize < tmp.size());
  696. tmp.armor(peer->key(),encrypt);
  697. if (viaPath->send(RR,tmp.data(),chunkSize,now)) {
  698. if (chunkSize < tmp.size()) {
  699. // Too big for one bite, fragment the rest
  700. unsigned int fragStart = chunkSize;
  701. unsigned int remaining = tmp.size() - chunkSize;
  702. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  703. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  704. ++fragsRemaining;
  705. unsigned int totalFragments = fragsRemaining + 1;
  706. for(unsigned int fno=1;fno<totalFragments;++fno) {
  707. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  708. Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments);
  709. viaPath->send(RR,frag.data(),frag.size(),now);
  710. fragStart += chunkSize;
  711. remaining -= chunkSize;
  712. }
  713. }
  714. return true;
  715. }
  716. } else {
  717. requestWhois(packet.destination());
  718. }
  719. return false;
  720. }
  721. } // namespace ZeroTier