Switch.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2018 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #include <stdio.h>
  27. #include <stdlib.h>
  28. #include <algorithm>
  29. #include <utility>
  30. #include <stdexcept>
  31. #include "../version.h"
  32. #include "../include/ZeroTierOne.h"
  33. #include "Constants.hpp"
  34. #include "RuntimeEnvironment.hpp"
  35. #include "Switch.hpp"
  36. #include "Node.hpp"
  37. #include "InetAddress.hpp"
  38. #include "Topology.hpp"
  39. #include "Peer.hpp"
  40. #include "SelfAwareness.hpp"
  41. #include "Packet.hpp"
  42. #include "Trace.hpp"
  43. namespace ZeroTier {
  44. Switch::Switch(const RuntimeEnvironment *renv) :
  45. RR(renv),
  46. _lastBeaconResponse(0),
  47. _lastCheckedQueues(0),
  48. _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine
  49. {
  50. }
  51. void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddress &fromAddr,const void *data,unsigned int len)
  52. {
  53. try {
  54. const int64_t now = RR->node->now();
  55. const SharedPtr<Path> path(RR->topology->getPath(localSocket,fromAddr));
  56. path->received(now);
  57. if (len == 13) {
  58. /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
  59. * announcements on the LAN to solve the 'same network problem.' We
  60. * no longer send these, but we'll listen for them for a while to
  61. * locate peers with versions <1.0.4. */
  62. const Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
  63. if (beaconAddr == RR->identity.address())
  64. return;
  65. if (!RR->node->shouldUsePathForZeroTierTraffic(tPtr,beaconAddr,localSocket,fromAddr))
  66. return;
  67. const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,beaconAddr));
  68. if (peer) { // we'll only respond to beacons from known peers
  69. if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses
  70. _lastBeaconResponse = now;
  71. Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
  72. outp.armor(peer->key(),true);
  73. path->send(RR,tPtr,outp.data(),outp.size(),now);
  74. }
  75. }
  76. } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below!
  77. if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
  78. // Handle fragment ----------------------------------------------------
  79. Packet::Fragment fragment(data,len);
  80. const Address destination(fragment.destination());
  81. if (destination != RR->identity.address()) {
  82. if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) )
  83. return;
  84. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  85. fragment.incrementHops();
  86. // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
  87. // It wouldn't hurt anything, just redundant and unnecessary.
  88. SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
  89. if ((!relayTo)||(!relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,false))) {
  90. // Don't know peer or no direct path -- so relay via someone upstream
  91. relayTo = RR->topology->getUpstreamPeer();
  92. if (relayTo)
  93. relayTo->sendDirect(tPtr,fragment.data(),fragment.size(),now,true);
  94. }
  95. }
  96. } else {
  97. // Fragment looks like ours
  98. const uint64_t fragmentPacketId = fragment.packetId();
  99. const unsigned int fragmentNumber = fragment.fragmentNumber();
  100. const unsigned int totalFragments = fragment.totalFragments();
  101. if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) {
  102. // Fragment appears basically sane. Its fragment number must be
  103. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  104. // Total fragments must be more than 1, otherwise why are we
  105. // seeing a Packet::Fragment?
  106. RXQueueEntry *const rq = _findRXQueueEntry(fragmentPacketId);
  107. if (rq->packetId != fragmentPacketId) {
  108. // No packet found, so we received a fragment without its head.
  109. rq->timestamp = now;
  110. rq->packetId = fragmentPacketId;
  111. rq->frags[fragmentNumber - 1] = fragment;
  112. rq->totalFragments = totalFragments; // total fragment count is known
  113. rq->haveFragments = 1 << fragmentNumber; // we have only this fragment
  114. rq->complete = false;
  115. } else if (!(rq->haveFragments & (1 << fragmentNumber))) {
  116. // We have other fragments and maybe the head, so add this one and check
  117. rq->frags[fragmentNumber - 1] = fragment;
  118. rq->totalFragments = totalFragments;
  119. if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) {
  120. // We have all fragments -- assemble and process full Packet
  121. for(unsigned int f=1;f<totalFragments;++f)
  122. rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
  123. if (rq->frag0.tryDecode(RR,tPtr)) {
  124. rq->timestamp = 0; // packet decoded, free entry
  125. } else {
  126. rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
  127. }
  128. }
  129. } // else this is a duplicate fragment, ignore
  130. }
  131. }
  132. // --------------------------------------------------------------------
  133. } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important!
  134. // Handle packet head -------------------------------------------------
  135. const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH);
  136. const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH);
  137. if (source == RR->identity.address())
  138. return;
  139. if (destination != RR->identity.address()) {
  140. if ( (!RR->topology->amUpstream()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) )
  141. return;
  142. Packet packet(data,len);
  143. if (packet.hops() < ZT_RELAY_MAX_HOPS) {
  144. packet.incrementHops();
  145. SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
  146. if ((relayTo)&&(relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,false))) {
  147. if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) {
  148. const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
  149. if (sourcePeer)
  150. relayTo->introduce(tPtr,now,sourcePeer);
  151. }
  152. } else {
  153. relayTo = RR->topology->getUpstreamPeer();
  154. if ((relayTo)&&(relayTo->address() != source)) {
  155. if (relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,true)) {
  156. const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
  157. if (sourcePeer)
  158. relayTo->introduce(tPtr,now,sourcePeer);
  159. }
  160. }
  161. }
  162. }
  163. } else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
  164. // Packet is the head of a fragmented packet series
  165. const uint64_t packetId = (
  166. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) |
  167. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) |
  168. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) |
  169. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) |
  170. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) |
  171. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) |
  172. (((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) |
  173. ((uint64_t)reinterpret_cast<const uint8_t *>(data)[7])
  174. );
  175. RXQueueEntry *const rq = _findRXQueueEntry(packetId);
  176. if (rq->packetId != packetId) {
  177. // If we have no other fragments yet, create an entry and save the head
  178. rq->timestamp = now;
  179. rq->packetId = packetId;
  180. rq->frag0.init(data,len,path,now);
  181. rq->totalFragments = 0;
  182. rq->haveFragments = 1;
  183. rq->complete = false;
  184. } else if (!(rq->haveFragments & 1)) {
  185. // If we have other fragments but no head, see if we are complete with the head
  186. if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) {
  187. // We have all fragments -- assemble and process full Packet
  188. rq->frag0.init(data,len,path,now);
  189. for(unsigned int f=1;f<rq->totalFragments;++f)
  190. rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
  191. if (rq->frag0.tryDecode(RR,tPtr)) {
  192. rq->timestamp = 0; // packet decoded, free entry
  193. } else {
  194. rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
  195. }
  196. } else {
  197. // Still waiting on more fragments, but keep the head
  198. rq->frag0.init(data,len,path,now);
  199. }
  200. } // else this is a duplicate head, ignore
  201. } else {
  202. // Packet is unfragmented, so just process it
  203. IncomingPacket packet(data,len,path,now);
  204. if (!packet.tryDecode(RR,tPtr)) {
  205. RXQueueEntry *const rq = _nextRXQueueEntry();
  206. rq->timestamp = now;
  207. rq->packetId = packet.packetId();
  208. rq->frag0 = packet;
  209. rq->totalFragments = 1;
  210. rq->haveFragments = 1;
  211. rq->complete = true;
  212. }
  213. }
  214. // --------------------------------------------------------------------
  215. }
  216. }
  217. } catch ( ... ) {} // sanity check, should be caught elsewhere
  218. }
  219. void Switch::onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
  220. {
  221. if (!network->hasConfig())
  222. return;
  223. // Check if this packet is from someone other than the tap -- i.e. bridged in
  224. bool fromBridged;
  225. if ((fromBridged = (from != network->mac()))) {
  226. if (!network->config().permitsBridging(RR->identity.address())) {
  227. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"not a bridge");
  228. return;
  229. }
  230. }
  231. if (to.isMulticast()) {
  232. MulticastGroup multicastGroup(to,0);
  233. if (to.isBroadcast()) {
  234. if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) {
  235. /* IPv4 ARP is one of the few special cases that we impose upon what is
  236. * otherwise a straightforward Ethernet switch emulation. Vanilla ARP
  237. * is dumb old broadcast and simply doesn't scale. ZeroTier multicast
  238. * groups have an additional field called ADI (additional distinguishing
  239. * information) which was added specifically for ARP though it could
  240. * be used for other things too. We then take ARP broadcasts and turn
  241. * them into multicasts by stuffing the IP address being queried into
  242. * the 32-bit ADI field. In practice this uses our multicast pub/sub
  243. * system to implement a kind of extended/distributed ARP table. */
  244. multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
  245. } else if (!network->config().enableBroadcast()) {
  246. // Don't transmit broadcasts if this network doesn't want them
  247. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"broadcast disabled");
  248. return;
  249. }
  250. } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) {
  251. // IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled
  252. if ((network->config().ndpEmulation())&&(reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
  253. Address v6EmbeddedAddress;
  254. const uint8_t *const pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8;
  255. const uint8_t *my6 = (const uint8_t *)0;
  256. // ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host)
  257. // ZT-6PLANE address: fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host)
  258. // (XX - lower 32 bits of network ID XORed with higher 32 bits)
  259. // For these to work, we must have a ZT-managed address assigned in one of the
  260. // above formats, and the query must match its prefix.
  261. for(unsigned int sipk=0;sipk<network->config().staticIpCount;++sipk) {
  262. const InetAddress *const sip = &(network->config().staticIps[sipk]);
  263. if (sip->ss_family == AF_INET6) {
  264. my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr);
  265. const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port);
  266. if ((sipNetmaskBits == 88)&&(my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 /88 ???
  267. unsigned int ptr = 0;
  268. while (ptr != 11) {
  269. if (pkt6[ptr] != my6[ptr])
  270. break;
  271. ++ptr;
  272. }
  273. if (ptr == 11) { // prefix match!
  274. v6EmbeddedAddress.setTo(pkt6 + ptr,5);
  275. break;
  276. }
  277. } else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ???
  278. const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff);
  279. if ( (my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) {
  280. unsigned int ptr = 0;
  281. while (ptr != 5) {
  282. if (pkt6[ptr] != my6[ptr])
  283. break;
  284. ++ptr;
  285. }
  286. if (ptr == 5) { // prefix match!
  287. v6EmbeddedAddress.setTo(pkt6 + ptr,5);
  288. break;
  289. }
  290. }
  291. }
  292. }
  293. }
  294. if ((v6EmbeddedAddress)&&(v6EmbeddedAddress != RR->identity.address())) {
  295. const MAC peerMac(v6EmbeddedAddress,network->id());
  296. uint8_t adv[72];
  297. adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00;
  298. adv[4] = 0x00; adv[5] = 0x20;
  299. adv[6] = 0x3a; adv[7] = 0xff;
  300. for(int i=0;i<16;++i) adv[8 + i] = pkt6[i];
  301. for(int i=0;i<16;++i) adv[24 + i] = my6[i];
  302. adv[40] = 0x88; adv[41] = 0x00;
  303. adv[42] = 0x00; adv[43] = 0x00; // future home of checksum
  304. adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00;
  305. for(int i=0;i<16;++i) adv[48 + i] = pkt6[i];
  306. adv[64] = 0x02; adv[65] = 0x01;
  307. adv[66] = peerMac[0]; adv[67] = peerMac[1]; adv[68] = peerMac[2]; adv[69] = peerMac[3]; adv[70] = peerMac[4]; adv[71] = peerMac[5];
  308. uint16_t pseudo_[36];
  309. uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_);
  310. for(int i=0;i<32;++i) pseudo[i] = adv[8 + i];
  311. pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20;
  312. pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a;
  313. for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i];
  314. uint32_t checksum = 0;
  315. for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]);
  316. while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16);
  317. checksum = ~checksum;
  318. adv[42] = (checksum >> 8) & 0xff;
  319. adv[43] = checksum & 0xff;
  320. RR->node->putFrame(tPtr,network->id(),network->userPtr(),peerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72);
  321. return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query.
  322. } // else no NDP emulation
  323. } // else no NDP emulation
  324. }
  325. // Check this after NDP emulation, since that has to be allowed in exactly this case
  326. if (network->config().multicastLimit == 0) {
  327. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"multicast disabled");
  328. return;
  329. }
  330. /* Learn multicast groups for bridged-in hosts.
  331. * Note that some OSes, most notably Linux, do this for you by learning
  332. * multicast addresses on bridge interfaces and subscribing each slave.
  333. * But in that case this does no harm, as the sets are just merged. */
  334. if (fromBridged)
  335. network->learnBridgedMulticastGroup(tPtr,multicastGroup,RR->node->now());
  336. // First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates.
  337. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
  338. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  339. return;
  340. }
  341. RR->mc->send(
  342. tPtr,
  343. RR->node->now(),
  344. network,
  345. Address(),
  346. multicastGroup,
  347. (fromBridged) ? from : MAC(),
  348. etherType,
  349. data,
  350. len);
  351. } else if (to == network->mac()) {
  352. // Destination is this node, so just reinject it
  353. RR->node->putFrame(tPtr,network->id(),network->userPtr(),from,to,etherType,vlanId,data,len);
  354. } else if (to[0] == MAC::firstOctetForNetwork(network->id())) {
  355. // Destination is another ZeroTier peer on the same network
  356. Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
  357. SharedPtr<Peer> toPeer(RR->topology->getPeer(tPtr,toZT));
  358. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId)) {
  359. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  360. return;
  361. }
  362. if (fromBridged) {
  363. Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
  364. outp.append(network->id());
  365. outp.append((unsigned char)0x00);
  366. to.appendTo(outp);
  367. from.appendTo(outp);
  368. outp.append((uint16_t)etherType);
  369. outp.append(data,len);
  370. if (!network->config().disableCompression())
  371. outp.compress();
  372. send(tPtr,outp,true);
  373. } else {
  374. Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
  375. outp.append(network->id());
  376. outp.append((uint16_t)etherType);
  377. outp.append(data,len);
  378. if (!network->config().disableCompression())
  379. outp.compress();
  380. send(tPtr,outp,true);
  381. }
  382. } else {
  383. // Destination is bridged behind a remote peer
  384. // We filter with a NULL destination ZeroTier address first. Filtrations
  385. // for each ZT destination are also done below. This is the same rationale
  386. // and design as for multicast.
  387. if (!network->filterOutgoingPacket(tPtr,false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
  388. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked");
  389. return;
  390. }
  391. Address bridges[ZT_MAX_BRIDGE_SPAM];
  392. unsigned int numBridges = 0;
  393. /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
  394. bridges[0] = network->findBridgeTo(to);
  395. std::vector<Address> activeBridges(network->config().activeBridges());
  396. if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) {
  397. /* We have a known bridge route for this MAC, send it there. */
  398. ++numBridges;
  399. } else if (!activeBridges.empty()) {
  400. /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
  401. * bridges. If someone responds, we'll learn the route. */
  402. std::vector<Address>::const_iterator ab(activeBridges.begin());
  403. if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) {
  404. // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
  405. while (ab != activeBridges.end()) {
  406. bridges[numBridges++] = *ab;
  407. ++ab;
  408. }
  409. } else {
  410. // Otherwise pick a random set of them
  411. while (numBridges < ZT_MAX_BRIDGE_SPAM) {
  412. if (ab == activeBridges.end())
  413. ab = activeBridges.begin();
  414. if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) {
  415. bridges[numBridges++] = *ab;
  416. ++ab;
  417. } else ++ab;
  418. }
  419. }
  420. }
  421. for(unsigned int b=0;b<numBridges;++b) {
  422. if (network->filterOutgoingPacket(tPtr,true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId)) {
  423. Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
  424. outp.append(network->id());
  425. outp.append((uint8_t)0x00);
  426. to.appendTo(outp);
  427. from.appendTo(outp);
  428. outp.append((uint16_t)etherType);
  429. outp.append(data,len);
  430. if (!network->config().disableCompression())
  431. outp.compress();
  432. send(tPtr,outp,true);
  433. } else {
  434. RR->t->outgoingNetworkFrameDropped(tPtr,network,from,to,etherType,vlanId,len,"filter blocked (bridge replication)");
  435. }
  436. }
  437. }
  438. }
  439. void Switch::send(void *tPtr,Packet &packet,bool encrypt)
  440. {
  441. const Address dest(packet.destination());
  442. if (dest == RR->identity.address())
  443. return;
  444. if (!_trySend(tPtr,packet,encrypt)) {
  445. {
  446. Mutex::Lock _l(_txQueue_m);
  447. if (_txQueue.size() >= ZT_TX_QUEUE_SIZE) {
  448. _txQueue.pop_front();
  449. }
  450. _txQueue.push_back(TXQueueEntry(dest,RR->node->now(),packet,encrypt));
  451. }
  452. if (!RR->topology->getPeer(tPtr,dest))
  453. requestWhois(tPtr,RR->node->now(),dest);
  454. }
  455. }
  456. void Switch::requestWhois(void *tPtr,const int64_t now,const Address &addr)
  457. {
  458. if (addr == RR->identity.address())
  459. return;
  460. {
  461. Mutex::Lock _l(_lastSentWhoisRequest_m);
  462. int64_t &last = _lastSentWhoisRequest[addr];
  463. if ((now - last) < ZT_WHOIS_RETRY_DELAY)
  464. return;
  465. else last = now;
  466. }
  467. const SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer());
  468. if (upstream) {
  469. Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
  470. addr.appendTo(outp);
  471. RR->node->expectReplyTo(outp.packetId());
  472. send(tPtr,outp,true);
  473. }
  474. }
  475. void Switch::doAnythingWaitingForPeer(void *tPtr,const SharedPtr<Peer> &peer)
  476. {
  477. {
  478. Mutex::Lock _l(_lastSentWhoisRequest_m);
  479. _lastSentWhoisRequest.erase(peer->address());
  480. }
  481. const int64_t now = RR->node->now();
  482. for(unsigned int ptr=0;ptr<ZT_RX_QUEUE_SIZE;++ptr) {
  483. RXQueueEntry *const rq = &(_rxQueue[ptr]);
  484. if ((rq->timestamp)&&(rq->complete)) {
  485. if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT))
  486. rq->timestamp = 0;
  487. }
  488. }
  489. {
  490. Mutex::Lock _l(_txQueue_m);
  491. for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
  492. if (txi->dest == peer->address()) {
  493. if (_trySend(tPtr,txi->packet,txi->encrypt)) {
  494. _txQueue.erase(txi++);
  495. } else {
  496. ++txi;
  497. }
  498. } else {
  499. ++txi;
  500. }
  501. }
  502. }
  503. }
  504. unsigned long Switch::doTimerTasks(void *tPtr,int64_t now)
  505. {
  506. const uint64_t timeSinceLastCheck = now - _lastCheckedQueues;
  507. if (timeSinceLastCheck < ZT_WHOIS_RETRY_DELAY)
  508. return (unsigned long)(ZT_WHOIS_RETRY_DELAY - timeSinceLastCheck);
  509. _lastCheckedQueues = now;
  510. std::vector<Address> needWhois;
  511. {
  512. Mutex::Lock _l(_txQueue_m);
  513. for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
  514. if (_trySend(tPtr,txi->packet,txi->encrypt)) {
  515. _txQueue.erase(txi++);
  516. } else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  517. _txQueue.erase(txi++);
  518. } else {
  519. if (!RR->topology->getPeer(tPtr,txi->dest))
  520. needWhois.push_back(txi->dest);
  521. ++txi;
  522. }
  523. }
  524. }
  525. for(std::vector<Address>::const_iterator i(needWhois.begin());i!=needWhois.end();++i)
  526. requestWhois(tPtr,now,*i);
  527. for(unsigned int ptr=0;ptr<ZT_RX_QUEUE_SIZE;++ptr) {
  528. RXQueueEntry *const rq = &(_rxQueue[ptr]);
  529. if ((rq->timestamp)&&(rq->complete)) {
  530. if ((rq->frag0.tryDecode(RR,tPtr))||((now - rq->timestamp) > ZT_RECEIVE_QUEUE_TIMEOUT)) {
  531. rq->timestamp = 0;
  532. } else {
  533. const Address src(rq->frag0.source());
  534. if (!RR->topology->getPeer(tPtr,src))
  535. requestWhois(tPtr,now,src);
  536. }
  537. }
  538. }
  539. {
  540. Mutex::Lock _l(_lastUniteAttempt_m);
  541. Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt);
  542. _LastUniteKey *k = (_LastUniteKey *)0;
  543. uint64_t *v = (uint64_t *)0;
  544. while (i.next(k,v)) {
  545. if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8))
  546. _lastUniteAttempt.erase(*k);
  547. }
  548. }
  549. {
  550. Mutex::Lock _l(_lastSentWhoisRequest_m);
  551. Hashtable< Address,int64_t >::Iterator i(_lastSentWhoisRequest);
  552. Address *a = (Address *)0;
  553. int64_t *ts = (int64_t *)0;
  554. while (i.next(a,ts)) {
  555. if ((now - *ts) > (ZT_WHOIS_RETRY_DELAY * 2))
  556. _lastSentWhoisRequest.erase(*a);
  557. }
  558. }
  559. return ZT_WHOIS_RETRY_DELAY;
  560. }
  561. bool Switch::_shouldUnite(const int64_t now,const Address &source,const Address &destination)
  562. {
  563. Mutex::Lock _l(_lastUniteAttempt_m);
  564. uint64_t &ts = _lastUniteAttempt[_LastUniteKey(source,destination)];
  565. if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) {
  566. ts = now;
  567. return true;
  568. }
  569. return false;
  570. }
  571. bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt)
  572. {
  573. SharedPtr<Path> viaPath;
  574. const int64_t now = RR->node->now();
  575. const Address destination(packet.destination());
  576. const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,destination));
  577. if (peer) {
  578. viaPath = peer->getBestPath(now,false);
  579. if (!viaPath) {
  580. peer->tryMemorizedPath(tPtr,now); // periodically attempt memorized or statically defined paths, if any are known
  581. const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
  582. if ( (!relay) || (!(viaPath = relay->getBestPath(now,false))) ) {
  583. if (!(viaPath = peer->getBestPath(now,true)))
  584. return false;
  585. }
  586. }
  587. } else {
  588. return false;
  589. }
  590. unsigned int mtu = ZT_DEFAULT_PHYSMTU;
  591. uint64_t trustedPathId = 0;
  592. RR->topology->getOutboundPathInfo(viaPath->address(),mtu,trustedPathId);
  593. unsigned int chunkSize = std::min(packet.size(),mtu);
  594. packet.setFragmented(chunkSize < packet.size());
  595. if (trustedPathId) {
  596. packet.setTrusted(trustedPathId);
  597. } else {
  598. packet.armor(peer->key(),encrypt);
  599. }
  600. if (viaPath->send(RR,tPtr,packet.data(),chunkSize,now)) {
  601. if (chunkSize < packet.size()) {
  602. // Too big for one packet, fragment the rest
  603. unsigned int fragStart = chunkSize;
  604. unsigned int remaining = packet.size() - chunkSize;
  605. unsigned int fragsRemaining = (remaining / (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  606. if ((fragsRemaining * (mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  607. ++fragsRemaining;
  608. const unsigned int totalFragments = fragsRemaining + 1;
  609. for(unsigned int fno=1;fno<totalFragments;++fno) {
  610. chunkSize = std::min(remaining,(unsigned int)(mtu - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  611. Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments);
  612. viaPath->send(RR,tPtr,frag.data(),frag.size(),now);
  613. fragStart += chunkSize;
  614. remaining -= chunkSize;
  615. }
  616. }
  617. }
  618. return true;
  619. }
  620. } // namespace ZeroTier