Protocol.hpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. /*
  2. * Copyright (c)2013-2020 ZeroTier, Inc.
  3. *
  4. * Use of this software is governed by the Business Source License included
  5. * in the LICENSE.TXT file in the project's root directory.
  6. *
  7. * Change Date: 2024-01-01
  8. *
  9. * On the date above, in accordance with the Business Source License, use
  10. * of this software will be governed by version 2.0 of the Apache License.
  11. */
  12. /****/
  13. #ifndef ZT_PROTOCOL_HPP
  14. #define ZT_PROTOCOL_HPP
  15. #include "Constants.hpp"
  16. #include "AES.hpp"
  17. #include "Salsa20.hpp"
  18. #include "Poly1305.hpp"
  19. #include "LZ4.hpp"
  20. #include "Buf.hpp"
  21. #include "Address.hpp"
  22. #include "Identity.hpp"
  23. #include "SymmetricKey.hpp"
  24. /*
  25. * Packet format:
  26. * <[8] 64-bit packet ID / crypto IV>
  27. * <[5] destination ZT address>
  28. * <[5] source ZT address>
  29. * <[1] outer visible flags, cipher, and hop count (bits: FFCCHHH)>
  30. * <[8] 64-bit MAC (or trusted path ID in trusted path mode)>
  31. * [... -- begin encryption envelope -- ...]
  32. * <[1] inner envelope flags (MS 3 bits) and verb (LS 5 bits)>
  33. * [... verb-specific payload ...]
  34. *
  35. * Packets smaller than 28 bytes are invalid and silently discarded.
  36. *
  37. * The hop count field is masked during message authentication computation
  38. * and is thus the only field that is mutable in transit. It's incremented
  39. * when roots or other nodes forward packets and exists to prevent infinite
  40. * forwarding loops and to detect direct paths.
  41. *
  42. * HELLO is normally sent in the clear with the POLY1305_NONE cipher suite
  43. * and with Poly1305 computed on plain text (Salsa20/12 is still used to
  44. * generate a one time use Poly1305 key). As of protocol version 11 HELLO
  45. * also includes a terminating HMAC (last 48 bytes) that significantly
  46. * hardens HELLO authentication beyond what a 64-bit MAC can guarantee.
  47. *
  48. * Fragmented packets begin with a packet header whose fragment bit (bit
  49. * 0x40 in the flags field) is set. This constitutes fragment zero. The
  50. * total number of expected fragments is contained in each subsequent
  51. * fragment packet. Unfragmented packets must not have the fragment bit
  52. * set or the receiver will expect at least one additional fragment.
  53. *
  54. * --
  55. *
  56. * Packet fragment format (fragments beyond 0):
  57. * <[8] packet ID of packet to which this fragment belongs>
  58. * <[5] destination ZT address>
  59. * <[1] 0xff here signals that this is a fragment>
  60. * <[1] total fragments (most significant 4 bits), fragment no (LS 4 bits)>
  61. * <[1] ZT hop count (least significant 3 bits; others are reserved)>
  62. * <[...] fragment data>
  63. *
  64. * The protocol supports a maximum of 16 fragments including fragment 0
  65. * which contains the full packet header (with fragment bit set). Fragments
  66. * thus always carry fragment numbers between 1 and 15. All fragments
  67. * belonging to the same packet must carry the same total fragment count in
  68. * the most significant 4 bits of the fragment numbering field.
  69. *
  70. * All fragments have the same packet ID and destination. The packet ID
  71. * doubles as the grouping identifier for fragment reassembly.
  72. *
  73. * Fragments do not carry their own packet MAC. The entire packet is
  74. * authenticated once it is assembled by the receiver. Incomplete packets
  75. * are discarded after a receiver configured period of time.
  76. */
  77. /*
  78. * Protocol versions
  79. *
  80. * 1 - 0.2.0 ... 0.2.5
  81. * 2 - 0.3.0 ... 0.4.5
  82. * + Added signature and originating peer to multicast frame
  83. * + Double size of multicast frame bloom filter
  84. * 3 - 0.5.0 ... 0.6.0
  85. * + Yet another multicast redesign
  86. * + New crypto completely changes key agreement cipher
  87. * 4 - 0.6.0 ... 1.0.6
  88. * + BREAKING CHANGE: New identity format based on hashcash design
  89. * 5 - 1.1.0 ... 1.1.5
  90. * + Supports echo
  91. * + Supports in-band world (root server definition) updates
  92. * + Clustering! (Though this will work with protocol v4 clients.)
  93. * + Otherwise backward compatible with protocol v4
  94. * 6 - 1.1.5 ... 1.1.10
  95. * + Network configuration format revisions including binary values
  96. * 7 - 1.1.10 ... 1.1.17
  97. * + Introduce trusted paths for local SDN use
  98. * 8 - 1.1.17 ... 1.2.0
  99. * + Multipart network configurations for large network configs
  100. * + Tags and Capabilities
  101. * + inline push of CertificateOfMembership deprecated
  102. * 9 - 1.2.0 ... 1.2.14
  103. * 10 - 1.4.0 ... 1.4.6
  104. * + Contained early pre-alpha versions of multipath, which are deprecated
  105. * 11 - 2.0.0 ... CURRENT
  106. * + New more WAN-efficient P2P-assisted multicast algorithm
  107. * + HELLO and OK(HELLO) include an extra HMAC to harden authentication
  108. * + HELLO and OK(HELLO) carry meta-data in a dictionary that's encrypted
  109. * + Forward secrecy, key lifetime management
  110. * + Old planet/moon stuff is DEAD! Independent roots are easier.
  111. * + AES encryption with the SIV construction AES-GMAC-SIV
  112. * + New combined Curve25519/NIST P-384 identity type (type 1)
  113. * + Short probe packets to reduce probe bandwidth
  114. * + More aggressive NAT traversal techniques for IPv4 symmetric NATs
  115. */
  116. #define ZT_PROTO_VERSION 11
  117. /**
  118. * Minimum supported protocol version
  119. */
  120. #define ZT_PROTO_VERSION_MIN 8
  121. /**
  122. * Maximum allowed packet size (can technically be increased up to 16384)
  123. */
  124. #define ZT_PROTO_MAX_PACKET_LENGTH (ZT_MAX_PACKET_FRAGMENTS * ZT_MIN_UDP_MTU)
  125. /**
  126. * Minimum viable packet length (outer header + verb)
  127. */
  128. #define ZT_PROTO_MIN_PACKET_LENGTH 28
  129. /**
  130. * Index at which the encrypted section of a packet begins
  131. */
  132. #define ZT_PROTO_PACKET_ENCRYPTED_SECTION_START 27
  133. /**
  134. * Index at which packet payload begins (after verb)
  135. */
  136. #define ZT_PROTO_PACKET_PAYLOAD_START 28
  137. /**
  138. * Maximum hop count allowed by packet structure (3 bits, 0-7)
  139. *
  140. * This is a protocol constant. It's the maximum allowed by the length
  141. * of the hop counter -- three bits. A lower limit is specified as
  142. * the actual maximum hop count.
  143. */
  144. #define ZT_PROTO_MAX_HOPS 7
  145. /**
  146. * NONE/Poly1305 (legacy)
  147. */
  148. #define ZT_PROTO_CIPHER_SUITE__POLY1305_NONE 0
  149. /**
  150. * Salsa2012/Poly1305 (legacy)
  151. */
  152. #define ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012 1
  153. /**
  154. * No encryption or authentication at all!
  155. *
  156. * This is used for trusted paths. The MAC field will contain the
  157. * 64-bit trusted path ID. Both sides of a link must be configured
  158. * to trust a given network with the same trusted path ID for this
  159. * to be used. It's a high performance mode designed for use on
  160. * secure LANs.
  161. */
  162. #define ZT_PROTO_CIPHER_SUITE__NONE 2
  163. /**
  164. * AES-GMAC-SIV
  165. */
  166. #define ZT_PROTO_CIPHER_SUITE__AES_GMAC_SIV 3
  167. /**
  168. * Minimum viable length for a fragment
  169. */
  170. #define ZT_PROTO_MIN_FRAGMENT_LENGTH 16
  171. /**
  172. * Magic number indicating a fragment if present at index 13
  173. */
  174. #define ZT_PROTO_PACKET_FRAGMENT_INDICATOR 0xff
  175. /**
  176. * Length of a probe packet
  177. */
  178. #define ZT_PROTO_PROBE_LENGTH 4
  179. /**
  180. * Index at which packet fragment payload starts
  181. */
  182. #define ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT ZT_PROTO_MIN_FRAGMENT_LENGTH
  183. /**
  184. * Header flag indicating that a packet is fragmented and more fragments should be expected
  185. */
  186. #define ZT_PROTO_FLAG_FRAGMENTED 0x40U
  187. /**
  188. * Mask for obtaining hops from the combined flags, cipher, and hops field
  189. */
  190. #define ZT_PROTO_FLAG_FIELD_HOPS_MASK 0x07U
  191. /**
  192. * Verb flag indicating payload is compressed with LZ4
  193. */
  194. #define ZT_PROTO_VERB_FLAG_COMPRESSED 0x80U
  195. /**
  196. * Mask to extract just the verb from the verb / verb flags field
  197. */
  198. #define ZT_PROTO_VERB_MASK 0x1fU
  199. /**
  200. * AES-GMAC-SIV first of two keys
  201. */
  202. #define ZT_KBKDF_LABEL_AES_GMAC_SIV_K0 '0'
  203. /**
  204. * AES-GMAC-SIV second of two keys
  205. */
  206. #define ZT_KBKDF_LABEL_AES_GMAC_SIV_K1 '1'
  207. /**
  208. * Key used to encrypt dictionary in HELLO with AES-CTR.
  209. */
  210. #define ZT_KBKDF_LABEL_HELLO_DICTIONARY_ENCRYPT 'H'
  211. /**
  212. * Key used for extra HMAC-SHA384 authentication on some packets.
  213. */
  214. #define ZT_KBKDF_LABEL_PACKET_HMAC 'M'
  215. #define ZT_PROTO_PACKET_FRAGMENT_INDICATOR_INDEX 13
  216. #define ZT_PROTO_PACKET_FRAGMENT_COUNTS 14
  217. #define ZT_PROTO_PACKET_ID_INDEX 0
  218. #define ZT_PROTO_PACKET_DESTINATION_INDEX 8
  219. #define ZT_PROTO_PACKET_SOURCE_INDEX 13
  220. #define ZT_PROTO_PACKET_FLAGS_INDEX 18
  221. #define ZT_PROTO_PACKET_MAC_INDEX 19
  222. #define ZT_PROTO_PACKET_VERB_INDEX 27
  223. #define ZT_PROTO_HELLO_NODE_META_INSTANCE_ID "i"
  224. #define ZT_PROTO_HELLO_NODE_META_LOCATOR "l"
  225. #define ZT_PROTO_HELLO_NODE_META_SOFTWARE_VENDOR "s"
  226. #define ZT_PROTO_HELLO_NODE_META_COMPLIANCE "c"
  227. #define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_PUBLIC "e"
  228. #define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_ACK "E"
  229. static_assert(ZT_PROTO_MAX_PACKET_LENGTH < ZT_BUF_MEM_SIZE,"maximum packet length won't fit in Buf");
  230. static_assert(ZT_PROTO_PACKET_ENCRYPTED_SECTION_START == (ZT_PROTO_MIN_PACKET_LENGTH-1),"encrypted packet section must start right before protocol verb at one less than minimum packet size");
  231. namespace ZeroTier {
  232. namespace Protocol {
  233. /**
  234. * Packet verb (message type)
  235. */
  236. enum Verb
  237. {
  238. /**
  239. * No operation
  240. *
  241. * This packet does nothing, but it is sometimes sent as a probe to
  242. * trigger a HELLO exchange as the code will attempt HELLO when it
  243. * receives a packet from an unidentified source.
  244. */
  245. VERB_NOP = 0x00,
  246. /**
  247. * Announcement of a node's existence and vitals:
  248. * <[1] protocol version>
  249. * <[1] software major version (optional, 0 if unspecified)>
  250. * <[1] software minor version (optional, 0 if unspecified)>
  251. * <[2] software revision (optional, 0 if unspecified)>
  252. * <[8] timestamp>
  253. * <[...] binary serialized full sender identity>
  254. * <[...] physical destination of packet>
  255. * <[12] 96-bit CTR IV>
  256. * <[6] reserved bytes, currently used for legacy compatibility>
  257. * [... start of encrypted section ...]
  258. * <[2] 16-bit length of encrypted dictionary>
  259. * <[...] encrypted dictionary>
  260. * [... end of encrypted section ...]
  261. * <[48] HMAC-SHA384 of packet>
  262. *
  263. * HELLO is sent to initiate a new pairing between two nodes and
  264. * periodically to refresh information.
  265. *
  266. * HELLO is the only packet ever sent without whole payload encryption,
  267. * though an inner encrypted envelope exists to obscure all fields that
  268. * do not need to be sent in the clear. There is nothing in this
  269. * encrypted section that would be catastrophic if it leaked, but it's
  270. * good to proactively limit exposed information.
  271. *
  272. * Inner encryption is AES-CTR with a key derived using KBKDF and a
  273. * label indicating this specific usage. A 96-bit CTR IV precedes this
  274. * encrypted section.
  275. *
  276. * Authentication and encryption in HELLO and OK(HELLO) are always done
  277. * with the long-lived identity key, not ephemeral shared keys. This
  278. * is so ephemeral key negotiation can always occur on the first try
  279. * even if things get out of sync e.g. by one side restarting. Nothing
  280. * in HELLO is likely to be dangerous if decrypted later.
  281. *
  282. * HELLO and OK(HELLO) include an extra HMAC at the end of the packet.
  283. * This authenticates them to a level of certainty beyond that afforded
  284. * by regular AEAD. HMAC is computed over the whole packet prior to
  285. * packet MAC and with the 3-bit hop count field masked as it is
  286. * with regular packet AEAD, and it is then included in the regular
  287. * packet MAC.
  288. *
  289. * LEGACY: for legacy reasons the MAC field of HELLO is a poly1305
  290. * MAC initialized in the same manner as 1.x. Since HMAC provides
  291. * additional full 384-bit strength authentication this should not be
  292. * a problem for FIPS.
  293. *
  294. * Several legacy fields are present as well for the benefit of 1.x nodes.
  295. * These will go away and become simple reserved space once 1.x is no longer
  296. * supported. Some are self-explanatory. The "encrypted zero" is rather
  297. * strange. It's a 16-bit zero value encrypted using Salsa20/12 and the
  298. * long-lived identity key shared by the two peers. It tells 1.x that an
  299. * old encrypted field is no longer there and that it should stop parsing
  300. * the packet at that point.
  301. *
  302. * 1.x does not understand the dictionary and HMAC fields, but it will
  303. * ignore them due to the "encrypted zero" field indicating that the
  304. * packet contains no more information.
  305. *
  306. * Dictionary fields (defines start with ZT_PROTO_HELLO_NODE_META_):
  307. *
  308. * INSTANCE_ID - a 64-bit unique value generated on each node start
  309. * LOCATOR - signed record enumerating this node's trusted contact points
  310. * EPHEMERAL_PUBLIC - Ephemeral public key(s)
  311. *
  312. * OK will contain EPHEMERAL_PUBLIC (of the sender) and:
  313. *
  314. * EPHEMERAL_ACK - SHA384 of EPHEMERAL_PUBLIC received
  315. *
  316. * The following optional fields may also be present:
  317. *
  318. * HOSTNAME - arbitrary short host name for this node
  319. * CONTACT - arbitrary short contact information string for this node
  320. * SOFTWARE_VENDOR - short name or description of vendor, such as a URL
  321. * COMPLIANCE - bit mask containing bits for e.g. a FIPS-compliant node
  322. *
  323. * The timestamp field in OK is echoed but the others represent the sender
  324. * of the OK and are not echoes from HELLO. The dictionary in OK typically
  325. * only contains the EPHEMERAL fields, allowing the receiver of the OK to
  326. * confirm that both sides know the correct keys and thus begin using the
  327. * ephemeral shared secret to send packets.
  328. *
  329. * OK is sent encrypted with the usual AEAD, but still includes a full HMAC
  330. * as well (inside the cryptographic envelope).
  331. *
  332. * OK payload:
  333. * <[8] timestamp echoed from original HELLO>
  334. * <[1] protocol version of responding node>
  335. * <[1] software major version (optional)>
  336. * <[1] software minor version (optional)>
  337. * <[2] software revision (optional)>
  338. * <[...] physical destination address of packet>
  339. * <[2] 16-bit reserved field (zero for legacy compatibility)>
  340. * <[2] 16-bit length of dictionary>
  341. * <[...] dictionary>
  342. * <[48] HMAC-SHA384 of plaintext packet>
  343. */
  344. VERB_HELLO = 0x01,
  345. /**
  346. * Error response:
  347. * <[1] in-re verb>
  348. * <[8] in-re packet ID>
  349. * <[1] error code>
  350. * <[...] error-dependent payload, may be empty>
  351. *
  352. * An ERROR that does not pertain to a specific packet will have its verb
  353. * set to VERB_NOP and its packet ID set to zero.
  354. */
  355. VERB_ERROR = 0x02,
  356. /**
  357. * Success response:
  358. * <[1] in-re verb>
  359. * <[8] in-re packet ID>
  360. * <[...] response-specific payload>
  361. */
  362. VERB_OK = 0x03,
  363. /**
  364. * Query an identity by address:
  365. * <[5] address to look up>
  366. * [<[...] additional addresses to look up>
  367. *
  368. * OK response payload:
  369. * <[...] identity>
  370. * <[...] locator>
  371. * [... additional identity/locator pairs]
  372. *
  373. * If the address is not found, no response is generated. The semantics
  374. * of WHOIS is similar to ARP and NDP in that persistent retrying can
  375. * be performed.
  376. *
  377. * It is possible for an identity but a null/empty locator to be returned
  378. * if no locator is known for a node. Older versions may omit the locator.
  379. */
  380. VERB_WHOIS = 0x04,
  381. /**
  382. * Relay-mediated NAT traversal or firewall punching initiation:
  383. * <[1] flags (unused, currently 0)>
  384. * <[5] ZeroTier address of other peer>
  385. * <[2] 16-bit number of endpoints where peer might be reached>
  386. * <[...] endpoints to attempt>
  387. *
  388. * Legacy packet format for pre-2.x peers:
  389. * <[1] flags (unused, currently 0)>
  390. * <[5] ZeroTier address of other peer>
  391. * <[2] 16-bit protocol address port>
  392. * <[1] protocol address length / type>
  393. * <[...] protocol address (network byte order)>
  394. *
  395. * When a root or other peer is relaying messages, it can periodically send
  396. * RENDEZVOUS to assist peers in establishing direct communication.
  397. *
  398. * Peers also directly exchange information via HELLO, so this serves as
  399. * a second way for peers to learn about their possible locations.
  400. *
  401. * It also serves another function: temporal coordination of NAT traversal
  402. * attempts. Some NATs traverse better if both sides first send "firewall
  403. * opener" packets and then send real packets and if this exchange is
  404. * coordinated in time so that the packets effectively pass each other in
  405. * flight.
  406. *
  407. * No OK or ERROR is generated.
  408. */
  409. VERB_RENDEZVOUS = 0x05,
  410. /**
  411. * ZT-to-ZT unicast ethernet frame (shortened EXT_FRAME):
  412. * <[8] 64-bit network ID>
  413. * <[2] 16-bit ethertype>
  414. * <[...] ethernet payload>
  415. *
  416. * MAC addresses are derived from the packet's source and destination
  417. * ZeroTier addresses. This is a shortened EXT_FRAME that elides full
  418. * Ethernet framing and other optional flags and features when they
  419. * are not necessary.
  420. *
  421. * ERROR may be generated if a membership certificate is needed for a
  422. * closed network. Payload will be network ID.
  423. */
  424. VERB_FRAME = 0x06,
  425. /**
  426. * Full Ethernet frame with MAC addressing and optional fields:
  427. * <[8] 64-bit network ID>
  428. * <[1] flags>
  429. * <[6] destination MAC or all zero for destination node>
  430. * <[6] source MAC or all zero for node of origin>
  431. * <[2] 16-bit ethertype>
  432. * <[...] ethernet payload>
  433. *
  434. * Flags:
  435. * 0x01 - Certificate of network membership attached (DEPRECATED)
  436. * 0x02 - Most significant bit of subtype (see below)
  437. * 0x04 - Middle bit of subtype (see below)
  438. * 0x08 - Least significant bit of subtype (see below)
  439. * 0x10 - ACK requested in the form of OK(EXT_FRAME)
  440. *
  441. * Subtypes (0..7):
  442. * 0x0 - Normal frame (bridging can be determined by checking MAC)
  443. * 0x1 - TEEd outbound frame
  444. * 0x2 - REDIRECTed outbound frame
  445. * 0x3 - WATCHed outbound frame (TEE with ACK, ACK bit also set)
  446. * 0x4 - TEEd inbound frame
  447. * 0x5 - REDIRECTed inbound frame
  448. * 0x6 - WATCHed inbound frame
  449. * 0x7 - (reserved for future use)
  450. *
  451. * An extended frame carries full MAC addressing, making it a
  452. * superset of VERB_FRAME. If 0x20 is set then p2p or hub and
  453. * spoke multicast propagation is requested.
  454. *
  455. * OK payload (if ACK flag is set):
  456. * <[8] 64-bit network ID>
  457. * <[1] flags>
  458. * <[6] destination MAC or all zero for destination node>
  459. * <[6] source MAC or all zero for node of origin>
  460. * <[2] 16-bit ethertype>
  461. */
  462. VERB_EXT_FRAME = 0x07,
  463. /**
  464. * ECHO request (a.k.a. ping):
  465. * <[...] arbitrary payload>
  466. *
  467. * This generates OK with a copy of the transmitted payload. No ERROR
  468. * is generated. Response to ECHO requests is optional and ECHO may be
  469. * ignored if a node detects a possible flood.
  470. */
  471. VERB_ECHO = 0x08,
  472. /**
  473. * Announce interest in multicast group(s):
  474. * <[8] 64-bit network ID>
  475. * <[6] multicast Ethernet address>
  476. * <[4] multicast additional distinguishing information (ADI)>
  477. * [... additional tuples of network/address/adi ...]
  478. *
  479. * LIKEs may be sent to any peer, though a good implementation should
  480. * restrict them to peers on the same network they're for and to network
  481. * controllers and root servers. In the current network, root servers
  482. * will provide the service of final multicast cache.
  483. */
  484. VERB_MULTICAST_LIKE = 0x09,
  485. /**
  486. * Network credentials push:
  487. * [<[...] one or more certificates of membership>]
  488. * <[1] 0x00, null byte marking end of COM array>
  489. * <[2] 16-bit number of capabilities>
  490. * <[...] one or more serialized Capability>
  491. * <[2] 16-bit number of tags>
  492. * <[...] one or more serialized Tags>
  493. * <[2] 16-bit number of revocations>
  494. * <[...] one or more serialized Revocations>
  495. * <[2] 16-bit number of certificates of ownership>
  496. * <[...] one or more serialized CertificateOfOwnership>
  497. *
  498. * This can be sent by anyone at any time to push network credentials.
  499. * These will of course only be accepted if they are properly signed.
  500. * Credentials can be for any number of networks.
  501. *
  502. * The use of a zero byte to terminate the COM section is for legacy
  503. * backward compatibility. Newer fields are prefixed with a length.
  504. *
  505. * OK/ERROR are not generated.
  506. */
  507. VERB_NETWORK_CREDENTIALS = 0x0a,
  508. /**
  509. * Network configuration request:
  510. * <[8] 64-bit network ID>
  511. * <[2] 16-bit length of request meta-data dictionary>
  512. * <[...] string-serialized request meta-data>
  513. * <[8] 64-bit revision of netconf we currently have>
  514. * <[8] 64-bit timestamp of netconf we currently have>
  515. *
  516. * This message requests network configuration from a node capable of
  517. * providing it. Responses can be sent as OK(NETWORK_CONFIG_REQUEST)
  518. * or NETWORK_CONFIG messages. NETWORK_CONFIG can also be sent by
  519. * network controllers or other nodes unsolicited.
  520. *
  521. * OK response payload:
  522. * (same as VERB_NETWORK_CONFIG payload)
  523. *
  524. * ERROR response payload:
  525. * <[8] 64-bit network ID>
  526. */
  527. VERB_NETWORK_CONFIG_REQUEST = 0x0b,
  528. /**
  529. * Network configuration data push:
  530. * <[8] 64-bit network ID>
  531. * <[2] 16-bit length of network configuration dictionary chunk>
  532. * <[...] network configuration dictionary (may be incomplete)>
  533. * <[1] 8-bit flags>
  534. * <[8] 64-bit config update ID (should never be 0)>
  535. * <[4] 32-bit total length of assembled dictionary>
  536. * <[4] 32-bit index of chunk>
  537. * [ ... end signed portion ... ]
  538. * <[1] 8-bit reserved field (legacy)>
  539. * <[2] 16-bit length of chunk signature>
  540. * <[...] chunk signature>
  541. *
  542. * Network configurations can come from network controllers or theoretically
  543. * any other node, but each chunk must be signed by the network controller
  544. * that generated it originally. The config update ID is arbitrary and is merely
  545. * used by the receiver to group chunks. Chunk indexes must be sequential and
  546. * the total delivered chunks must yield a total network config equal to the
  547. * specified total length.
  548. *
  549. * Flags:
  550. * 0x01 - Use fast propagation -- rumor mill flood this chunk to other members
  551. *
  552. * An OK should be sent if the config is successfully received and
  553. * accepted.
  554. *
  555. * OK payload:
  556. * <[8] 64-bit network ID>
  557. * <[8] 64-bit config update ID>
  558. */
  559. VERB_NETWORK_CONFIG = 0x0c,
  560. /**
  561. * Request endpoints for multicast distribution:
  562. * <[8] 64-bit network ID>
  563. * <[1] flags>
  564. * <[6] MAC address of multicast group being queried>
  565. * <[4] 32-bit ADI for multicast group being queried>
  566. * <[4] 32-bit requested max number of multicast peers>
  567. *
  568. * This message asks a peer for additional known endpoints that have
  569. * LIKEd a given multicast group. It's sent when the sender wishes
  570. * to send multicast but does not have the desired number of recipient
  571. * peers.
  572. *
  573. * OK response payload: (multiple OKs can be generated)
  574. * <[8] 64-bit network ID>
  575. * <[6] MAC address of multicast group being queried>
  576. * <[4] 32-bit ADI for multicast group being queried>
  577. * <[4] 32-bit total number of known members in this multicast group>
  578. * <[2] 16-bit number of members enumerated in this packet>
  579. * <[...] series of 5-byte ZeroTier addresses of enumerated members>
  580. *
  581. * ERROR is not generated; queries that return no response are dropped.
  582. */
  583. VERB_MULTICAST_GATHER = 0x0d,
  584. // Deprecated multicast frame message type.
  585. VERB_MULTICAST_FRAME_deprecated = 0x0e,
  586. /**
  587. * Push of potential endpoints for direct communication:
  588. * <[2] 16-bit number of paths>
  589. * <[...] paths>
  590. *
  591. * Path record format:
  592. * <[1] 8-bit path flags>
  593. * <[2] length of endpoint record>
  594. * <[...] endpoint>
  595. *
  596. * The following fields are also included if the node is pre-2.x:
  597. * <[1] address type (LEGACY)>
  598. * <[1] address length in bytes (LEGACY)>
  599. * <[...] address (LEGACY)>
  600. *
  601. * Path record flags:
  602. * 0x01 - reserved (legacy)
  603. * 0x02 - reserved (legacy)
  604. * 0x04 - Symmetric NAT detected at sender side
  605. * 0x08 - Request aggressive symmetric NAT traversal
  606. *
  607. * OK and ERROR are not generated.
  608. */
  609. VERB_PUSH_DIRECT_PATHS = 0x10,
  610. /**
  611. * A message with arbitrary user-definable content:
  612. * <[8] 64-bit arbitrary message type ID>
  613. * [<[...] message payload>]
  614. *
  615. * This can be used to send arbitrary messages over VL1. It generates no
  616. * OK or ERROR and has no special semantics outside of whatever the user
  617. * (via the ZeroTier core API) chooses to give it.
  618. *
  619. * Message type IDs less than or equal to 65535 are reserved for use by
  620. * ZeroTier, Inc. itself. We recommend making up random ones for your own
  621. * implementations.
  622. */
  623. VERB_USER_MESSAGE = 0x14,
  624. VERB_MULTICAST = 0x16,
  625. /**
  626. * Encapsulate a full ZeroTier packet in another:
  627. * <[...] raw encapsulated packet>
  628. *
  629. * Encapsulation exists to enable secure relaying as opposed to the usual
  630. * "dumb" relaying. The latter is faster but secure relaying has roles
  631. * where endpoint privacy is desired.
  632. *
  633. * Packet hop count is incremented as normal.
  634. */
  635. VERB_ENCAP = 0x17
  636. // protocol max: 0x1f
  637. };
  638. #ifdef ZT_DEBUG_SPEW
  639. static ZT_INLINE const char *verbName(const Verb v) noexcept
  640. {
  641. switch(v) {
  642. case VERB_NOP: return "NOP";
  643. case VERB_HELLO: return "HELLO";
  644. case VERB_ERROR: return "ERROR";
  645. case VERB_OK: return "OK";
  646. case VERB_WHOIS: return "WHOIS";
  647. case VERB_RENDEZVOUS: return "RENDEZVOUS";
  648. case VERB_FRAME: return "FRAME";
  649. case VERB_EXT_FRAME: return "EXT_FRAME";
  650. case VERB_ECHO: return "ECHO";
  651. case VERB_MULTICAST_LIKE: return "MULTICAST_LIKE";
  652. case VERB_NETWORK_CREDENTIALS: return "NETWORK_CREDENTIALS";
  653. case VERB_NETWORK_CONFIG_REQUEST: return "NETWORK_CONFIG_REQUEST";
  654. case VERB_NETWORK_CONFIG: return "NETWORK_CONFIG";
  655. case VERB_MULTICAST_GATHER: return "MULTICAST_GATHER";
  656. case VERB_MULTICAST_FRAME_deprecated: return "MULTICAST_FRAME_deprecated";
  657. case VERB_PUSH_DIRECT_PATHS: return "PUSH_DIRECT_PATHS";
  658. case VERB_USER_MESSAGE: return "USER_MESSAGE";
  659. case VERB_MULTICAST: return "MULTICAST";
  660. case VERB_ENCAP: return "ENCAP";
  661. default: return "(unknown)";
  662. }
  663. }
  664. #endif
  665. /**
  666. * Error codes used in ERROR packets.
  667. */
  668. enum ErrorCode
  669. {
  670. /* Invalid request */
  671. ERROR_INVALID_REQUEST = 0x01,
  672. /* Bad/unsupported protocol version */
  673. ERROR_BAD_PROTOCOL_VERSION = 0x02,
  674. /* Unknown object queried */
  675. ERROR_OBJ_NOT_FOUND = 0x03,
  676. /* Verb or use case not supported/enabled by this node */
  677. ERROR_UNSUPPORTED_OPERATION = 0x05,
  678. /* Network access denied; updated credentials needed */
  679. ERROR_NEED_MEMBERSHIP_CERTIFICATE = 0x06,
  680. /* Tried to join network, but you're not a member */
  681. ERROR_NETWORK_ACCESS_DENIED_ = 0x07, /* extra _ at end to avoid Windows name conflict */
  682. /* Cannot deliver a forwarded ZeroTier packet (for any reason) */
  683. ERROR_CANNOT_DELIVER = 0x09
  684. };
  685. /**
  686. * EXT_FRAME subtypes, which are packed into three bits in the flags field.
  687. *
  688. * This allows the node to know whether this is a normal frame or one generated
  689. * by a special tee or redirect type flow rule.
  690. */
  691. enum ExtFrameSubtype
  692. {
  693. EXT_FRAME_SUBTYPE_NORMAL = 0x0,
  694. EXT_FRAME_SUBTYPE_TEE_OUTBOUND = 0x1,
  695. EXT_FRAME_SUBTYPE_REDIRECT_OUTBOUND = 0x2,
  696. EXT_FRAME_SUBTYPE_WATCH_OUTBOUND = 0x3,
  697. EXT_FRAME_SUBTYPE_TEE_INBOUND = 0x4,
  698. EXT_FRAME_SUBTYPE_REDIRECT_INBOUND = 0x5,
  699. EXT_FRAME_SUBTYPE_WATCH_INBOUND = 0x6
  700. };
  701. /**
  702. * EXT_FRAME flags
  703. */
  704. enum ExtFrameFlag
  705. {
  706. /**
  707. * A certifiate of membership was included (no longer used but still accepted)
  708. */
  709. EXT_FRAME_FLAG_COM_ATTACHED_deprecated = 0x01,
  710. // bits 0x02, 0x04, and 0x08 are occupied by the 3-bit ExtFrameSubtype value.
  711. /**
  712. * An OK(EXT_FRAME) acknowledgement was requested by the sender.
  713. */
  714. EXT_FRAME_FLAG_ACK_REQUESTED = 0x10
  715. };
  716. /**
  717. * NETWORK_CONFIG (or OK(NETWORK_CONFIG_REQUEST)) flags
  718. */
  719. enum NetworkConfigFlag
  720. {
  721. /**
  722. * Indicates that this network config chunk should be fast propagated via rumor mill flooding.
  723. */
  724. NETWORK_CONFIG_FLAG_FAST_PROPAGATE = 0x01
  725. };
  726. /**
  727. * Deterministically mangle a 256-bit crypto key based on packet characteristics
  728. *
  729. * This uses extra data from the packet to mangle the secret, yielding when
  730. * combined with Salsa20's conventional 64-bit nonce an effective nonce that's
  731. * more like 68 bits.
  732. *
  733. * @param in Input key (32 bytes)
  734. * @param out Output buffer (32 bytes)
  735. */
  736. static ZT_INLINE void salsa2012DeriveKey(const uint8_t *const in,uint8_t *const out,const Buf &packet,const unsigned int packetSize) noexcept
  737. {
  738. // IV and source/destination addresses. Using the addresses divides the
  739. // key space into two halves-- A->B and B->A (since order will change).
  740. #ifdef ZT_NO_UNALIGNED_ACCESS
  741. for(int i=0;i<18;++i)
  742. out[i] = in[i] ^ packet.unsafeData[i];
  743. #else
  744. *reinterpret_cast<uint64_t *>(out) = *reinterpret_cast<const uint64_t *>(in) ^ *reinterpret_cast<const uint64_t *>(packet.unsafeData);
  745. *reinterpret_cast<uint64_t *>(out + 8) = *reinterpret_cast<const uint64_t *>(in + 8) ^ *reinterpret_cast<const uint64_t *>(packet.unsafeData + 8);
  746. *reinterpret_cast<uint16_t *>(out + 16) = *reinterpret_cast<const uint16_t *>(in + 16) ^ *reinterpret_cast<const uint16_t *>(packet.unsafeData + 16);
  747. #endif
  748. // Flags, but with hop count masked off. Hop count is altered by forwarding
  749. // nodes and is the only field that is mutable by unauthenticated third parties.
  750. out[18] = in[18] ^ (packet.unsafeData[18] & 0xf8U);
  751. // Raw packet size in bytes -- thus each packet size defines a new key space.
  752. out[19] = in[19] ^ (uint8_t)packetSize;
  753. out[20] = in[20] ^ (uint8_t)(packetSize >> 8U); // little endian
  754. // Rest of raw key is used unchanged
  755. #ifdef ZT_NO_UNALIGNED_ACCESS
  756. for(int i=21;i<32;++i)
  757. out[i] = in[i];
  758. #else
  759. out[21] = in[21];
  760. out[22] = in[22];
  761. out[23] = in[23];
  762. *reinterpret_cast<uint64_t *>(out + 24) = *reinterpret_cast<const uint64_t *>(in + 24);
  763. #endif
  764. }
  765. /**
  766. * Fill out packet header fields (except for mac, which is filled out by armor())
  767. *
  768. * @param pkt Start of packet buffer
  769. * @param packetId Packet IV / cryptographic MAC
  770. * @param destination Destination ZT address
  771. * @param source Source (sending) ZT address
  772. * @param verb Protocol verb
  773. * @return Index of packet start
  774. */
  775. static ZT_INLINE int newPacket(uint8_t pkt[28],const uint64_t packetId,const Address destination,const Address source,const Verb verb) noexcept
  776. {
  777. Utils::storeAsIsEndian<uint64_t>(pkt + ZT_PROTO_PACKET_ID_INDEX,packetId);
  778. destination.copyTo(pkt + ZT_PROTO_PACKET_DESTINATION_INDEX);
  779. source.copyTo(pkt + ZT_PROTO_PACKET_SOURCE_INDEX);
  780. pkt[ZT_PROTO_PACKET_FLAGS_INDEX] = 0;
  781. Utils::storeAsIsEndian<uint64_t>(pkt + ZT_PROTO_PACKET_MAC_INDEX,0);
  782. pkt[ZT_PROTO_PACKET_VERB_INDEX] = (uint8_t)verb;
  783. return ZT_PROTO_PACKET_VERB_INDEX + 1;
  784. }
  785. static ZT_INLINE int newPacket(Buf &pkt,const uint64_t packetId,const Address destination,const Address source,const Verb verb) noexcept { return newPacket(pkt.unsafeData,packetId,destination,source,verb); }
  786. /**
  787. * Encrypt and compute packet MAC
  788. *
  789. * @param pkt Packet data to encrypt (in place)
  790. * @param packetSize Packet size, must be at least ZT_PROTO_MIN_PACKET_LENGTH or crash will occur
  791. * @param key Key to use for encryption
  792. * @param cipherSuite Cipher suite to use for AEAD encryption or just MAC
  793. */
  794. static ZT_INLINE void armor(uint8_t *const pkt,const int packetSize,const SharedPtr<SymmetricKey> &key,const uint8_t cipherSuite) noexcept
  795. {
  796. #if 0
  797. Protocol::Header &ph = pkt.as<Protocol::Header>(); // NOLINT(hicpp-use-auto,modernize-use-auto)
  798. ph.flags = (ph.flags & 0xc7U) | ((cipherSuite << 3U) & 0x38U); // flags: FFCCCHHH where CCC is cipher
  799. switch(cipherSuite) {
  800. case ZT_PROTO_CIPHER_SUITE__POLY1305_NONE: {
  801. uint8_t perPacketKey[ZT_SYMMETRIC_KEY_SIZE];
  802. salsa2012DeriveKey(key,perPacketKey,pkt,packetSize);
  803. Salsa20 s20(perPacketKey,&ph.packetId);
  804. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  805. s20.crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  806. // only difference here is that we don't encrypt the payload
  807. uint64_t mac[2];
  808. poly1305(mac,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,macKey);
  809. ph.mac = mac[0];
  810. } break;
  811. case ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012: {
  812. uint8_t perPacketKey[ZT_SYMMETRIC_KEY_SIZE];
  813. salsa2012DeriveKey(key,perPacketKey,pkt,packetSize);
  814. Salsa20 s20(perPacketKey,&ph.packetId);
  815. uint8_t macKey[ZT_POLY1305_KEY_SIZE];
  816. s20.crypt12(Utils::ZERO256,macKey,ZT_POLY1305_KEY_SIZE);
  817. const unsigned int encLen = packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
  818. s20.crypt12(pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,encLen);
  819. uint64_t mac[2];
  820. poly1305(mac,pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,encLen,macKey);
  821. ph.mac = mac[0];
  822. } break;
  823. case ZT_PROTO_CIPHER_SUITE__AES_GMAC_SIV: {
  824. } break;
  825. }
  826. #endif
  827. }
  828. /**
  829. * Attempt to compress packet payload
  830. *
  831. * This attempts compression and swaps the pointer in 'pkt' for a buffer holding
  832. * compressed data on success. If compression did not shrink the packet, the original
  833. * packet size is returned and 'pkt' remains unchanged. If compression is successful
  834. * the compressed verb flag is also set.
  835. *
  836. * @param pkt Packet buffer value/result parameter: pointer may be swapped if compression is successful
  837. * @param packetSize Total size of packet in bytes (including headers)
  838. * @return New size of packet after compression or original size of compression wasn't helpful
  839. */
  840. static ZT_INLINE int compress(SharedPtr<Buf> &pkt,int packetSize) noexcept
  841. {
  842. // TODO
  843. return packetSize;
  844. }
  845. } // namespace Protocol
  846. } // namespace ZeroTier
  847. #endif