Switch.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2012-2013 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "Constants.hpp"
  33. #ifdef __WINDOWS__
  34. #include <WinSock2.h>
  35. #include <Windows.h>
  36. #endif
  37. #include "Switch.hpp"
  38. #include "Node.hpp"
  39. #include "EthernetTap.hpp"
  40. #include "InetAddress.hpp"
  41. #include "Topology.hpp"
  42. #include "RuntimeEnvironment.hpp"
  43. #include "Peer.hpp"
  44. #include "NodeConfig.hpp"
  45. #include "Demarc.hpp"
  46. #include "CMWC4096.hpp"
  47. #include "../version.h"
  48. namespace ZeroTier {
  49. Switch::Switch(const RuntimeEnvironment *renv) :
  50. _r(renv),
  51. _multicastIdCounter((unsigned int)renv->prng->next32()) // start a random spot to minimize possible collisions on startup
  52. {
  53. }
  54. Switch::~Switch()
  55. {
  56. }
  57. void Switch::onRemotePacket(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  58. {
  59. try {
  60. if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  61. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  62. _handleRemotePacketFragment(localPort,fromAddr,data);
  63. else if (data.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  64. _handleRemotePacketHead(localPort,fromAddr,data);
  65. }
  66. } catch (std::exception &ex) {
  67. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  68. } catch ( ... ) {
  69. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  70. }
  71. }
  72. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  73. {
  74. if (to == network->tap().mac()) {
  75. LOG("%s: frame received from self, ignoring (bridge loop? OS bug?)",network->tap().deviceName().c_str());
  76. return;
  77. }
  78. if (from != network->tap().mac()) {
  79. LOG("ignored tap: %s -> %s %s (bridging not supported)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  80. return;
  81. }
  82. if (!network->permitsEtherType(etherType)) {
  83. LOG("ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  84. return;
  85. }
  86. if (to.isMulticast()) {
  87. MulticastGroup mg(to,0);
  88. if (to.isBroadcast()) {
  89. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  90. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
  91. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  92. }
  93. const unsigned int mcid = ++_multicastIdCounter & 0xffffff;
  94. const uint16_t bloomNonce = (uint16_t)(_r->prng->next32() & 0xffff); // doesn't need to be cryptographically strong
  95. unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM];
  96. unsigned char fifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH];
  97. unsigned char *const fifoEnd = fifo + sizeof(fifo);
  98. const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + data.size();
  99. const SharedPtr<Peer> supernode(_r->topology->getBestSupernode());
  100. uint64_t now = Utils::now();
  101. for(unsigned int prefix=0,np=((unsigned int)2 << (network->multicastPrefixBits() - 1));prefix<np;++prefix) {
  102. memset(bloom,0,sizeof(bloom));
  103. unsigned char *fifoPtr = fifo;
  104. _r->mc->getNextHops(network->id(),mg,Multicaster::AddToPropagationQueue(&fifoPtr,fifoEnd,bloom,bloomNonce,_r->identity.address(),network->multicastPrefixBits(),prefix));
  105. while (fifoPtr != fifoEnd)
  106. *(fifoPtr++) = (unsigned char)0;
  107. Address firstHop(fifo,ZT_ADDRESS_LENGTH); // fifo is +1 in size, with first element being used here
  108. if (!firstHop) {
  109. if (supernode)
  110. firstHop = supernode->address();
  111. else continue;
  112. }
  113. // If network is not open, make sure all recipients have our membership
  114. // certificate if we haven't sent it recently. As the multicast goes
  115. // further down the line, peers beyond the first batch will ask us for
  116. // our membership certificate if they need it.
  117. network->pushMembershipCertificate(fifo,sizeof(fifo),false,now);
  118. Packet outp(firstHop,_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
  119. outp.append((uint16_t)0);
  120. outp.append(fifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); // remainder of fifo is loaded into packet
  121. outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM);
  122. outp.append((unsigned char)0);
  123. outp.append(network->id());
  124. outp.append(bloomNonce);
  125. outp.append((unsigned char)network->multicastPrefixBits());
  126. outp.append((unsigned char)prefix);
  127. _r->identity.address().appendTo(outp);
  128. outp.append((unsigned char)((mcid >> 16) & 0xff));
  129. outp.append((unsigned char)((mcid >> 8) & 0xff));
  130. outp.append((unsigned char)(mcid & 0xff));
  131. outp.append(from.data,6);
  132. outp.append(mg.mac().data,6);
  133. outp.append(mg.adi());
  134. outp.append((uint16_t)etherType);
  135. outp.append((uint16_t)data.size());
  136. outp.append(data);
  137. C25519::Signature sig(_r->identity.sign(outp.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen));
  138. outp.append((uint16_t)sig.size());
  139. outp.append(sig.data,sig.size());
  140. outp.compress();
  141. send(outp,true);
  142. }
  143. } else if (to.isZeroTier()) {
  144. // Simple unicast frame from us to another node
  145. Address toZT(to.data + 1,ZT_ADDRESS_LENGTH);
  146. if (network->isAllowed(toZT)) {
  147. network->pushMembershipCertificate(toZT,false,Utils::now());
  148. Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
  149. outp.append(network->id());
  150. outp.append((uint16_t)etherType);
  151. outp.append(data);
  152. outp.compress();
  153. send(outp,true);
  154. } else {
  155. TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id());
  156. }
  157. } else {
  158. TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  159. }
  160. }
  161. void Switch::send(const Packet &packet,bool encrypt)
  162. {
  163. if (packet.destination() == _r->identity.address()) {
  164. TRACE("BUG: caught attempt to send() to self, ignored");
  165. return;
  166. }
  167. //TRACE(">> %.16llx %s -> %s (size: %u) (enc: %s)",(unsigned long long)packet.packetId(),packet.source().toString().c_str(),packet.destination().toString().c_str(),packet.size(),(encrypt ? "yes" : "no"));
  168. if (!_trySend(packet,encrypt)) {
  169. Mutex::Lock _l(_txQueue_m);
  170. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
  171. }
  172. }
  173. void Switch::sendHELLO(const Address &dest)
  174. {
  175. Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
  176. outp.append((unsigned char)ZT_PROTO_VERSION);
  177. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  178. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  179. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  180. outp.append(Utils::now());
  181. _r->identity.serialize(outp,false);
  182. send(outp,false);
  183. }
  184. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,Demarc::Port localPort,const InetAddress &remoteAddr)
  185. {
  186. uint64_t now = Utils::now();
  187. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  188. outp.append((unsigned char)ZT_PROTO_VERSION);
  189. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  190. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  191. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  192. outp.append(now);
  193. _r->identity.serialize(outp,false);
  194. outp.armor(dest->key(),false);
  195. return _r->demarc->send(localPort,remoteAddr,outp.data(),outp.size(),-1);
  196. }
  197. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  198. {
  199. if ((p1 == _r->identity.address())||(p2 == _r->identity.address()))
  200. return false;
  201. SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
  202. if (!p1p)
  203. return false;
  204. SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
  205. if (!p2p)
  206. return false;
  207. uint64_t now = Utils::now();
  208. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  209. if (!(cg.first))
  210. return false;
  211. // Addresses are sorted in key for last unite attempt map for order
  212. // invariant lookup: (p1,p2) == (p2,p1)
  213. Array<Address,2> uniteKey;
  214. if (p1 >= p2) {
  215. uniteKey[0] = p2;
  216. uniteKey[1] = p1;
  217. } else {
  218. uniteKey[0] = p1;
  219. uniteKey[1] = p2;
  220. }
  221. {
  222. Mutex::Lock _l(_lastUniteAttempt_m);
  223. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  224. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  225. return false;
  226. else _lastUniteAttempt[uniteKey] = now;
  227. }
  228. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  229. { // tell p1 where to find p2
  230. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  231. outp.append((unsigned char)0);
  232. p2.appendTo(outp);
  233. outp.append((uint16_t)cg.first.port());
  234. if (cg.first.isV6()) {
  235. outp.append((unsigned char)16);
  236. outp.append(cg.first.rawIpData(),16);
  237. } else {
  238. outp.append((unsigned char)4);
  239. outp.append(cg.first.rawIpData(),4);
  240. }
  241. outp.armor(p1p->key(),true);
  242. p1p->send(_r,outp.data(),outp.size(),now);
  243. }
  244. { // tell p2 where to find p1
  245. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  246. outp.append((unsigned char)0);
  247. p1.appendTo(outp);
  248. outp.append((uint16_t)cg.second.port());
  249. if (cg.second.isV6()) {
  250. outp.append((unsigned char)16);
  251. outp.append(cg.second.rawIpData(),16);
  252. } else {
  253. outp.append((unsigned char)4);
  254. outp.append(cg.second.rawIpData(),4);
  255. }
  256. outp.armor(p2p->key(),true);
  257. p2p->send(_r,outp.data(),outp.size(),now);
  258. }
  259. return true;
  260. }
  261. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  262. {
  263. Demarc::Port fromPort = _r->demarc->pick(atAddr);
  264. _r->demarc->send(fromPort,atAddr,"\0",1,ZT_FIREWALL_OPENER_HOPS);
  265. {
  266. Mutex::Lock _l(_contactQueue_m);
  267. _contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,fromPort,atAddr));
  268. }
  269. // Kick main loop out of wait so that it can pick up this
  270. // change to our scheduled timer tasks.
  271. _r->mainLoopWaitCondition.signal();
  272. }
  273. unsigned long Switch::doTimerTasks()
  274. {
  275. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  276. uint64_t now = Utils::now();
  277. {
  278. Mutex::Lock _l(_contactQueue_m);
  279. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  280. if (now >= qi->fireAtTime) {
  281. TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str());
  282. sendHELLO(qi->peer,qi->localPort,qi->inaddr);
  283. _contactQueue.erase(qi++);
  284. } else {
  285. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  286. ++qi;
  287. }
  288. }
  289. }
  290. {
  291. Mutex::Lock _l(_outstandingWhoisRequests_m);
  292. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  293. unsigned long since = (unsigned long)(now - i->second.lastSent);
  294. if (since >= ZT_WHOIS_RETRY_DELAY) {
  295. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  296. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  297. _outstandingWhoisRequests.erase(i++);
  298. continue;
  299. } else {
  300. i->second.lastSent = now;
  301. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  302. ++i->second.retries;
  303. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  304. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  305. }
  306. } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  307. ++i;
  308. }
  309. }
  310. {
  311. Mutex::Lock _l(_txQueue_m);
  312. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  313. if (_trySend(i->second.packet,i->second.encrypt))
  314. _txQueue.erase(i++);
  315. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  316. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  317. _txQueue.erase(i++);
  318. } else ++i;
  319. }
  320. }
  321. {
  322. Mutex::Lock _l(_rxQueue_m);
  323. for(std::list< SharedPtr<PacketDecoder> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  324. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  325. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  326. _rxQueue.erase(i++);
  327. } else ++i;
  328. }
  329. }
  330. {
  331. Mutex::Lock _l(_defragQueue_m);
  332. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  333. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  334. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  335. _defragQueue.erase(i++);
  336. } else ++i;
  337. }
  338. }
  339. return std::max(nextDelay,(unsigned long)10); // minimum delay
  340. }
  341. void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
  342. {
  343. std::vector< SharedPtr<Peer> > directPeers;
  344. _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers,Utils::now()));
  345. #ifdef ZT_TRACE
  346. unsigned int totalMulticastGroups = 0;
  347. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
  348. totalMulticastGroups += (unsigned int)i->second.size();
  349. TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
  350. #endif
  351. uint64_t now = Utils::now();
  352. for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
  353. Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  354. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
  355. nwmgs->first->pushMembershipCertificate((*p)->address(),false,now);
  356. if ((_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isAllowed((*p)->address()))) {
  357. for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
  358. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  359. send(outp,true);
  360. outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  361. }
  362. // network ID, MAC, ADI
  363. outp.append((uint64_t)nwmgs->first->id());
  364. outp.append(mg->mac().data,6);
  365. outp.append((uint32_t)mg->adi());
  366. }
  367. }
  368. }
  369. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  370. send(outp,true);
  371. }
  372. }
  373. void Switch::announceMulticastGroups(const SharedPtr<Peer> &peer)
  374. {
  375. Packet outp(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  376. std::vector< SharedPtr<Network> > networks(_r->nc->networks());
  377. uint64_t now = Utils::now();
  378. for(std::vector< SharedPtr<Network> >::iterator n(networks.begin());n!=networks.end();++n) {
  379. if (((*n)->isAllowed(peer->address()))||(_r->topology->isSupernode(peer->address()))) {
  380. (*n)->pushMembershipCertificate(peer->address(),false,now);
  381. std::set<MulticastGroup> mgs((*n)->multicastGroups());
  382. for(std::set<MulticastGroup>::iterator mg(mgs.begin());mg!=mgs.end();++mg) {
  383. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  384. send(outp,true);
  385. outp.reset(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  386. }
  387. // network ID, MAC, ADI
  388. outp.append((uint64_t)(*n)->id());
  389. outp.append(mg->mac().data,6);
  390. outp.append((uint32_t)mg->adi());
  391. }
  392. }
  393. }
  394. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  395. send(outp,true);
  396. }
  397. void Switch::requestWhois(const Address &addr)
  398. {
  399. //TRACE("requesting WHOIS for %s",addr.toString().c_str());
  400. bool inserted = false;
  401. {
  402. Mutex::Lock _l(_outstandingWhoisRequests_m);
  403. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  404. if ((inserted = entry.second))
  405. entry.first->second.lastSent = Utils::now();
  406. entry.first->second.retries = 0; // reset retry count if entry already existed
  407. }
  408. if (inserted)
  409. _sendWhoisRequest(addr,(const Address *)0,0);
  410. }
  411. void Switch::cancelWhoisRequest(const Address &addr)
  412. {
  413. Mutex::Lock _l(_outstandingWhoisRequests_m);
  414. _outstandingWhoisRequests.erase(addr);
  415. }
  416. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  417. {
  418. {
  419. Mutex::Lock _l(_outstandingWhoisRequests_m);
  420. _outstandingWhoisRequests.erase(peer->address());
  421. }
  422. {
  423. Mutex::Lock _l(_rxQueue_m);
  424. for(std::list< SharedPtr<PacketDecoder> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  425. if ((*rxi)->tryDecode(_r))
  426. _rxQueue.erase(rxi++);
  427. else ++rxi;
  428. }
  429. }
  430. {
  431. Mutex::Lock _l(_txQueue_m);
  432. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  433. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  434. if (_trySend(txi->second.packet,txi->second.encrypt))
  435. _txQueue.erase(txi++);
  436. else ++txi;
  437. }
  438. }
  439. }
  440. const char *Switch::etherTypeName(const unsigned int etherType)
  441. throw()
  442. {
  443. switch(etherType) {
  444. case ZT_ETHERTYPE_IPV4: return "IPV4";
  445. case ZT_ETHERTYPE_ARP: return "ARP";
  446. case ZT_ETHERTYPE_RARP: return "RARP";
  447. case ZT_ETHERTYPE_ATALK: return "ATALK";
  448. case ZT_ETHERTYPE_AARP: return "AARP";
  449. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  450. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  451. case ZT_ETHERTYPE_IPV6: return "IPV6";
  452. }
  453. return "UNKNOWN";
  454. }
  455. void Switch::_handleRemotePacketFragment(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  456. {
  457. Packet::Fragment fragment(data);
  458. Address destination(fragment.destination());
  459. if (destination != _r->identity.address()) {
  460. // Fragment is not for us, so try to relay it
  461. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  462. fragment.incrementHops();
  463. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  464. if ((!relayTo)||(!relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()))) {
  465. relayTo = _r->topology->getBestSupernode();
  466. if (relayTo)
  467. relayTo->send(_r,fragment.data(),fragment.size(),Utils::now());
  468. }
  469. } else {
  470. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  471. }
  472. } else {
  473. // Fragment looks like ours
  474. uint64_t pid = fragment.packetId();
  475. unsigned int fno = fragment.fragmentNumber();
  476. unsigned int tf = fragment.totalFragments();
  477. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  478. // Fragment appears basically sane. Its fragment number must be
  479. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  480. // Total fragments must be more than 1, otherwise why are we
  481. // seeing a Packet::Fragment?
  482. Mutex::Lock _l(_defragQueue_m);
  483. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  484. if (dqe == _defragQueue.end()) {
  485. // We received a Packet::Fragment without its head, so queue it and wait
  486. DefragQueueEntry &dq = _defragQueue[pid];
  487. dq.creationTime = Utils::now();
  488. dq.frags[fno - 1] = fragment;
  489. dq.totalFragments = tf; // total fragment count is known
  490. dq.haveFragments = 1 << fno; // we have only this fragment
  491. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  492. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  493. // We have other fragments and maybe the head, so add this one and check
  494. dqe->second.frags[fno - 1] = fragment;
  495. dqe->second.totalFragments = tf;
  496. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  497. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  498. // We have all fragments -- assemble and process full Packet
  499. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  500. SharedPtr<PacketDecoder> packet(dqe->second.frag0);
  501. for(unsigned int f=1;f<tf;++f)
  502. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  503. _defragQueue.erase(dqe);
  504. if (!packet->tryDecode(_r)) {
  505. Mutex::Lock _l(_rxQueue_m);
  506. _rxQueue.push_back(packet);
  507. }
  508. }
  509. } // else this is a duplicate fragment, ignore
  510. }
  511. }
  512. }
  513. void Switch::_handleRemotePacketHead(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
  514. {
  515. SharedPtr<PacketDecoder> packet(new PacketDecoder(data,localPort,fromAddr));
  516. Address source(packet->source());
  517. Address destination(packet->destination());
  518. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  519. if (destination != _r->identity.address()) {
  520. // Packet is not for us, so try to relay it
  521. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  522. packet->incrementHops();
  523. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  524. if ((relayTo)&&(relayTo->send(_r,packet->data(),packet->size(),Utils::now()))) {
  525. // If we've relayed, this periodically tries to get them to
  526. // talk directly to save our bandwidth.
  527. unite(source,destination,false);
  528. } else {
  529. // If we've received a packet not for us and we don't have
  530. // a direct path to its recipient, pass it to (another)
  531. // supernode. This can happen due to Internet weather -- the
  532. // most direct supernode may not be reachable, yet another
  533. // further away may be.
  534. relayTo = _r->topology->getBestSupernode(&source,1,true);
  535. if (relayTo)
  536. relayTo->send(_r,packet->data(),packet->size(),Utils::now());
  537. }
  538. } else {
  539. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  540. }
  541. } else if (packet->fragmented()) {
  542. // Packet is the head of a fragmented packet series
  543. uint64_t pid = packet->packetId();
  544. Mutex::Lock _l(_defragQueue_m);
  545. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  546. if (dqe == _defragQueue.end()) {
  547. // If we have no other fragments yet, create an entry and save the head
  548. DefragQueueEntry &dq = _defragQueue[pid];
  549. dq.creationTime = Utils::now();
  550. dq.frag0 = packet;
  551. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  552. dq.haveFragments = 1; // head is first bit (left to right)
  553. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  554. } else if (!(dqe->second.haveFragments & 1)) {
  555. // If we have other fragments but no head, see if we are complete with the head
  556. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  557. // We have all fragments -- assemble and process full Packet
  558. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  559. // packet already contains head, so append fragments
  560. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  561. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  562. _defragQueue.erase(dqe);
  563. if (!packet->tryDecode(_r)) {
  564. Mutex::Lock _l(_rxQueue_m);
  565. _rxQueue.push_back(packet);
  566. }
  567. } else {
  568. // Still waiting on more fragments, so queue the head
  569. dqe->second.frag0 = packet;
  570. }
  571. } // else this is a duplicate head, ignore
  572. } else {
  573. // Packet is unfragmented, so just process it
  574. if (!packet->tryDecode(_r)) {
  575. Mutex::Lock _l(_rxQueue_m);
  576. _rxQueue.push_back(packet);
  577. }
  578. }
  579. }
  580. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  581. {
  582. SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  583. if (supernode) {
  584. Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
  585. addr.appendTo(outp);
  586. outp.armor(supernode->key(),true);
  587. uint64_t now = Utils::now();
  588. if (supernode->send(_r,outp.data(),outp.size(),now))
  589. return supernode->address();
  590. }
  591. return Address();
  592. }
  593. bool Switch::_trySend(const Packet &packet,bool encrypt)
  594. {
  595. SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
  596. if (peer) {
  597. uint64_t now = Utils::now();
  598. SharedPtr<Peer> via;
  599. if ((_r->topology->isSupernode(peer->address()))||(peer->hasActiveDirectPath(now))) {
  600. via = peer;
  601. } else {
  602. via = _r->topology->getBestSupernode();
  603. if (!via)
  604. return false;
  605. }
  606. Packet tmp(packet);
  607. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  608. tmp.setFragmented(chunkSize < tmp.size());
  609. tmp.armor(peer->key(),encrypt);
  610. if (via->send(_r,tmp.data(),chunkSize,now)) {
  611. if (chunkSize < tmp.size()) {
  612. // Too big for one bite, fragment the rest
  613. unsigned int fragStart = chunkSize;
  614. unsigned int remaining = tmp.size() - chunkSize;
  615. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  616. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  617. ++fragsRemaining;
  618. unsigned int totalFragments = fragsRemaining + 1;
  619. for(unsigned int f=0;f<fragsRemaining;++f) {
  620. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  621. Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
  622. if (!via->send(_r,frag.data(),frag.size(),now)) {
  623. TRACE("WARNING: packet send to %s failed on later fragment #%u (check IP layer buffer sizes?)",via->address().toString().c_str(),f + 1);
  624. }
  625. fragStart += chunkSize;
  626. remaining -= chunkSize;
  627. }
  628. }
  629. return true;
  630. }
  631. return false;
  632. }
  633. requestWhois(packet.destination());
  634. return false;
  635. }
  636. } // namespace ZeroTier