selftest.cpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2012-2013 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <string.h>
  30. #include <time.h>
  31. #include <stdexcept>
  32. #include <iostream>
  33. #include <string>
  34. #include <vector>
  35. #include "node/Constants.hpp"
  36. #include "node/RuntimeEnvironment.hpp"
  37. #include "node/InetAddress.hpp"
  38. #include "node/EllipticCurveKey.hpp"
  39. #include "node/EllipticCurveKeyPair.hpp"
  40. #include "node/Utils.hpp"
  41. #include "node/Identity.hpp"
  42. #include "node/Packet.hpp"
  43. #include "node/Salsa20.hpp"
  44. #include "node/HMAC.hpp"
  45. #include "node/MAC.hpp"
  46. #include "node/Peer.hpp"
  47. #include "node/Condition.hpp"
  48. #include "node/NodeConfig.hpp"
  49. #include "node/Dictionary.hpp"
  50. #include "node/EthernetTap.hpp"
  51. #include "node/SHA512.hpp"
  52. #include "node/C25519.hpp"
  53. #include <openssl/rand.h>
  54. #ifdef __WINDOWS__
  55. #include <tchar.h>
  56. #endif
  57. using namespace ZeroTier;
  58. // ---------------------------------------------------------------------------
  59. // Override libcrypto default RAND_ with Utils::getSecureRandom(), which uses
  60. // a system strong random source. This is because OpenSSL libcrypto's default
  61. // RAND_ implementation uses uninitialized memory as one of its entropy
  62. // sources, which plays havoc with all kinds of debuggers and auditing tools.
  63. static void _zeroTier_rand_cleanup() {}
  64. static void _zeroTier_rand_add(const void *buf, int num, double add_entropy) {}
  65. static int _zeroTier_rand_status() { return 1; }
  66. static void _zeroTier_rand_seed(const void *buf, int num) {}
  67. static int _zeroTier_rand_bytes(unsigned char *buf, int num)
  68. {
  69. Utils::getSecureRandom(buf,num);
  70. return 1;
  71. }
  72. static RAND_METHOD _zeroTierRandMethod = {
  73. _zeroTier_rand_seed,
  74. _zeroTier_rand_bytes,
  75. _zeroTier_rand_cleanup,
  76. _zeroTier_rand_add,
  77. _zeroTier_rand_bytes,
  78. _zeroTier_rand_status
  79. };
  80. static void _initLibCrypto()
  81. {
  82. RAND_set_rand_method(&_zeroTierRandMethod);
  83. }
  84. // ---------------------------------------------------------------------------
  85. static unsigned char fuzzbuf[1048576];
  86. static const unsigned char s20TV0Key[32] = { 0x0f,0x62,0xb5,0x08,0x5b,0xae,0x01,0x54,0xa7,0xfa,0x4d,0xa0,0xf3,0x46,0x99,0xec,0x3f,0x92,0xe5,0x38,0x8b,0xde,0x31,0x84,0xd7,0x2a,0x7d,0xd0,0x23,0x76,0xc9,0x1c };
  87. static const unsigned char s20TV0Iv[8] = { 0x28,0x8f,0xf6,0x5d,0xc4,0x2b,0x92,0xf9 };
  88. static const unsigned char s20TV0Ks[64] = { 0x5e,0x5e,0x71,0xf9,0x01,0x99,0x34,0x03,0x04,0xab,0xb2,0x2a,0x37,0xb6,0x62,0x5b,0xf8,0x83,0xfb,0x89,0xce,0x3b,0x21,0xf5,0x4a,0x10,0xb8,0x10,0x66,0xef,0x87,0xda,0x30,0xb7,0x76,0x99,0xaa,0x73,0x79,0xda,0x59,0x5c,0x77,0xdd,0x59,0x54,0x2d,0xa2,0x08,0xe5,0x95,0x4f,0x89,0xe4,0x0e,0xb7,0xaa,0x80,0xa8,0x4a,0x61,0x76,0x66,0x3f };
  89. static int testCrypto()
  90. {
  91. unsigned char buf1[16384];
  92. unsigned char buf2[sizeof(buf1)],buf3[sizeof(buf1)];
  93. std::cout << "[crypto] Testing C25519 ECC key agreement... "; std::cout.flush();
  94. for(unsigned int i=0;i<100;++i) {
  95. C25519::Pair p1 = C25519::generate();
  96. C25519::Pair p2 = C25519::generate();
  97. C25519::Pair p3 = C25519::generate();
  98. C25519::agree(p1,p2.pub,buf1,64);
  99. C25519::agree(p2,p1.pub,buf2,64);
  100. C25519::agree(p3,p1.pub,buf3,64);
  101. if (memcmp(buf1,buf2,64)) {
  102. std::cout << "FAIL" << std::endl;
  103. return -1;
  104. }
  105. if (!memcmp(buf2,buf3,64)) {
  106. std::cout << "FAIL (2)" << std::endl;
  107. return -1;
  108. }
  109. }
  110. std::cout << "PASS" << std::endl;
  111. std::cout << "[crypto] Testing Salsa20... "; std::cout.flush();
  112. for(unsigned int i=0;i<4;++i) {
  113. for(unsigned int k=0;k<sizeof(buf1);++k)
  114. buf1[k] = (unsigned char)rand();
  115. memset(buf2,0,sizeof(buf2));
  116. memset(buf3,0,sizeof(buf3));
  117. Salsa20 s20;
  118. s20.init("12345678123456781234567812345678",256,"12345678");
  119. s20.encrypt(buf1,buf2,sizeof(buf1));
  120. s20.init("12345678123456781234567812345678",256,"12345678");
  121. s20.decrypt(buf2,buf3,sizeof(buf2));
  122. if (memcmp(buf1,buf3,sizeof(buf1))) {
  123. std::cout << "FAIL (encrypt/decrypt test)" << std::endl;
  124. return -1;
  125. }
  126. }
  127. Salsa20 s20(s20TV0Key,256,s20TV0Iv);
  128. memset(buf1,0,sizeof(buf1));
  129. memset(buf2,0,sizeof(buf2));
  130. s20.encrypt(buf1,buf2,64);
  131. if (memcmp(buf2,s20TV0Ks,64)) {
  132. std::cout << "FAIL (test vector 0)" << std::endl;
  133. return -1;
  134. }
  135. std::cout << "PASS" << std::endl;
  136. return 0;
  137. }
  138. static int testIdentity()
  139. {
  140. Identity id;
  141. Buffer<512> buf;
  142. std::cout << "[identity] Generate identity... "; std::cout.flush();
  143. uint64_t genstart = Utils::now();
  144. id.generate();
  145. uint64_t genend = Utils::now();
  146. std::cout << "(took " << (genend - genstart) << "ms): " << id.toString(true) << std::endl;
  147. std::cout << "[identity] Locally validate identity: ";
  148. if (id.locallyValidate(false)) {
  149. std::cout << "PASS" << std::endl;
  150. } else {
  151. std::cout << "FAIL" << std::endl;
  152. return -1;
  153. }
  154. {
  155. Identity id2;
  156. buf.clear();
  157. id.serialize(buf,true);
  158. id2.deserialize(buf);
  159. std::cout << "[identity] Serialize and deserialize (w/private): ";
  160. if ((id == id2)&&(id2.locallyValidate(false))) {
  161. std::cout << "PASS" << std::endl;
  162. } else {
  163. std::cout << "FAIL" << std::endl;
  164. return -1;
  165. }
  166. }
  167. {
  168. Identity id2;
  169. buf.clear();
  170. id.serialize(buf,false);
  171. id2.deserialize(buf);
  172. std::cout << "[identity] Serialize and deserialize (no private): ";
  173. if ((id == id2)&&(id2.locallyValidate(false))) {
  174. std::cout << "PASS" << std::endl;
  175. } else {
  176. std::cout << "FAIL" << std::endl;
  177. return -1;
  178. }
  179. }
  180. {
  181. Identity id2;
  182. id2.fromString(id.toString(true).c_str());
  183. std::cout << "[identity] Serialize and deserialize (ASCII w/private): ";
  184. if ((id == id2)&&(id2.locallyValidate(false))) {
  185. std::cout << "PASS" << std::endl;
  186. } else {
  187. std::cout << "FAIL" << std::endl;
  188. return -1;
  189. }
  190. }
  191. {
  192. Identity id2;
  193. id2.fromString(id.toString(false).c_str());
  194. std::cout << "[identity] Serialize and deserialize (ASCII no private): ";
  195. if ((id == id2)&&(id2.locallyValidate(false))) {
  196. std::cout << "PASS" << std::endl;
  197. } else {
  198. std::cout << "FAIL" << std::endl;
  199. return -1;
  200. }
  201. }
  202. return 0;
  203. }
  204. static int testPacket()
  205. {
  206. unsigned char salsaKey[32],hmacKey[32];
  207. Packet a,b;
  208. a.zeroAll();
  209. b.zeroAll();
  210. for(unsigned int i=0;i<32;++i) {
  211. salsaKey[i] = (unsigned char)rand();
  212. hmacKey[i] = (unsigned char)rand();
  213. }
  214. std::cout << "[packet] Testing Packet encoder/decoder... ";
  215. a.reset(Address(),Address(),Packet::VERB_HELLO);
  216. for(int i=0;i<32;++i)
  217. a.append("supercalifragilisticexpealidocious",strlen("supercalifragilisticexpealidocious"));
  218. b = a;
  219. if (a != b) {
  220. std::cout << "FAIL (assign)" << std::endl;
  221. return -1;
  222. }
  223. a.compress();
  224. unsigned int complen = a.size();
  225. a.uncompress();
  226. std::cout << "(compressed: " << complen << ", decompressed: " << a.size() << ") ";
  227. if (a != b) {
  228. std::cout << "FAIL (compresssion)" << std::endl;
  229. return -1;
  230. }
  231. a.compress();
  232. a.encrypt(salsaKey);
  233. a.decrypt(salsaKey);
  234. a.uncompress();
  235. if (a != b) {
  236. std::cout << "FAIL (encrypt-decrypt)" << std::endl;
  237. return -1;
  238. }
  239. a.hmacSet(hmacKey);
  240. if (!a.hmacVerify(hmacKey)) {
  241. std::cout << "FAIL (hmacVerify)" << std::endl;
  242. return -1;
  243. }
  244. std::cout << "PASS" << std::endl;
  245. return 0;
  246. }
  247. static int testOther()
  248. {
  249. std::cout << "[other] Testing Base64 encode/decode... "; std::cout.flush();
  250. for(unsigned int k=0;k<1000;++k) {
  251. unsigned int flen = (rand() % 8194) + 1;
  252. for(unsigned int i=0;i<flen;++i)
  253. fuzzbuf[i] = (unsigned char)(rand() & 0xff);
  254. std::string dec = Utils::base64Decode(Utils::base64Encode(fuzzbuf,flen));
  255. if ((dec.length() != flen)||(memcmp(dec.data(),fuzzbuf,dec.length()))) {
  256. std::cout << "FAILED!" << std::endl;
  257. return -1;
  258. }
  259. }
  260. std::cout << "PASS" << std::endl;
  261. std::cout << "[other] Testing hex encode/decode... "; std::cout.flush();
  262. for(unsigned int k=0;k<1000;++k) {
  263. unsigned int flen = (rand() % 8194) + 1;
  264. for(unsigned int i=0;i<flen;++i)
  265. fuzzbuf[i] = (unsigned char)(rand() & 0xff);
  266. std::string dec = Utils::unhex(Utils::hex(fuzzbuf,flen).c_str());
  267. if ((dec.length() != flen)||(memcmp(dec.data(),fuzzbuf,dec.length()))) {
  268. std::cout << "FAILED!" << std::endl;
  269. std::cout << Utils::hex(fuzzbuf,flen) << std::endl;
  270. std::cout << Utils::hex(dec.data(),dec.length()) << std::endl;
  271. return -1;
  272. }
  273. }
  274. std::cout << "PASS" << std::endl;
  275. std::cout << "[other] Testing command bus encode/decode... "; std::cout.flush();
  276. try {
  277. static char key[32] = { 0 };
  278. for(unsigned int k=0;k<1000;++k) {
  279. std::vector<std::string> original;
  280. for(unsigned int i=0,j=rand() % 256,l=(rand() % 1024)+1;i<j;++i)
  281. original.push_back(std::string(l,'x'));
  282. std::vector< Buffer<ZT_NODECONFIG_MAX_PACKET_SIZE> > packets(NodeConfig::encodeControlMessage(key,1,original));
  283. //std::cout << packets.size() << ' '; std::cout.flush();
  284. std::vector<std::string> after;
  285. for(std::vector< Buffer<ZT_NODECONFIG_MAX_PACKET_SIZE> >::iterator i(packets.begin());i!=packets.end();++i) {
  286. unsigned long convId = 9999;
  287. if (!NodeConfig::decodeControlMessagePacket(key,i->data(),i->size(),convId,after)) {
  288. std::cout << "FAIL (decode)" << std::endl;
  289. return -1;
  290. }
  291. if (convId != 1) {
  292. std::cout << "FAIL (conversation ID)" << std::endl;
  293. return -1;
  294. }
  295. }
  296. if (after != original) {
  297. std::cout << "FAIL (compare)" << std::endl;
  298. return -1;
  299. }
  300. }
  301. } catch (std::exception &exc) {
  302. std::cout << "FAIL (" << exc.what() << ")" << std::endl;
  303. return -1;
  304. }
  305. std::cout << "PASS" << std::endl;
  306. std::cout << "[other] Testing Dictionary... "; std::cout.flush();
  307. for(int k=0;k<10000;++k) {
  308. Dictionary a,b;
  309. int nk = rand() % 32;
  310. for(int q=0;q<nk;++q) {
  311. std::string k,v;
  312. int kl = (rand() % 512);
  313. int vl = (rand() % 512);
  314. for(int i=0;i<kl;++i)
  315. k.push_back((char)rand());
  316. for(int i=0;i<vl;++i)
  317. v.push_back((char)rand());
  318. a[k] = v;
  319. }
  320. std::string aser = a.toString();
  321. b.fromString(aser);
  322. if (a != b) {
  323. std::cout << "FAIL!" << std::endl;
  324. return -1;
  325. }
  326. }
  327. std::cout << "PASS" << std::endl;
  328. return 0;
  329. }
  330. #ifdef __WINDOWS__
  331. int _tmain(int argc, _TCHAR* argv[])
  332. #else
  333. int main(int argc,char **argv)
  334. #endif
  335. {
  336. int r = 0;
  337. _initLibCrypto();
  338. srand((unsigned int)time(0));
  339. r |= testCrypto();
  340. r |= testPacket();
  341. r |= testOther();
  342. r |= testIdentity();
  343. if (r)
  344. std::cout << std::endl << "SOMETHING FAILED!" << std::endl;
  345. return r;
  346. }