LinuxNetLink.cpp 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078
  1. /*
  2. * ZeroTier One - Network Virtualization Everywhere
  3. * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * You can be released from the requirements of the license by purchasing
  21. * a commercial license. Buying such a license is mandatory as soon as you
  22. * develop commercial closed-source software that incorporates or links
  23. * directly against ZeroTier software without disclosing the source code
  24. * of your own application.
  25. */
  26. #include "LinuxNetLink.hpp"
  27. #include <unistd.h>
  28. #include <linux/if_tun.h>
  29. namespace ZeroTier {
  30. struct nl_route_req {
  31. struct nlmsghdr nl;
  32. struct rtmsg rt;
  33. char buf[8192];
  34. };
  35. struct nl_if_req {
  36. struct nlmsghdr nl;
  37. struct ifinfomsg ifa;
  38. char buf[8192];
  39. };
  40. struct nl_adr_req {
  41. struct nlmsghdr nl;
  42. struct ifaddrmsg ifa;
  43. char buf[8192];
  44. };
  45. LinuxNetLink::LinuxNetLink()
  46. : _t()
  47. , _running(false)
  48. , _routes_ipv4()
  49. , _rv4_m()
  50. , _routes_ipv6()
  51. , _rv6_m()
  52. , _seq(0)
  53. , _interfaces()
  54. , _if_m()
  55. , _fd(socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE))
  56. , _la({0})
  57. {
  58. // set socket timeout to 1 sec so we're not permablocking recv() calls
  59. _setSocketTimeout(_fd, 1);
  60. _la.nl_family = AF_NETLINK;
  61. _la.nl_pid = getpid()+1;
  62. _la.nl_groups = RTMGRP_LINK|RTMGRP_IPV4_IFADDR|RTMGRP_IPV6_IFADDR|RTMGRP_IPV4_ROUTE|RTMGRP_IPV6_ROUTE|RTMGRP_NOTIFY;
  63. if (bind(_fd, (struct sockaddr*)&_la, sizeof(_la))) {
  64. fprintf(stderr, "Error connecting to RTNETLINK: %s\n", strerror(errno));
  65. ::exit(1);
  66. }
  67. _requestIPv4Routes();
  68. _requestIPv6Routes();
  69. _requestInterfaceList();
  70. _running = true;
  71. _t = Thread::start(this);
  72. }
  73. LinuxNetLink::~LinuxNetLink()
  74. {
  75. _running = false;
  76. Thread::join(_t);
  77. ::close(_fd);
  78. }
  79. void LinuxNetLink::_setSocketTimeout(int fd, int seconds)
  80. {
  81. struct timeval tv;
  82. tv.tv_sec = seconds;
  83. tv.tv_usec = 0;
  84. if(setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, (const char*)&tv, sizeof(tv)) != 0) {
  85. #ifdef ZT_TRACE
  86. fprintf(stderr, "setsockopt failed: %s\n", strerror(errno));
  87. #endif
  88. }
  89. }
  90. #define ZT_NL_BUF_SIZE 16384
  91. int LinuxNetLink::_doRecv(int fd)
  92. {
  93. char *const buf = (char *)valloc(ZT_NL_BUF_SIZE);
  94. if (!buf) {
  95. fprintf(stderr,"malloc failed!\n");
  96. ::exit(1);
  97. }
  98. char *p = NULL;
  99. struct nlmsghdr *nlp;
  100. int nll = 0;
  101. int rtn = 0;
  102. p = buf;
  103. for(;;) {
  104. rtn = recv(fd, p, ZT_NL_BUF_SIZE - nll, 0);
  105. if (rtn > 0) {
  106. nlp = (struct nlmsghdr *)p;
  107. if(nlp->nlmsg_type == NLMSG_ERROR && (nlp->nlmsg_flags & NLM_F_ACK) != NLM_F_ACK) {
  108. struct nlmsgerr *err = (struct nlmsgerr*)NLMSG_DATA(nlp);
  109. if (err->error != 0) {
  110. //#ifdef ZT_TRACE
  111. fprintf(stderr, "rtnetlink error: %s\n", strerror(-(err->error)));
  112. //#endif
  113. }
  114. p = buf;
  115. nll = 0;
  116. break;
  117. }
  118. if (nlp->nlmsg_type == NLMSG_NOOP) {
  119. break;
  120. }
  121. if( (nlp->nlmsg_flags & NLM_F_MULTI) == NLM_F_MULTI || (nlp->nlmsg_type == NLMSG_DONE))
  122. {
  123. if (nlp->nlmsg_type == NLMSG_DONE) {
  124. _processMessage(nlp, nll);
  125. p = buf;
  126. nll = 0;
  127. break;
  128. }
  129. p += rtn;
  130. nll += rtn;
  131. }
  132. if (nlp->nlmsg_type == NLMSG_OVERRUN) {
  133. //#ifdef ZT_TRACE
  134. fprintf(stderr, "NLMSG_OVERRUN: Data lost\n");
  135. //#endif
  136. p = buf;
  137. nll = 0;
  138. break;
  139. }
  140. nll += rtn;
  141. _processMessage(nlp, nll);
  142. p = buf;
  143. nll = 0;
  144. break;
  145. } else {
  146. break;
  147. }
  148. }
  149. free(buf);
  150. return rtn;
  151. }
  152. void LinuxNetLink::threadMain() throw()
  153. {
  154. int rtn = 0;
  155. while(_running) {
  156. rtn = _doRecv(_fd);
  157. if (rtn <= 0) {
  158. Thread::sleep(100);
  159. continue;
  160. }
  161. }
  162. }
  163. void LinuxNetLink::_processMessage(struct nlmsghdr *nlp, int nll)
  164. {
  165. for(; NLMSG_OK(nlp, nll); nlp=NLMSG_NEXT(nlp, nll))
  166. {
  167. switch(nlp->nlmsg_type)
  168. {
  169. case RTM_NEWLINK:
  170. _linkAdded(nlp);
  171. break;
  172. case RTM_DELLINK:
  173. _linkDeleted(nlp);
  174. break;
  175. case RTM_NEWADDR:
  176. _ipAddressAdded(nlp);
  177. break;
  178. case RTM_DELADDR:
  179. _ipAddressDeleted(nlp);
  180. break;
  181. case RTM_NEWROUTE:
  182. _routeAdded(nlp);
  183. break;
  184. case RTM_DELROUTE:
  185. _routeDeleted(nlp);
  186. break;
  187. default:
  188. break;
  189. }
  190. }
  191. }
  192. void LinuxNetLink::_ipAddressAdded(struct nlmsghdr *nlp)
  193. {
  194. struct ifaddrmsg *ifap = (struct ifaddrmsg *)NLMSG_DATA(nlp);
  195. struct rtattr *rtap = (struct rtattr *)IFA_RTA(ifap);
  196. int ifal = IFA_PAYLOAD(nlp);
  197. char addr[40] = {0};
  198. char local[40] = {0};
  199. char label[40] = {0};
  200. char bcast[40] = {0};
  201. for(;RTA_OK(rtap, ifal); rtap=RTA_NEXT(rtap,ifal))
  202. {
  203. switch(rtap->rta_type) {
  204. case IFA_ADDRESS:
  205. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), addr, 40);
  206. break;
  207. case IFA_LOCAL:
  208. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), local, 40);
  209. break;
  210. case IFA_LABEL:
  211. memcpy(label, RTA_DATA(rtap), 40);
  212. break;
  213. case IFA_BROADCAST:
  214. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), bcast, 40);
  215. break;
  216. }
  217. }
  218. #ifdef ZT_TRACE
  219. //fprintf(stderr,"Added IP Address %s local: %s label: %s broadcast: %s\n", addr, local, label, bcast);
  220. #endif
  221. }
  222. void LinuxNetLink::_ipAddressDeleted(struct nlmsghdr *nlp)
  223. {
  224. struct ifaddrmsg *ifap = (struct ifaddrmsg *)NLMSG_DATA(nlp);
  225. struct rtattr *rtap = (struct rtattr *)IFA_RTA(ifap);
  226. int ifal = IFA_PAYLOAD(nlp);
  227. char addr[40] = {0};
  228. char local[40] = {0};
  229. char label[40] = {0};
  230. char bcast[40] = {0};
  231. for(;RTA_OK(rtap, ifal); rtap=RTA_NEXT(rtap,ifal))
  232. {
  233. switch(rtap->rta_type) {
  234. case IFA_ADDRESS:
  235. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), addr, 40);
  236. break;
  237. case IFA_LOCAL:
  238. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), local, 40);
  239. break;
  240. case IFA_LABEL:
  241. memcpy(label, RTA_DATA(rtap), 40);
  242. break;
  243. case IFA_BROADCAST:
  244. inet_ntop(ifap->ifa_family, RTA_DATA(rtap), bcast, 40);
  245. break;
  246. }
  247. }
  248. #ifdef ZT_TRACE
  249. //fprintf(stderr, "Removed IP Address %s local: %s label: %s broadcast: %s\n", addr, local, label, bcast);
  250. #endif
  251. }
  252. void LinuxNetLink::_routeAdded(struct nlmsghdr *nlp)
  253. {
  254. char dsts[40] = {0};
  255. char gws[40] = {0};
  256. char srcs[40] = {0};
  257. char ifs[16] = {0};
  258. char ms[24] = {0};
  259. struct rtmsg *rtp = (struct rtmsg *)NLMSG_DATA(nlp);
  260. struct rtattr *rtap = (struct rtattr *)RTM_RTA(rtp);
  261. int rtl = RTM_PAYLOAD(nlp);
  262. for(;RTA_OK(rtap, rtl); rtap=RTA_NEXT(rtap, rtl))
  263. {
  264. switch(rtap->rta_type)
  265. {
  266. case RTA_DST:
  267. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), dsts, rtp->rtm_family == AF_INET ? 24 : 40);
  268. break;
  269. case RTA_SRC:
  270. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), srcs, rtp->rtm_family == AF_INET ? 24: 40);
  271. break;
  272. case RTA_GATEWAY:
  273. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), gws, rtp->rtm_family == AF_INET ? 24 : 40);
  274. break;
  275. case RTA_OIF:
  276. sprintf(ifs, "%d", *((int*)RTA_DATA(rtap)));
  277. break;
  278. }
  279. }
  280. sprintf(ms, "%d", rtp->rtm_dst_len);
  281. #ifdef ZT_TRACE
  282. //fprintf(stderr, "Route Added: dst %s/%s gw %s src %s if %s\n", dsts, ms, gws, srcs, ifs);
  283. #endif
  284. }
  285. void LinuxNetLink::_routeDeleted(struct nlmsghdr *nlp)
  286. {
  287. char dsts[40] = {0};
  288. char gws[40] = {0};
  289. char srcs[40] = {0};
  290. char ifs[16] = {0};
  291. char ms[24] = {0};
  292. struct rtmsg *rtp = (struct rtmsg *) NLMSG_DATA(nlp);
  293. struct rtattr *rtap = (struct rtattr *)RTM_RTA(rtp);
  294. int rtl = RTM_PAYLOAD(nlp);
  295. for(;RTA_OK(rtap, rtl); rtap=RTA_NEXT(rtap, rtl))
  296. {
  297. switch(rtap->rta_type)
  298. {
  299. case RTA_DST:
  300. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), dsts, rtp->rtm_family == AF_INET ? 24 : 40);
  301. break;
  302. case RTA_SRC:
  303. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), srcs, rtp->rtm_family == AF_INET ? 24 : 40);
  304. break;
  305. case RTA_GATEWAY:
  306. inet_ntop(rtp->rtm_family, RTA_DATA(rtap), gws, rtp->rtm_family == AF_INET ? 24 : 40);
  307. break;
  308. case RTA_OIF:
  309. sprintf(ifs, "%d", *((int*)RTA_DATA(rtap)));
  310. break;
  311. }
  312. }
  313. sprintf(ms, "%d", rtp->rtm_dst_len);
  314. #ifdef ZT_TRACE
  315. //fprintf(stderr, "Route Deleted: dst %s/%s gw %s src %s if %s\n", dsts, ms, gws, srcs, ifs);
  316. #endif
  317. }
  318. void LinuxNetLink::_linkAdded(struct nlmsghdr *nlp)
  319. {
  320. char mac_bin[6] = {0};
  321. unsigned int mtu = 0;
  322. char ifname[IFNAMSIZ] = {0};
  323. struct ifinfomsg *ifip = (struct ifinfomsg *)NLMSG_DATA(nlp);
  324. struct rtattr *rtap = (struct rtattr *)IFLA_RTA(ifip);
  325. int ifil = RTM_PAYLOAD(nlp);
  326. const char *ptr;
  327. unsigned char *ptr2;
  328. for(;RTA_OK(rtap, ifil);rtap=RTA_NEXT(rtap, ifil))
  329. {
  330. switch(rtap->rta_type) {
  331. case IFLA_ADDRESS:
  332. ptr2 = (unsigned char*)RTA_DATA(rtap);
  333. memcpy(mac_bin, ptr, 6);
  334. break;
  335. case IFLA_IFNAME:
  336. ptr = (const char*)RTA_DATA(rtap);
  337. memcpy(ifname, ptr, strlen(ptr));
  338. break;
  339. case IFLA_MTU:
  340. memcpy(&mtu, RTA_DATA(rtap), sizeof(unsigned int));
  341. break;
  342. }
  343. }
  344. {
  345. Mutex::Lock l(_if_m);
  346. struct iface_entry &entry = _interfaces[ifip->ifi_index];
  347. entry.index = ifip->ifi_index;
  348. memcpy(entry.ifacename, ifname, sizeof(ifname));
  349. memcpy(entry.mac, mac, sizeof(mac));
  350. memcpy(entry.mac_bin, mac_bin, 6);
  351. entry.mtu = mtu;
  352. }
  353. }
  354. void LinuxNetLink::_linkDeleted(struct nlmsghdr *nlp)
  355. {
  356. unsigned int mtu = 0;
  357. char ifname[40] = {0};
  358. struct ifinfomsg *ifip = (struct ifinfomsg *)NLMSG_DATA(nlp);
  359. struct rtattr *rtap = (struct rtattr *)IFLA_RTA(ifip);
  360. int ifil = RTM_PAYLOAD(nlp);
  361. const char *ptr;
  362. unsigned char *ptr2;
  363. for(;RTA_OK(rtap, ifil);rtap=RTA_NEXT(rtap, ifil))
  364. {
  365. switch(rtap->rta_type) {
  366. case IFLA_ADDRESS:
  367. ptr2 = (unsigned char*)RTA_DATA(rtap);
  368. break;
  369. case IFLA_IFNAME:
  370. ptr = (const char*)RTA_DATA(rtap);
  371. memcpy(ifname, ptr, strlen(ptr));
  372. break;
  373. case IFLA_MTU:
  374. memcpy(&mtu, RTA_DATA(rtap), sizeof(unsigned int));
  375. break;
  376. }
  377. }
  378. {
  379. Mutex::Lock l(_if_m);
  380. if(_interfaces.contains(ifip->ifi_index)) {
  381. _interfaces.erase(ifip->ifi_index);
  382. }
  383. }
  384. }
  385. void LinuxNetLink::_requestIPv4Routes()
  386. {
  387. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  388. if (fd == -1) {
  389. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  390. return;
  391. }
  392. _setSocketTimeout(fd);
  393. struct sockaddr_nl la;
  394. la.nl_family = AF_NETLINK;
  395. la.nl_pid = getpid();
  396. la.nl_groups = RTMGRP_IPV4_ROUTE;
  397. if(bind(fd, (struct sockaddr*)&la, sizeof(la))) {
  398. fprintf(stderr, "Error binding RTNETLINK (_requiestIPv4Routes #1): %s\n", strerror(errno));
  399. close(fd);
  400. return;
  401. }
  402. struct nl_route_req req;
  403. bzero(&req, sizeof(req));
  404. req.nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
  405. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
  406. req.nl.nlmsg_type = RTM_GETROUTE;
  407. req.nl.nlmsg_pid = 0;
  408. req.nl.nlmsg_seq = ++_seq;
  409. req.rt.rtm_family = AF_INET;
  410. req.rt.rtm_table = RT_TABLE_MAIN;
  411. struct sockaddr_nl pa;
  412. bzero(&pa, sizeof(pa));
  413. pa.nl_family = AF_NETLINK;
  414. struct msghdr msg;
  415. bzero(&msg, sizeof(msg));
  416. msg.msg_name = (void*)&pa;
  417. msg.msg_namelen = sizeof(pa);
  418. struct iovec iov;
  419. bzero(&iov, sizeof(iov));
  420. iov.iov_base = (void*)&req.nl;
  421. iov.iov_len = req.nl.nlmsg_len;
  422. msg.msg_iov = &iov;
  423. msg.msg_iovlen = 1;
  424. sendmsg(fd, &msg, 0);
  425. _doRecv(fd);
  426. close(fd);
  427. }
  428. void LinuxNetLink::_requestIPv6Routes()
  429. {
  430. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  431. if (fd == -1) {
  432. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  433. return;
  434. }
  435. _setSocketTimeout(fd);
  436. struct sockaddr_nl la;
  437. la.nl_family = AF_NETLINK;
  438. la.nl_pid = getpid();
  439. la.nl_groups = RTMGRP_IPV6_ROUTE;
  440. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  441. fprintf(stderr, "Error binding RTNETLINK (_requestIPv6Routes #1): %s\n", strerror(errno));
  442. close(fd);
  443. return;
  444. }
  445. struct nl_route_req req;
  446. bzero(&req, sizeof(req));
  447. req.nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct rtmsg));
  448. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
  449. req.nl.nlmsg_type = RTM_GETROUTE;
  450. req.nl.nlmsg_pid = 0;
  451. req.nl.nlmsg_seq = ++_seq;
  452. req.rt.rtm_family = AF_INET6;
  453. req.rt.rtm_table = RT_TABLE_MAIN;
  454. struct sockaddr_nl pa;
  455. bzero(&pa, sizeof(pa));
  456. pa.nl_family = AF_NETLINK;
  457. struct msghdr msg;
  458. bzero(&msg, sizeof(msg));
  459. msg.msg_name = (void*)&pa;
  460. msg.msg_namelen = sizeof(pa);
  461. struct iovec iov;
  462. bzero(&iov, sizeof(iov));
  463. iov.iov_base = (void*)&req.nl;
  464. iov.iov_len = req.nl.nlmsg_len;
  465. msg.msg_iov = &iov;
  466. msg.msg_iovlen = 1;
  467. sendmsg(fd, &msg, 0);
  468. _doRecv(fd);
  469. close(fd);
  470. }
  471. void LinuxNetLink::_requestInterfaceList()
  472. {
  473. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  474. if (fd == -1) {
  475. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  476. return;
  477. }
  478. _setSocketTimeout(fd);
  479. struct sockaddr_nl la;
  480. la.nl_family = AF_NETLINK;
  481. la.nl_pid = getpid();
  482. la.nl_groups = RTMGRP_LINK;
  483. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  484. fprintf(stderr, "Error binding RTNETLINK (_requestInterfaceList #1): %s\n", strerror(errno));
  485. close(fd);
  486. return;
  487. }
  488. struct nl_if_req req;
  489. bzero(&req, sizeof(req));
  490. req.nl.nlmsg_len = NLMSG_LENGTH(sizeof(struct ifinfomsg));
  491. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP;
  492. req.nl.nlmsg_type = RTM_GETLINK;
  493. req.nl.nlmsg_pid = 0;
  494. req.nl.nlmsg_seq = ++_seq;
  495. req.ifa.ifi_family = AF_UNSPEC;
  496. struct sockaddr_nl pa;
  497. bzero(&pa, sizeof(pa));
  498. pa.nl_family = AF_NETLINK;
  499. struct msghdr msg;
  500. bzero(&msg, sizeof(msg));
  501. msg.msg_name = (void*)&pa;
  502. msg.msg_namelen = sizeof(pa);
  503. struct iovec iov;
  504. bzero(&iov, sizeof(iov));
  505. iov.iov_base = (void*)&req.nl;
  506. iov.iov_len = req.nl.nlmsg_len;
  507. msg.msg_iov = &iov;
  508. msg.msg_iovlen = 1;
  509. sendmsg(fd, &msg, 0);
  510. _doRecv(fd);
  511. close(fd);
  512. }
  513. void LinuxNetLink::addRoute(const InetAddress &target, const InetAddress &via, const InetAddress &src, const char *ifaceName)
  514. {
  515. if (!target) return;
  516. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  517. if (fd == -1) {
  518. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  519. return;
  520. }
  521. _setSocketTimeout(fd);
  522. struct sockaddr_nl la;
  523. bzero(&la, sizeof(la));
  524. la.nl_family = AF_NETLINK;
  525. la.nl_pid = getpid();
  526. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  527. fprintf(stderr, "Error binding RTNETLINK (addRoute #1): %s\n", strerror(errno));
  528. close(fd);
  529. return;
  530. }
  531. #ifdef ZT_TRACE
  532. //char tmp[64];
  533. //char tmp2[64];
  534. //char tmp3[64];
  535. //fprintf(stderr, "Adding Route. target: %s via: %s src: %s iface: %s\n", target.toString(tmp), via.toString(tmp2), src.toString(tmp3), ifaceName);
  536. #endif
  537. int rtl = sizeof(struct rtmsg);
  538. struct nl_route_req req;
  539. bzero(&req, sizeof(req));
  540. struct rtattr *rtap = (struct rtattr *)req.buf;
  541. rtap->rta_type = RTA_DST;
  542. if (target.isV4()) {
  543. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  544. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&target)->sin_addr, sizeof(struct in_addr));
  545. } else {
  546. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  547. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&target)->sin6_addr, sizeof(struct in6_addr));
  548. }
  549. rtl += rtap->rta_len;
  550. if(via) {
  551. rtap = (struct rtattr *)(((char*)rtap)+rtap->rta_len);
  552. rtap->rta_type = RTA_GATEWAY;
  553. if(via.isV4()) {
  554. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  555. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&via)->sin_addr, sizeof(struct in_addr));
  556. } else {
  557. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  558. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&via)->sin6_addr, sizeof(struct in6_addr));
  559. }
  560. rtl += rtap->rta_len;
  561. } else if (src) {
  562. rtap = (struct rtattr *)(((char*)rtap)+rtap->rta_len);
  563. rtap->rta_type = RTA_SRC;
  564. if(src.isV4()) {
  565. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  566. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&src)->sin_addr, sizeof(struct in_addr));
  567. } else {
  568. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  569. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&src)->sin6_addr, sizeof(struct in6_addr));
  570. }
  571. req.rt.rtm_src_len = src.netmaskBits();
  572. }
  573. if (ifaceName != NULL) {
  574. int interface_index = _indexForInterface(ifaceName);
  575. if (interface_index != -1) {
  576. rtap = (struct rtattr *) (((char*)rtap) + rtap->rta_len);
  577. rtap->rta_type = RTA_OIF;
  578. rtap->rta_len = RTA_LENGTH(sizeof(int));
  579. memcpy(RTA_DATA(rtap), &interface_index, sizeof(int));
  580. rtl += rtap->rta_len;
  581. }
  582. }
  583. req.nl.nlmsg_len = NLMSG_LENGTH(rtl);
  584. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_EXCL | NLM_F_CREATE | NLM_F_ACK;
  585. req.nl.nlmsg_type = RTM_NEWROUTE;
  586. req.nl.nlmsg_pid = 0;
  587. req.nl.nlmsg_seq = ++_seq;
  588. req.rt.rtm_family = target.ss_family;
  589. req.rt.rtm_table = RT_TABLE_MAIN;
  590. req.rt.rtm_protocol = RTPROT_STATIC;
  591. req.rt.rtm_scope = RT_SCOPE_UNIVERSE;
  592. req.rt.rtm_type = RTN_UNICAST;
  593. req.rt.rtm_dst_len = target.netmaskBits();
  594. req.rt.rtm_flags = 0;
  595. struct sockaddr_nl pa;
  596. bzero(&pa, sizeof(pa));
  597. pa.nl_family = AF_NETLINK;
  598. struct msghdr msg;
  599. bzero(&msg, sizeof(msg));
  600. msg.msg_name = (void*)&pa;
  601. msg.msg_namelen = sizeof(pa);
  602. struct iovec iov;
  603. bzero(&iov, sizeof(iov));
  604. iov.iov_base = (void*)&req.nl;
  605. iov.iov_len = req.nl.nlmsg_len;
  606. msg.msg_iov = &iov;
  607. msg.msg_iovlen = 1;
  608. sendmsg(fd, &msg, 0);
  609. _doRecv(fd);
  610. close(fd);
  611. }
  612. void LinuxNetLink::delRoute(const InetAddress &target, const InetAddress &via, const InetAddress &src, const char *ifaceName)
  613. {
  614. if (!target) return;
  615. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  616. if (fd == -1) {
  617. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  618. return;
  619. }
  620. _setSocketTimeout(fd);
  621. struct sockaddr_nl la;
  622. la.nl_family = AF_NETLINK;
  623. la.nl_pid = getpid();
  624. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  625. fprintf(stderr, "Error binding RTNETLINK (delRoute #1): %s\n", strerror(errno));
  626. close(fd);
  627. return;
  628. }
  629. #ifdef ZT_TRACE
  630. //char tmp[64];
  631. //char tmp2[64];
  632. //char tmp3[64];
  633. //fprintf(stderr, "Removing Route. target: %s via: %s src: %s iface: %s\n", target.toString(tmp), via.toString(tmp2), src.toString(tmp3), ifaceName);
  634. #endif
  635. int rtl = sizeof(struct rtmsg);
  636. struct nl_route_req req;
  637. bzero(&req, sizeof(req));
  638. struct rtattr *rtap = (struct rtattr *)req.buf;
  639. rtap->rta_type = RTA_DST;
  640. if (target.isV4()) {
  641. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  642. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&target)->sin_addr, sizeof(struct in_addr));
  643. } else {
  644. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  645. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&target)->sin6_addr, sizeof(struct in6_addr));
  646. }
  647. rtl += rtap->rta_len;
  648. if(via) {
  649. rtap = (struct rtattr *)(((char*)rtap)+rtap->rta_len);
  650. rtap->rta_type = RTA_GATEWAY;
  651. if(via.isV4()) {
  652. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  653. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&via)->sin_addr, sizeof(struct in_addr));
  654. } else {
  655. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  656. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&via)->sin6_addr, sizeof(struct in6_addr));
  657. }
  658. rtl += rtap->rta_len;
  659. } else if (src) {
  660. rtap = (struct rtattr *)(((char*)rtap)+rtap->rta_len);
  661. rtap->rta_type = RTA_SRC;
  662. if(src.isV4()) {
  663. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  664. memcpy(RTA_DATA(rtap), &((struct sockaddr_in*)&src)->sin_addr, sizeof(struct in_addr));
  665. } else {
  666. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  667. memcpy(RTA_DATA(rtap), &((struct sockaddr_in6*)&src)->sin6_addr, sizeof(struct in6_addr));
  668. }
  669. req.rt.rtm_src_len = src.netmaskBits();
  670. }
  671. if (ifaceName != NULL) {
  672. int interface_index = _indexForInterface(ifaceName);
  673. if (interface_index != -1) {
  674. rtap = (struct rtattr *) (((char*)rtap) + rtap->rta_len);
  675. rtap->rta_type = RTA_OIF;
  676. rtap->rta_len = RTA_LENGTH(sizeof(int));
  677. memcpy(RTA_DATA(rtap), &interface_index, sizeof(int));
  678. rtl += rtap->rta_len;
  679. }
  680. }
  681. req.nl.nlmsg_len = NLMSG_LENGTH(rtl);
  682. req.nl.nlmsg_flags = NLM_F_REQUEST;
  683. req.nl.nlmsg_type = RTM_DELROUTE;
  684. req.nl.nlmsg_pid = 0;
  685. req.nl.nlmsg_seq = ++_seq;
  686. req.rt.rtm_family = target.ss_family;
  687. req.rt.rtm_table = RT_TABLE_MAIN;
  688. req.rt.rtm_protocol = RTPROT_STATIC;
  689. req.rt.rtm_scope = RT_SCOPE_UNIVERSE;
  690. req.rt.rtm_type = RTN_UNICAST;
  691. req.rt.rtm_dst_len = target.netmaskBits();
  692. req.rt.rtm_flags = 0;
  693. struct sockaddr_nl pa;
  694. bzero(&pa, sizeof(pa));
  695. pa.nl_family = AF_NETLINK;
  696. struct msghdr msg;
  697. bzero(&msg, sizeof(msg));
  698. msg.msg_name = (void*)&pa;
  699. msg.msg_namelen = sizeof(pa);
  700. struct iovec iov;
  701. bzero(&iov, sizeof(iov));
  702. iov.iov_base = (void*)&req.nl;
  703. iov.iov_len = req.nl.nlmsg_len;
  704. msg.msg_iov = &iov;
  705. msg.msg_iovlen = 1;
  706. sendmsg(fd, &msg, 0);
  707. _doRecv(fd);
  708. close(fd);
  709. }
  710. void LinuxNetLink::addAddress(const InetAddress &addr, const char *iface)
  711. {
  712. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  713. if (fd == -1) {
  714. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  715. return;
  716. }
  717. _setSocketTimeout(fd);
  718. struct sockaddr_nl la;
  719. memset(&la,0,sizeof(la));
  720. la.nl_family = AF_NETLINK;
  721. la.nl_pid = getpid();
  722. if (addr.isV4()) {
  723. la.nl_groups = RTMGRP_IPV4_IFADDR;
  724. } else {
  725. la.nl_groups = RTMGRP_IPV6_IFADDR;
  726. }
  727. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  728. fprintf(stderr, "Error binding RTNETLINK (addAddress #1): %s\n", strerror(errno));
  729. close(fd);
  730. return;
  731. }
  732. #ifdef ZT_TRACE
  733. //char tmp[128];
  734. //fprintf(stderr, "Adding IP address %s to interface %s", addr.toString(tmp), iface);
  735. #endif
  736. int interface_index = _indexForInterface(iface);
  737. if (interface_index == -1) {
  738. fprintf(stderr, "Unable to find index for interface %s\n", iface);
  739. close(fd);
  740. return;
  741. }
  742. int rtl = sizeof(struct ifaddrmsg);
  743. struct nl_adr_req req;
  744. bzero(&req, sizeof(struct nl_adr_req));
  745. struct rtattr *rtap = (struct rtattr *)req.buf;;
  746. if(addr.isV4()) {
  747. struct sockaddr_in *addr_v4 = (struct sockaddr_in*)&addr;
  748. rtap->rta_type = IFA_ADDRESS;
  749. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  750. memcpy(RTA_DATA(rtap), &addr_v4->sin_addr, sizeof(struct in_addr));
  751. rtl += rtap->rta_len;
  752. rtap = (struct rtattr*)(((char*)rtap) + rtap->rta_len);
  753. rtap->rta_type = IFA_LOCAL;
  754. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  755. memcpy(RTA_DATA(rtap), &addr_v4->sin_addr, sizeof(struct in_addr));
  756. rtl += rtap->rta_len;
  757. InetAddress broadcast = addr.broadcast();
  758. if(broadcast) {
  759. rtap = (struct rtattr*)(((char*)rtap)+rtap->rta_len);
  760. struct sockaddr_in *bcast = (struct sockaddr_in*)&broadcast;
  761. rtap->rta_type = IFA_BROADCAST;
  762. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  763. memcpy(RTA_DATA(rtap), &bcast->sin_addr, sizeof(struct in_addr));
  764. rtl += rtap->rta_len;
  765. }
  766. } else { //V6
  767. rtap->rta_type = IFA_ADDRESS;
  768. struct sockaddr_in6 *addr_v6 = (struct sockaddr_in6*)&addr;
  769. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  770. memcpy(RTA_DATA(rtap), &addr_v6->sin6_addr, sizeof(struct in6_addr));
  771. rtl += rtap->rta_len;
  772. }
  773. if (iface) {
  774. rtap = (struct rtattr*)(((char*)rtap)+rtap->rta_len);
  775. rtap->rta_type = IFA_LABEL;
  776. rtap->rta_len = RTA_LENGTH(strlen(iface));
  777. memcpy(RTA_DATA(rtap), iface, strlen(iface));
  778. rtl += rtap->rta_len;
  779. }
  780. req.nl.nlmsg_len = NLMSG_LENGTH(rtl);
  781. req.nl.nlmsg_flags = NLM_F_REQUEST | NLM_F_CREATE | NLM_F_EXCL;
  782. req.nl.nlmsg_type = RTM_NEWADDR;
  783. req.nl.nlmsg_pid = 0;
  784. req.nl.nlmsg_seq = ++_seq;
  785. req.ifa.ifa_family = addr.ss_family;
  786. req.ifa.ifa_prefixlen = addr.port();
  787. req.ifa.ifa_flags = IFA_F_PERMANENT;
  788. req.ifa.ifa_scope = 0;
  789. req.ifa.ifa_index = interface_index;
  790. struct sockaddr_nl pa;
  791. bzero(&pa, sizeof(sockaddr_nl));
  792. pa.nl_family = AF_NETLINK;
  793. struct msghdr msg;
  794. bzero(&msg, sizeof(msg));
  795. msg.msg_name = (void*)&pa;
  796. msg.msg_namelen = sizeof(pa);
  797. struct iovec iov;
  798. iov.iov_base = (void*)&req.nl;
  799. iov.iov_len = req.nl.nlmsg_len;
  800. msg.msg_iov = &iov;
  801. msg.msg_iovlen = 1;
  802. sendmsg(fd, &msg, 0);
  803. _doRecv(fd);
  804. close(fd);
  805. }
  806. void LinuxNetLink::removeAddress(const InetAddress &addr, const char *iface)
  807. {
  808. int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
  809. if (fd == -1) {
  810. fprintf(stderr, "Error opening RTNETLINK socket: %s\n", strerror(errno));
  811. return;
  812. }
  813. _setSocketTimeout(fd);
  814. struct sockaddr_nl la;
  815. la.nl_family = AF_NETLINK;
  816. la.nl_pid = getpid();
  817. if (addr.isV4()) {
  818. la.nl_groups = RTMGRP_IPV4_IFADDR;
  819. } else {
  820. la.nl_groups = RTMGRP_IPV6_IFADDR;
  821. }
  822. if(bind(fd, (struct sockaddr*)&la, sizeof(struct sockaddr_nl))) {
  823. fprintf(stderr, "Error binding RTNETLINK (removeAddress #1): %s\n", strerror(errno));
  824. close(fd);
  825. return;
  826. }
  827. #ifdef ZT_TRACE
  828. //char tmp[128];
  829. //fprintf(stderr, "Removing IP address %s from interface %s", addr.toString(tmp), iface);
  830. #endif
  831. int interface_index = _indexForInterface(iface);
  832. if (interface_index == -1) {
  833. fprintf(stderr, "Unable to find index for interface %s\n", iface);
  834. close(fd);
  835. return;
  836. }
  837. int rtl = sizeof(struct ifaddrmsg);
  838. struct nl_adr_req req;
  839. bzero(&req, sizeof(struct nl_adr_req));
  840. struct rtattr *rtap = (struct rtattr *)req.buf;
  841. if(addr.isV4()) {
  842. struct sockaddr_in *addr_v4 = (struct sockaddr_in*)&addr;
  843. rtap->rta_type = IFA_ADDRESS;
  844. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  845. memcpy(RTA_DATA(rtap), &addr_v4->sin_addr, sizeof(struct in_addr));
  846. rtl += rtap->rta_len;
  847. rtap = (struct rtattr*)(((char*)rtap) + rtap->rta_len);
  848. rtap->rta_type = IFA_LOCAL;
  849. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  850. memcpy(RTA_DATA(rtap), &addr_v4->sin_addr, sizeof(struct in_addr));
  851. rtl += rtap->rta_len;
  852. InetAddress broadcast = addr.broadcast();
  853. if(broadcast) {
  854. rtap = (struct rtattr*)(((char*)rtap)+rtap->rta_len);
  855. struct sockaddr_in *bcast = (struct sockaddr_in*)&broadcast;
  856. rtap->rta_type = IFA_BROADCAST;
  857. rtap->rta_len = RTA_LENGTH(sizeof(struct in_addr));
  858. memcpy(RTA_DATA(rtap), &bcast->sin_addr, sizeof(struct in_addr));
  859. rtl += rtap->rta_len;
  860. }
  861. } else { //V6
  862. rtap->rta_type = IFA_ADDRESS;
  863. struct sockaddr_in6 *addr_v6 = (struct sockaddr_in6*)&addr;
  864. rtap->rta_len = RTA_LENGTH(sizeof(struct in6_addr));
  865. memcpy(RTA_DATA(rtap), &addr_v6->sin6_addr, sizeof(struct in6_addr));
  866. rtl += rtap->rta_len;
  867. }
  868. if (iface) {
  869. rtap = (struct rtattr*)(((char*)rtap)+rtap->rta_len);
  870. rtap->rta_type = IFA_LABEL;
  871. rtap->rta_len = RTA_LENGTH(strlen(iface));
  872. memcpy(RTA_DATA(rtap), iface, strlen(iface));
  873. rtl += rtap->rta_len;
  874. }
  875. req.nl.nlmsg_len = NLMSG_LENGTH(rtl);
  876. req.nl.nlmsg_flags = NLM_F_REQUEST;
  877. req.nl.nlmsg_type = RTM_DELADDR;
  878. req.nl.nlmsg_pid = 0;
  879. req.nl.nlmsg_seq = ++_seq;
  880. req.ifa.ifa_family = addr.ss_family;
  881. req.ifa.ifa_prefixlen = addr.port();
  882. req.ifa.ifa_flags = IFA_F_PERMANENT;
  883. req.ifa.ifa_scope = 0;
  884. req.ifa.ifa_index = interface_index;
  885. struct sockaddr_nl pa;
  886. bzero(&pa, sizeof(sockaddr_nl));
  887. pa.nl_family = AF_NETLINK;
  888. struct msghdr msg;
  889. bzero(&msg, sizeof(msg));
  890. msg.msg_name = (void*)&pa;
  891. msg.msg_namelen = sizeof(pa);
  892. struct iovec iov;
  893. iov.iov_base = (void*)&req.nl;
  894. iov.iov_len = req.nl.nlmsg_len;
  895. msg.msg_iov = &iov;
  896. msg.msg_iovlen = 1;
  897. sendmsg(fd, &msg, 0);
  898. _doRecv(fd);
  899. close(fd);
  900. }
  901. RouteList LinuxNetLink::getIPV4Routes() const
  902. {
  903. return _routes_ipv4;
  904. }
  905. RouteList LinuxNetLink::getIPV6Routes() const
  906. {
  907. return _routes_ipv6;
  908. }
  909. int LinuxNetLink::_indexForInterface(const char *iface)
  910. {
  911. Mutex::Lock l(_if_m);
  912. int interface_index = -1;
  913. Hashtable<int, iface_entry>::Iterator iter(_interfaces);
  914. int *k = NULL;
  915. iface_entry *v = NULL;
  916. while(iter.next(k,v)) {
  917. if(strcmp(iface, v->ifacename) == 0) {
  918. interface_index = v->index;
  919. break;
  920. }
  921. }
  922. return interface_index;
  923. }
  924. } // namespace ZeroTier