2
0

Switch.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772
  1. /*
  2. * ZeroTier One - Global Peer to Peer Ethernet
  3. * Copyright (C) 2011-2014 ZeroTier Networks LLC
  4. *
  5. * This program is free software: you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation, either version 3 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  17. *
  18. * --
  19. *
  20. * ZeroTier may be used and distributed under the terms of the GPLv3, which
  21. * are available at: http://www.gnu.org/licenses/gpl-3.0.html
  22. *
  23. * If you would like to embed ZeroTier into a commercial application or
  24. * redistribute it in a modified binary form, please contact ZeroTier Networks
  25. * LLC. Start here: http://www.zerotier.com/
  26. */
  27. #include <stdio.h>
  28. #include <stdlib.h>
  29. #include <algorithm>
  30. #include <utility>
  31. #include <stdexcept>
  32. #include "Constants.hpp"
  33. #ifdef __WINDOWS__
  34. #include <WinSock2.h>
  35. #include <Windows.h>
  36. #endif
  37. #include "Switch.hpp"
  38. #include "Node.hpp"
  39. #include "EthernetTap.hpp"
  40. #include "InetAddress.hpp"
  41. #include "Topology.hpp"
  42. #include "RuntimeEnvironment.hpp"
  43. #include "Peer.hpp"
  44. #include "NodeConfig.hpp"
  45. #include "CMWC4096.hpp"
  46. #include "../version.h"
  47. namespace ZeroTier {
  48. Switch::Switch(const RuntimeEnvironment *renv) :
  49. _r(renv),
  50. _multicastIdCounter((unsigned int)renv->prng->next32()) // start a random spot to minimize possible collisions on startup
  51. {
  52. }
  53. Switch::~Switch()
  54. {
  55. }
  56. void Switch::onRemotePacket(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,Buffer<ZT_SOCKET_MAX_MESSAGE_LEN> &data)
  57. {
  58. try {
  59. if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
  60. if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
  61. _handleRemotePacketFragment(fromSock,fromAddr,data);
  62. else if (data.size() >= ZT_PROTO_MIN_PACKET_LENGTH)
  63. _handleRemotePacketHead(fromSock,fromAddr,data);
  64. }
  65. } catch (std::exception &ex) {
  66. TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
  67. } catch ( ... ) {
  68. TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
  69. }
  70. }
  71. void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
  72. {
  73. SharedPtr<NetworkConfig> nconf(network->config2());
  74. if (!nconf)
  75. return;
  76. if (to == network->mac()) {
  77. LOG("%s: frame received from self, ignoring (bridge loop? OS bug?)",network->tapDeviceName().c_str());
  78. return;
  79. }
  80. if (from != network->mac()) {
  81. LOG("ignored tap: %s -> %s %s (bridging not supported)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  82. return;
  83. }
  84. if (!nconf->permitsEtherType(etherType)) {
  85. LOG("ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id());
  86. return;
  87. }
  88. if (to.isMulticast()) {
  89. MulticastGroup mg(to,0);
  90. if (to.isBroadcast()) {
  91. // Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
  92. if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
  93. mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
  94. }
  95. if (!network->updateAndCheckMulticastBalance(_r->identity.address(),mg,data.size())) {
  96. TRACE("%s: didn't multicast %d bytes, quota exceeded for multicast group %s",network->tapDeviceName().c_str(),(int)data.size(),mg.toString().c_str());
  97. return;
  98. }
  99. const unsigned int mcid = ++_multicastIdCounter & 0xffffff;
  100. const uint16_t bloomNonce = (uint16_t)(_r->prng->next32() & 0xffff); // doesn't need to be cryptographically strong
  101. unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM];
  102. unsigned char fifo[ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO + ZT_ADDRESS_LENGTH];
  103. unsigned char *const fifoEnd = fifo + sizeof(fifo);
  104. const unsigned int signedPartLen = (ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME - ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION) + data.size();
  105. const SharedPtr<Peer> supernode(_r->topology->getBestSupernode());
  106. for(unsigned int prefix=0,np=((unsigned int)2 << (nconf->multicastPrefixBits() - 1));prefix<np;++prefix) {
  107. memset(bloom,0,sizeof(bloom));
  108. unsigned char *fifoPtr = fifo;
  109. _r->mc->getNextHops(network->id(),mg,Multicaster::AddToPropagationQueue(&fifoPtr,fifoEnd,bloom,bloomNonce,_r->identity.address(),nconf->multicastPrefixBits(),prefix));
  110. while (fifoPtr != fifoEnd)
  111. *(fifoPtr++) = (unsigned char)0;
  112. Address firstHop(fifo,ZT_ADDRESS_LENGTH); // fifo is +1 in size, with first element being used here
  113. if (!firstHop) {
  114. if (supernode)
  115. firstHop = supernode->address();
  116. else continue;
  117. }
  118. Packet outp(firstHop,_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
  119. outp.append((uint16_t)0);
  120. outp.append(fifo + ZT_ADDRESS_LENGTH,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_FIFO); // remainder of fifo is loaded into packet
  121. outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_LEN_PROPAGATION_BLOOM);
  122. outp.append((nconf->com()) ? (unsigned char)ZT_PROTO_VERB_MULTICAST_FRAME_FLAGS_HAS_MEMBERSHIP_CERTIFICATE : (unsigned char)0);
  123. outp.append(network->id());
  124. outp.append(bloomNonce);
  125. outp.append((unsigned char)nconf->multicastPrefixBits());
  126. outp.append((unsigned char)prefix);
  127. _r->identity.address().appendTo(outp);
  128. outp.append((unsigned char)((mcid >> 16) & 0xff));
  129. outp.append((unsigned char)((mcid >> 8) & 0xff));
  130. outp.append((unsigned char)(mcid & 0xff));
  131. outp.append(from.data,6);
  132. outp.append(mg.mac().data,6);
  133. outp.append(mg.adi());
  134. outp.append((uint16_t)etherType);
  135. outp.append((uint16_t)data.size());
  136. outp.append(data);
  137. C25519::Signature sig(_r->identity.sign(outp.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX__START_OF_SIGNED_PORTION,signedPartLen),signedPartLen));
  138. outp.append((uint16_t)sig.size());
  139. outp.append(sig.data,(unsigned int)sig.size());
  140. // FIXME: now we send the netconf cert with every single multicast,
  141. // which pretty much ensures everyone has it ahead of time but adds
  142. // some redundant payload. Maybe think abouut this in the future.
  143. if (nconf->com())
  144. nconf->com().serialize(outp);
  145. outp.compress();
  146. send(outp,true);
  147. }
  148. } else if (to.isZeroTier()) {
  149. // Simple unicast frame from us to another node
  150. Address toZT(to.data + 1,ZT_ADDRESS_LENGTH);
  151. if (network->isAllowed(toZT)) {
  152. network->pushMembershipCertificate(toZT,false,Utils::now());
  153. Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
  154. outp.append(network->id());
  155. outp.append((uint16_t)etherType);
  156. outp.append(data);
  157. outp.compress();
  158. send(outp,true);
  159. } else {
  160. TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),network->id());
  161. }
  162. } else {
  163. TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
  164. }
  165. }
  166. void Switch::send(const Packet &packet,bool encrypt)
  167. {
  168. if (packet.destination() == _r->identity.address()) {
  169. TRACE("BUG: caught attempt to send() to self, ignored");
  170. return;
  171. }
  172. if (!_trySend(packet,encrypt)) {
  173. Mutex::Lock _l(_txQueue_m);
  174. _txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry(Utils::now(),packet,encrypt)));
  175. }
  176. }
  177. void Switch::sendHELLO(const Address &dest)
  178. {
  179. Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
  180. outp.append((unsigned char)ZT_PROTO_VERSION);
  181. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  182. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  183. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  184. outp.append(Utils::now());
  185. _r->identity.serialize(outp,false);
  186. send(outp,false);
  187. }
  188. bool Switch::sendHELLO(const SharedPtr<Socket> &fromSock,const SharedPtr<Peer> &dest,const InetAddress &remoteAddr)
  189. {
  190. uint64_t now = Utils::now();
  191. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  192. outp.append((unsigned char)ZT_PROTO_VERSION);
  193. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  194. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  195. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  196. outp.append(now);
  197. _r->identity.serialize(outp,false);
  198. outp.armor(dest->key(),false);
  199. return fromSock->send(remoteAddr,outp.data(),outp.size());
  200. }
  201. bool Switch::sendHELLO(const SharedPtr<Peer> &dest,const InetAddress &remoteAddr,bool tcp)
  202. {
  203. uint64_t now = Utils::now();
  204. Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
  205. outp.append((unsigned char)ZT_PROTO_VERSION);
  206. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
  207. outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
  208. outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
  209. outp.append(now);
  210. _r->identity.serialize(outp,false);
  211. outp.armor(dest->key(),false);
  212. return _r->sm->send(remoteAddr,tcp,outp.data(),outp.size());
  213. }
  214. bool Switch::unite(const Address &p1,const Address &p2,bool force)
  215. {
  216. if ((p1 == _r->identity.address())||(p2 == _r->identity.address()))
  217. return false;
  218. SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
  219. if (!p1p)
  220. return false;
  221. SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
  222. if (!p2p)
  223. return false;
  224. uint64_t now = Utils::now();
  225. std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
  226. if (!(cg.first))
  227. return false;
  228. // Addresses are sorted in key for last unite attempt map for order
  229. // invariant lookup: (p1,p2) == (p2,p1)
  230. Array<Address,2> uniteKey;
  231. if (p1 >= p2) {
  232. uniteKey[0] = p2;
  233. uniteKey[1] = p1;
  234. } else {
  235. uniteKey[0] = p1;
  236. uniteKey[1] = p2;
  237. }
  238. {
  239. Mutex::Lock _l(_lastUniteAttempt_m);
  240. std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
  241. if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
  242. return false;
  243. else _lastUniteAttempt[uniteKey] = now;
  244. }
  245. TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
  246. /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
  247. * P2 in randomized order in terms of which gets sent first. This is done
  248. * since in a few cases NAT-t can be sensitive to slight timing differences
  249. * in terms of when the two peers initiate. Normally this is accounted for
  250. * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
  251. * given that supernodes are hosted on cloud providers this can in some
  252. * cases have a few ms of latency between packet departures. By randomizing
  253. * the order we make each attempted NAT-t favor one or the other going
  254. * first, meaning if it doesn't succeed the first time it might the second
  255. * and so forth. */
  256. unsigned int alt = _r->prng->next32() & 1;
  257. unsigned int completed = alt + 2;
  258. while (alt != completed) {
  259. if ((alt & 1) == 0) {
  260. // Tell p1 where to find p2.
  261. Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  262. outp.append((unsigned char)0);
  263. p2.appendTo(outp);
  264. outp.append((uint16_t)cg.first.port());
  265. if (cg.first.isV6()) {
  266. outp.append((unsigned char)16);
  267. outp.append(cg.first.rawIpData(),16);
  268. } else {
  269. outp.append((unsigned char)4);
  270. outp.append(cg.first.rawIpData(),4);
  271. }
  272. outp.armor(p1p->key(),true);
  273. p1p->send(_r,outp.data(),outp.size(),now);
  274. } else {
  275. // Tell p2 where to find p1.
  276. Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
  277. outp.append((unsigned char)0);
  278. p1.appendTo(outp);
  279. outp.append((uint16_t)cg.second.port());
  280. if (cg.second.isV6()) {
  281. outp.append((unsigned char)16);
  282. outp.append(cg.second.rawIpData(),16);
  283. } else {
  284. outp.append((unsigned char)4);
  285. outp.append(cg.second.rawIpData(),4);
  286. }
  287. outp.armor(p2p->key(),true);
  288. p2p->send(_r,outp.data(),outp.size(),now);
  289. }
  290. ++alt; // counts up and also flips LSB
  291. }
  292. return true;
  293. }
  294. void Switch::contact(const SharedPtr<Peer> &peer,const InetAddress &atAddr)
  295. {
  296. _r->sm->sendFirewallOpener(atAddr,ZT_FIREWALL_OPENER_HOPS);
  297. {
  298. Mutex::Lock _l(_contactQueue_m);
  299. _contactQueue.push_back(ContactQueueEntry(peer,Utils::now() + ZT_RENDEZVOUS_NAT_T_DELAY,atAddr));
  300. }
  301. // Kick main loop out of wait so that it can pick up this
  302. // change to our scheduled timer tasks.
  303. _r->sm->whack();
  304. }
  305. unsigned long Switch::doTimerTasks()
  306. {
  307. unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
  308. uint64_t now = Utils::now();
  309. {
  310. Mutex::Lock _l(_contactQueue_m);
  311. for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) {
  312. if (now >= qi->fireAtTime) {
  313. TRACE("sending NAT-T HELLO to %s(%s)",qi->peer->address().toString().c_str(),qi->inaddr.toString().c_str());
  314. sendHELLO(qi->peer,qi->inaddr,false);
  315. _contactQueue.erase(qi++);
  316. } else {
  317. nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now));
  318. ++qi;
  319. }
  320. }
  321. }
  322. {
  323. Mutex::Lock _l(_outstandingWhoisRequests_m);
  324. for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
  325. unsigned long since = (unsigned long)(now - i->second.lastSent);
  326. if (since >= ZT_WHOIS_RETRY_DELAY) {
  327. if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
  328. TRACE("WHOIS %s timed out",i->first.toString().c_str());
  329. _outstandingWhoisRequests.erase(i++);
  330. continue;
  331. } else {
  332. i->second.lastSent = now;
  333. i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
  334. ++i->second.retries;
  335. TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
  336. nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
  337. }
  338. } else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
  339. ++i;
  340. }
  341. }
  342. {
  343. Mutex::Lock _l(_txQueue_m);
  344. for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
  345. if (_trySend(i->second.packet,i->second.encrypt))
  346. _txQueue.erase(i++);
  347. else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
  348. TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
  349. _txQueue.erase(i++);
  350. } else ++i;
  351. }
  352. }
  353. {
  354. Mutex::Lock _l(_rxQueue_m);
  355. for(std::list< SharedPtr<PacketDecoder> >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
  356. if ((now - (*i)->receiveTime()) > ZT_RECEIVE_QUEUE_TIMEOUT) {
  357. TRACE("RX %s -> %s timed out",(*i)->source().toString().c_str(),(*i)->destination().toString().c_str());
  358. _rxQueue.erase(i++);
  359. } else ++i;
  360. }
  361. }
  362. {
  363. Mutex::Lock _l(_defragQueue_m);
  364. for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
  365. if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
  366. TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
  367. _defragQueue.erase(i++);
  368. } else ++i;
  369. }
  370. }
  371. return std::max(nextDelay,(unsigned long)10); // minimum delay
  372. }
  373. void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
  374. {
  375. std::vector< SharedPtr<Peer> > directPeers;
  376. _r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers,Utils::now()));
  377. #ifdef ZT_TRACE
  378. unsigned int totalMulticastGroups = 0;
  379. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
  380. totalMulticastGroups += (unsigned int)i->second.size();
  381. TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
  382. #endif
  383. uint64_t now = Utils::now();
  384. for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
  385. Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  386. for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
  387. nwmgs->first->pushMembershipCertificate((*p)->address(),false,now);
  388. if ((_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isAllowed((*p)->address()))) {
  389. for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
  390. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  391. send(outp,true);
  392. outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  393. }
  394. // network ID, MAC, ADI
  395. outp.append((uint64_t)nwmgs->first->id());
  396. outp.append(mg->mac().data,6);
  397. outp.append((uint32_t)mg->adi());
  398. }
  399. }
  400. }
  401. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  402. send(outp,true);
  403. }
  404. }
  405. void Switch::announceMulticastGroups(const SharedPtr<Peer> &peer)
  406. {
  407. Packet outp(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  408. std::vector< SharedPtr<Network> > networks(_r->nc->networks());
  409. uint64_t now = Utils::now();
  410. for(std::vector< SharedPtr<Network> >::iterator n(networks.begin());n!=networks.end();++n) {
  411. if (((*n)->isAllowed(peer->address()))||(_r->topology->isSupernode(peer->address()))) {
  412. (*n)->pushMembershipCertificate(peer->address(),false,now);
  413. std::set<MulticastGroup> mgs((*n)->multicastGroups());
  414. for(std::set<MulticastGroup>::iterator mg(mgs.begin());mg!=mgs.end();++mg) {
  415. if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
  416. send(outp,true);
  417. outp.reset(peer->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
  418. }
  419. // network ID, MAC, ADI
  420. outp.append((uint64_t)(*n)->id());
  421. outp.append(mg->mac().data,6);
  422. outp.append((uint32_t)mg->adi());
  423. }
  424. }
  425. }
  426. if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
  427. send(outp,true);
  428. }
  429. void Switch::requestWhois(const Address &addr)
  430. {
  431. //TRACE("requesting WHOIS for %s",addr.toString().c_str());
  432. bool inserted = false;
  433. {
  434. Mutex::Lock _l(_outstandingWhoisRequests_m);
  435. std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
  436. if ((inserted = entry.second))
  437. entry.first->second.lastSent = Utils::now();
  438. entry.first->second.retries = 0; // reset retry count if entry already existed
  439. }
  440. if (inserted)
  441. _sendWhoisRequest(addr,(const Address *)0,0);
  442. }
  443. void Switch::cancelWhoisRequest(const Address &addr)
  444. {
  445. Mutex::Lock _l(_outstandingWhoisRequests_m);
  446. _outstandingWhoisRequests.erase(addr);
  447. }
  448. void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
  449. {
  450. {
  451. Mutex::Lock _l(_outstandingWhoisRequests_m);
  452. _outstandingWhoisRequests.erase(peer->address());
  453. }
  454. {
  455. Mutex::Lock _l(_rxQueue_m);
  456. for(std::list< SharedPtr<PacketDecoder> >::iterator rxi(_rxQueue.begin());rxi!=_rxQueue.end();) {
  457. if ((*rxi)->tryDecode(_r))
  458. _rxQueue.erase(rxi++);
  459. else ++rxi;
  460. }
  461. }
  462. {
  463. Mutex::Lock _l(_txQueue_m);
  464. std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > waitingTxQueueItems(_txQueue.equal_range(peer->address()));
  465. for(std::multimap< Address,TXQueueEntry >::iterator txi(waitingTxQueueItems.first);txi!=waitingTxQueueItems.second;) {
  466. if (_trySend(txi->second.packet,txi->second.encrypt))
  467. _txQueue.erase(txi++);
  468. else ++txi;
  469. }
  470. }
  471. }
  472. const char *Switch::etherTypeName(const unsigned int etherType)
  473. throw()
  474. {
  475. switch(etherType) {
  476. case ZT_ETHERTYPE_IPV4: return "IPV4";
  477. case ZT_ETHERTYPE_ARP: return "ARP";
  478. case ZT_ETHERTYPE_RARP: return "RARP";
  479. case ZT_ETHERTYPE_ATALK: return "ATALK";
  480. case ZT_ETHERTYPE_AARP: return "AARP";
  481. case ZT_ETHERTYPE_IPX_A: return "IPX_A";
  482. case ZT_ETHERTYPE_IPX_B: return "IPX_B";
  483. case ZT_ETHERTYPE_IPV6: return "IPV6";
  484. }
  485. return "UNKNOWN";
  486. }
  487. void Switch::_handleRemotePacketFragment(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  488. {
  489. Packet::Fragment fragment(data);
  490. Address destination(fragment.destination());
  491. if (destination != _r->identity.address()) {
  492. // Fragment is not for us, so try to relay it
  493. if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
  494. fragment.incrementHops();
  495. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  496. if ((!relayTo)||(!relayTo->send(_r,fragment.data(),fragment.size(),Utils::now()))) {
  497. relayTo = _r->topology->getBestSupernode();
  498. if (relayTo)
  499. relayTo->send(_r,fragment.data(),fragment.size(),Utils::now());
  500. }
  501. } else {
  502. TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
  503. }
  504. } else {
  505. // Fragment looks like ours
  506. uint64_t pid = fragment.packetId();
  507. unsigned int fno = fragment.fragmentNumber();
  508. unsigned int tf = fragment.totalFragments();
  509. if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
  510. // Fragment appears basically sane. Its fragment number must be
  511. // 1 or more, since a Packet with fragmented bit set is fragment 0.
  512. // Total fragments must be more than 1, otherwise why are we
  513. // seeing a Packet::Fragment?
  514. Mutex::Lock _l(_defragQueue_m);
  515. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  516. if (dqe == _defragQueue.end()) {
  517. // We received a Packet::Fragment without its head, so queue it and wait
  518. DefragQueueEntry &dq = _defragQueue[pid];
  519. dq.creationTime = Utils::now();
  520. dq.frags[fno - 1] = fragment;
  521. dq.totalFragments = tf; // total fragment count is known
  522. dq.haveFragments = 1 << fno; // we have only this fragment
  523. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  524. } else if (!(dqe->second.haveFragments & (1 << fno))) {
  525. // We have other fragments and maybe the head, so add this one and check
  526. dqe->second.frags[fno - 1] = fragment;
  527. dqe->second.totalFragments = tf;
  528. //TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
  529. if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
  530. // We have all fragments -- assemble and process full Packet
  531. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  532. SharedPtr<PacketDecoder> packet(dqe->second.frag0);
  533. for(unsigned int f=1;f<tf;++f)
  534. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  535. _defragQueue.erase(dqe);
  536. if (!packet->tryDecode(_r)) {
  537. Mutex::Lock _l(_rxQueue_m);
  538. _rxQueue.push_back(packet);
  539. }
  540. }
  541. } // else this is a duplicate fragment, ignore
  542. }
  543. }
  544. }
  545. void Switch::_handleRemotePacketHead(const SharedPtr<Socket> &fromSock,const InetAddress &fromAddr,const Buffer<4096> &data)
  546. {
  547. SharedPtr<PacketDecoder> packet(new PacketDecoder(data,fromSock,fromAddr));
  548. Address source(packet->source());
  549. Address destination(packet->destination());
  550. //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
  551. if (destination != _r->identity.address()) {
  552. // Packet is not for us, so try to relay it
  553. if (packet->hops() < ZT_RELAY_MAX_HOPS) {
  554. packet->incrementHops();
  555. SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
  556. if ((relayTo)&&(relayTo->send(_r,packet->data(),packet->size(),Utils::now()))) {
  557. // If we've relayed, this periodically tries to get them to
  558. // talk directly to save our bandwidth.
  559. unite(source,destination,false);
  560. } else {
  561. // If we've received a packet not for us and we don't have
  562. // a direct path to its recipient, pass it to (another)
  563. // supernode. This can happen due to Internet weather -- the
  564. // most direct supernode may not be reachable, yet another
  565. // further away may be.
  566. relayTo = _r->topology->getBestSupernode(&source,1,true);
  567. if (relayTo)
  568. relayTo->send(_r,packet->data(),packet->size(),Utils::now());
  569. }
  570. } else {
  571. TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet->source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
  572. }
  573. } else if (packet->fragmented()) {
  574. // Packet is the head of a fragmented packet series
  575. uint64_t pid = packet->packetId();
  576. Mutex::Lock _l(_defragQueue_m);
  577. std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
  578. if (dqe == _defragQueue.end()) {
  579. // If we have no other fragments yet, create an entry and save the head
  580. DefragQueueEntry &dq = _defragQueue[pid];
  581. dq.creationTime = Utils::now();
  582. dq.frag0 = packet;
  583. dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
  584. dq.haveFragments = 1; // head is first bit (left to right)
  585. //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
  586. } else if (!(dqe->second.haveFragments & 1)) {
  587. // If we have other fragments but no head, see if we are complete with the head
  588. if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
  589. // We have all fragments -- assemble and process full Packet
  590. //TRACE("packet %.16llx is complete, assembling and processing...",pid);
  591. // packet already contains head, so append fragments
  592. for(unsigned int f=1;f<dqe->second.totalFragments;++f)
  593. packet->append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
  594. _defragQueue.erase(dqe);
  595. if (!packet->tryDecode(_r)) {
  596. Mutex::Lock _l(_rxQueue_m);
  597. _rxQueue.push_back(packet);
  598. }
  599. } else {
  600. // Still waiting on more fragments, so queue the head
  601. dqe->second.frag0 = packet;
  602. }
  603. } // else this is a duplicate head, ignore
  604. } else {
  605. // Packet is unfragmented, so just process it
  606. if (!packet->tryDecode(_r)) {
  607. Mutex::Lock _l(_rxQueue_m);
  608. _rxQueue.push_back(packet);
  609. }
  610. }
  611. }
  612. Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
  613. {
  614. SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
  615. if (supernode) {
  616. Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
  617. addr.appendTo(outp);
  618. outp.armor(supernode->key(),true);
  619. uint64_t now = Utils::now();
  620. if (supernode->send(_r,outp.data(),outp.size(),now))
  621. return supernode->address();
  622. }
  623. return Address();
  624. }
  625. bool Switch::_trySend(const Packet &packet,bool encrypt)
  626. {
  627. SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
  628. if (peer) {
  629. uint64_t now = Utils::now();
  630. SharedPtr<Peer> via;
  631. if (peer->hasActiveDirectPath(now)) {
  632. via = peer;
  633. } else {
  634. via = _r->topology->getBestSupernode();
  635. if (!via)
  636. return false;
  637. }
  638. Packet tmp(packet);
  639. unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
  640. tmp.setFragmented(chunkSize < tmp.size());
  641. tmp.armor(peer->key(),encrypt);
  642. if (via->send(_r,tmp.data(),chunkSize,now)) {
  643. if (chunkSize < tmp.size()) {
  644. // Too big for one bite, fragment the rest
  645. unsigned int fragStart = chunkSize;
  646. unsigned int remaining = tmp.size() - chunkSize;
  647. unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  648. if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
  649. ++fragsRemaining;
  650. unsigned int totalFragments = fragsRemaining + 1;
  651. for(unsigned int f=0;f<fragsRemaining;++f) {
  652. chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
  653. Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
  654. if (!via->send(_r,frag.data(),frag.size(),now)) {
  655. TRACE("WARNING: packet send to %s failed on later fragment #%u (check IP layer buffer sizes?)",via->address().toString().c_str(),f + 1);
  656. }
  657. fragStart += chunkSize;
  658. remaining -= chunkSize;
  659. }
  660. }
  661. /* #ifdef ZT_TRACE
  662. if (via != peer) {
  663. TRACE(">> %s to %s via %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),via->address().toString().c_str(),(int)packet.size());
  664. } else {
  665. TRACE(">> %s to %s (%d)",Packet::verbString(packet.verb()),peer->address().toString().c_str(),(int)packet.size());
  666. }
  667. #endif */
  668. return true;
  669. }
  670. return false;
  671. }
  672. requestWhois(packet.destination());
  673. return false;
  674. }
  675. } // namespace ZeroTier